ON SOME STATISTICAL PROPERTIES
OF DYNAMICAL SYSTEMS

S. M. ULAM

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY

1. Introduction

It is intended to present in this paper a number of problems and a brief
summary of some numerical computations on the asymptotic behavior of certain
simple dynamical systems.

These problems refer to the behavior of a few mass points with given mutual
interactions and concern the ergodic properties of the system. Broadly speaking,
the questions pertain to the time rates with which a statistical or thermodynami-
cal equilibrium-like states, might be attained. That the approach to equilibria
as postulated in statistical dynamies might be extremely slow as compared to
times obtained by phase-space volumes or relaxation estimates was indicated in
some computations performed a number of years ago by J. Pasta, E. Fermi, and
the author [1]. This problem dealt with the long time range behavior of a vibrat-
ing string with nonlinear forces added to the usual linear ones. In reality, the
problem concerned a dynamical system of a finite number (for example, 64)
of particles and was pursued numerically over hundreds of eycles, each corres-
ponding to a would-be period, that is, times corresponding to a full period of
the purely linear part of the problem. The results were somewhat surprising in
that no tendency towards equilibrization of energy between all the possible
modes was noted. Instead, these results showed a transfer of energy between the
first few modes of oscillation of the string. The high modes (say from number 5
on up to the last), even in their totality do not acquire more than a few per cent
of the total potential plus kinetic energy. Ultimately, the system came back
practically to the initial condition. An account of this work is also given in my
book [2].

Imagine, quite generally, a system of particles with different masses, all con-
sidered as mass points which attract each other according to a given law, say
with inverse square forces. Let us assume, furthermore, that the system is in a
quasi equilibrium in the sense that most of the particles will stay within a certain
bounded distance from each other for a time long compared to the time it takes
the radius vector of each particle to describe a full rotation through 2x. One
question is, how long will it take for the velocities of the particles to be distrib-
uted approximately in accordance with the equilibrium law of statistical me-
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chanics, that is, to have Maxwellian distribution? For a bounded system—if we
assume that there exist walls confining the whole system, or else if there exist,
for example, outside magnetic constraints to help confine charged particles—one
could rely on the ergodic theorem and the metrie transitivity to bring about an
approach to such an equilibrium.

It is known that in a bounded phase-space the continuous ergodic (metrically
transitive) transformations are everywhere dense in the space of all continuous
measure-preserving transformations. What is more, they form, in a topological
sense, the “bulk’’ of the whole space [3]. A corresponding theorem stating an
analogous property of a real dynamical system of n» bodies has not yet been
obtained.

The discussion which follows is occasioned by speculations contained in a
Los Alamos Report [4]. This deals with the following situation: assume a system
composed of two or more stellar bodies and a vehicle which, as an additional
body of mass infinitesimally small compared to the celestial objects, forms a
many (for example, three) body system. Assume furthermore that the “rocket”
describes a trajectory under the action of gravitational forces due to the two
large masses, but also still has a certain amount of reserve energy available for
steering, that is to say, changing its course by suitably emitted impulses. This
available energy is roughly of the order of the kinetic energy which the vehicle
already possesses at time ¢ = 0. The problem is whether one can use this reserve
energy in such a way as to obtain, by suitable near collisions with one or the
other of the celestial bodies, much more kinetic energy than that at time ¢ = 0,
perhaps more by an order of magnitude. As an illustration, assume that the
vehicle is between two members of a double star system, it is describing a
trajectory in between the two. The question is whether by planning the orbit
and changing it suitably one could acquire in leaving the system many times the
velocity initially present. It is clear that in a two-body system such possibilities
do not exist. The orbit, unperturbed by further impulses, would be a Keplerian
ellipse and obviously no multiple “collisions’ are possible. One might expect that
in a double star system such possibilities do exist. Obviously, in a triple star sys-
tem the chances of finding suitable orbits and suitable maneuvering seem greater.
In an n-body system, say of equal masses, and a rocket whose mass is infinitesi-
mally small by comparison, we will approach the situation of a volume of gas
containing both heavy and light atoms, where in equilibrium the velocities of the
light particles are greater. From the ergodic theorem, at least applied to a
bounded system, it would also follow that the light particle will require very high
velocities. The ergodic behavior guarantees that arbitrarily near the given dy-
namical motion there exists one which will make the rocket approach as close to a
small sphere surrounding any of the given heavy mass points as we please, which
in particular implies high velocities. The question of whether such motions can be
obtained by small changes effected by impulses emitted from the rocket is not
answered by the general theorem, but this seems, in view of the prevalence of
ergodic motions near given ones, extremely likely. Nothing precise is known,



DYNAMICAL SYSTEMS 317

however, about the fimes necessary for obtaining such motions. They might be
of super-astronomical lengths. One could say that our question is that of the
existence of a Maxwellian Demon in a restricted and, so to say, more modest
sense: is it possible, by using “intelligently” a small amount of available energy,
to shorten the times for near-equilibrization by large factors?

2. Dr. Kenneth Ford has studied, with the author [6], a specific version of this
problem in the summer of 1959. A rocket, whose mass is negligible, is navigating
between two heavy bodies. The question is whether trajectories within such
stellar systems can be so arranged that the rocket would finally acquire a velocity
which is many times greater than the velocity of the heavy bodies. It is easily
seen that the change in its speed after a single collision cannot be greater than
twice the speed of the heavy body. The problem has to be also considered with the
limitation that the radii of the stellar bodies are finite, which makes it harder to
arrange trajectories for repeated collisions which would result in considerable
gain of velocity of the rocket. Instead of the speed of the heavy body, the escape
velocity from its surface becomes a limit for an additional increase. The model
specifically studied, both analytically and numerically, in some detail by K. Ford
assumed two heavy bodies of equal mass executing a circular motion about the
center of mass. In spite of its very specialized form, this problem is already very
complicated, since there is a variety of weird rocket orbits. Ford first finds, in
the rotating frame of reference, the properties of a continuously infinite set of
periodic solutions and examines solutions slightly perturbed from these looking
for net energy changes of the rocket in the laboratory frame. Several orbits are
found in which, for example, the rocket arrives with negligible velocity from
infinity, is captured in a large orbit of low energy, then eased with judicially
applied power into an orbit which loops both stars. At the point of nearest
approach to one of these, a downward thrust may be applied giving an orbit in
which the kinetic energy increases, and then goes off into infinity with a velocity
many times that of the star.

Some of the orbits which are periodic are stable against perturbations. In
numerical tries, the greatest final velocity of the rocket was about 3.71 times the
velocity of the star.

3. A still simpler model to illustrate the general problem will now be considered.
A material point (of mass 1) is confined, in one dimension, on a unit interval
between two heavy oscillating walls whose mass is infinite. We assume, for
example, a harmonic oscillation of the two confining walls. The point is thrown
into the interval with the initial velocity, say, equal 1. Assume furthermore that
the collisions are always elastic. In succession they will lead to changes in the
_velocity of our point. In a head-on collision, the point will gain twice the speed
of the wall. In a collision which overtakes the wall, the result will be a loss of
speed for our point. The maximum velocity of the wall may be assumed to be,
say, also equal to 1, and the problem is to study the behavior of the velocity
of our point after many collisions. One expects that, after sufficiently long times,
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the average velocity of the point will become very large, if we look upon the
problem as one of statistical mechanics. The tendency towards equipartition of
energy would imply this. Mathematically, the problem involves also difficulties
of diophantine analysis. The successive collisions take place at times increasingly
difficult to compute precisely, and small changes in these lead later on to widely
different patterns. Since the collisions which are head-on are slightly more fre-
quent than the unfavorable ones, one might expect a gradual increase in velocity
on the average, and the question is to compute or estimate the rate of this in-
crease. One would like such estimates for “almost every” initial position and
initial speed of the small particle.

A numerical study of this problem was undertaken with Mark Wells in the
Los Alamos Scientific Laboratory. To simplify the computations, the motion of
the wall was not assumed to be harmonie, but in a form of a tooth-shaped, that
is, broken linear, displacement in time. The problem was studied in two versions,
one with velocity of the wall oscillating linearly from 0 to 1, the other with the
velocity constant and reversing with a fixed period.

Several thousand successive collisions were computed and great care was taken
to examine the infiuence of the roundoff of errors on the behavior of successive
collisions. The results showed a rather surprising behavior. Instead of the ex-
pected—perhaps somewhat erratic but, on the average steady increase of speed
of particle—enormous fluctuations were observed. With initial speed = 1 of the
particle, and speed = 1 of the wall, the velocity of the particle obtained during
several thousand collisions sometimes varied between 3 and 4, but the periods
of time when the velocity was high were followed by longer periods when it
dropped back to 1 or below. It was not possible to conclude from these computa-
tions whether the long time average of the energy would increase linearly or
with a smaller power of time.

The numerical work was performed for the case where the two walls were
moving in phase. (Computationally, it is sufficient, of course, to assume just one
heavy wall.) The numerical results, such as they were, would rather indicate a
very slow approach to situations envisaged in a statistical mechanics picture,
and definitely large fluctuations which seemed to be increasing with time.

Since even this deterministic problem shows unexpected difficulties, it seems
futile to superimpose on it the original question of whether, by suitably planned
additional small impulses, the rate of increase of speed might be greatly accel-
erated. Such a restricted Maxwellian Demon would have to be in possession of
a super-computer and solve, in addition to the diophantine problem, a game
theoretic question. From the greatly fluctuating nature of the nonperturbed
motion, it is clear that no local recipe of the kind used in problems of the calculus
of variations would be suitable for optimization. It may be that, on the contrary,
before certain collisions, occasional “sacrifices,” in the sense of the term as used
in the game of chess, might be necessary for an overall optimum, that is to say,
occasionally a few collisions should be planned which might lead to a lower value
of speed so as to have favorable collisions later on.
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It might be that the restriction to one dimension makes the problem less typi-
cal of situations usually dealt with in statistical mechanics. One could imagine
an analogous system in two-space dimension, say a ball colliding with pulsating
walls on a billiard table. The additional parameter of the angle of impact
might introduce more random-like properties, and the asymptotic behavior of
the speed of the particle would be perhaps a less fluctuating one. This is by no
means certain, however. It is only plausible that a large number of particles or
constraints in a dynamical system is required to insure a thermodynamic-like
behavior of the system.

4, A more realistic problem would assume, still in its simplest version, instead
of an infinite, a large but finite mass of particles corresponding to the walls.
The asymptotic properties of this system might be different from the ones in the
previous discussion.

Here, an idealized mathematical model, still in one-space dimension but able
to test some of the schemes above, could be as follows:

Imagine, on an infinite line, masses put in on every point with integer coordi-
mates. These masses are either 1 or 2, and for each integer value of the coordinate
we decide by the throw of a coin which one of the two values of the mass to
locate there. In addition, we give to each of these points a velocity of +1 or
—1, again deciding independently with probability 1/2 which one to use. All
this is done at time ¢ = 0. We can represent the initial state o1 such a system by,
say, two real numbers, £ and 7. One may characterize symbolically the distribu-
tion of masses by using the symbol 0 on the nth binary of ¢ if the massis 1 at the
point £ = n, and symbol 1 if the mass is 2. The other number 7, similarly, will
contain all the information about the velocities of the system by using symbol
0 in 9, if the velocity at + = n is —1 and symbol 1 if the velocity is +1. In
this fashion it will be possible to talk about “almost every initial distribution”
(in the sense of Lebesgue measure). The mass points will start colliding and,
assuming collisions to be perfectly elastic, new velocities will appear and new sets
of collisions will ensue.

A whole set of problems now arises. Will the distribution of velocities, which
initially was random in the sense of Bernouilli, tend to a distribution more
resembling that of a gas? In one dimension high values of velocities will not be
established, but the question of the rate of approach to an equilibrium-like
situation is of interest. Or perhaps the fluctuations will continue indefinitely on
a large scale. The proper way to consider limits is obviously to take any point,
an interval of length 2N around it, compute the functional in question, and ex-
amine the limit as N — <.

This model can be varied, of course. One could have, instead of giving each
point a velocity 1, say, a continuous distribution of velocities to start with, and
so forth.

A similar problem was considered previously [5]. The point of view adopted
there was different. The collisions, on the contrary, were assumed to be totally
inelastic. The points were not put on every integer valued coordinate, but only
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with probability 1/2. The question studied there was that of formation of con-
densations and superclustering. Needless to say, in our problem above there will
be initially, with probability 1, arbitrarily large but increasingly rarely-spaced
groups of points with velocities in the same direction. Therefore, the spatial dis-
tribution of points after some time will be quite nonuniform. Whether the
asymptotic density will remain constant is not obvious a priori.

Coming back to our problem of a light particle colliding with heavy ones:
the indications given by numerical tries reported above are then that the rate
of energy increase is both slow and irregular. If also true for a random distribu-
tion of heavy masses in three dimensions, this would have some consequences
for models of mechanisms by which cosmic ray particles acquire very high
energies. One such model, considered in literature, postulates charged particles
colliding with magnetic fields of stars. These stars move at random and would
ultimately transfer some of their energy to the elementary particle. Another
model is of a particle moving in continuous and varying magnetic fields in
interstellar space. This latter is more difficult to schematize as simply as our
model above, but could perhaps provide a more efficient way for endowing the
particle with very high energy.
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