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1. Introduction: nonrelativistic case

In the initial, nonrelativistic theory of quantum mechanics it is assumed that
the only information we have about the state of a particle, at a given time, is
its wave function ', a complex function on R3 or a complex function of three
coordinates x, y, z. This function is assumed to be square integrable, IE LI,
and moreover one assumes

(1.1) rf I'|L(x, y, z)2dx dy dz = 1.
Rs

Consider an observable physical quantity, taking its values in a set X. For
example, the position of the particle is a quantity with values in X = R3 and
so is the velocity. The energy has values in X = R, and so on. In classical
mechanics, a measurement of such a quantity is supposed to be obtainable with
arbitrary accuracy, and, for a given state, the quantity has a definite value x in X.
In quantum mechanics, this unlimited precision disappears. If we make a meas-
urement of the quantity, for a particle having the wave function ', we have
only a probability law Pt, depending on ', that is, a positive measure on X,
of total mass 1. Thus, if A is a subset of X, assumed to be measurable (Pq),
the probability that the measurement will give a result in A C X is P*(A). It
is usually assumed that this probability law PS on X must be given by a spectral
decomposition of the Hilbert space L2, with respect to X. Such a spectral decom-
position is defined as follows. It is a map P:A -* P(A) = LA, where A runs
over a Borel field of subsets of X, and LA is a closed subspace of L2, with the
following properties.

(a) Lo' = {O}, where + = empty set of X, 0 = origin of the vector space
L2; L2 =L2.

(b) If A and B are disjoint subsets of X, L2A and L2 are orthogonal in L2.
(c) If A is the union of a finite or denumerable family of disjoint subsets A.,

then L2 is the closure of the subspace of L2 spanned by the LAn.
Thus the probability law Pp of the physical quantity under consideration

must be given by
307
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(1.2) P*(A) = ||IfAII2 = IffIfA(X, Y, z)I2 dx (ly dz,

where *A is the orthogonal projection of LIE on the subspace P(A) = L2
of L2. Axiom (a) ensures that Pp(o) = 0, Pq(X) = 1, and (b) and (c) ensure,
according to Pythagoras' theorem, that Ps& is a completely additive set function;
it is therefore, as desired, a probability law on X.

In this model the state of the particle is given by the wave function 'I, the
observable physical quantity by the spectral decomposition P, and thus a
measurement of the quantity for the state of the particle is governed by the
probability law Ps on X, given by (1.2). There is in L2(R3) a trivial spectral de-
composition, that for which L2A is the subspace of those 'I which are zero outside
A. It is regarded as the spectral decomposition associated with the observable:
"position of the particle in R3." Therefore, we have, in a measurement, the fol-
lowing probability for the particle to be found in the subset A of R3

(1.3) Pk(A) = fff 'I(x, y, z)12 dx (dy dz.
A

For this reason, 1I'12 is the density of probability of presence. If Inow we look for
the spectral decomposition corresponding to the first coordinate x of the particle,
taking its values in R, it must be that for which, when B C R, the probability
for a measurement of x to give a result in B is

(1.4) |ffj I(x, y, z)12 dx dy dz.

This spectral decomposition is also the spectral decomposition associated with
the self-adjoint operator on L2 "multiplication by x." Multiplication by x is also
said to be the operator associated with the measurement of x.

If now we consider the evolution in time of the given particle, we shall have,
at every instant t, a wave function 'tI, and thus a function of time having values
in L2. It will also be a function I of the four variables x, y, z, t, defining for every
t a function fi't of the three variables x, y, z. The usual rules of quantum mechanics
say that 'T must satisfy some Schrodinger equation such as

(1.5) at = Ht*t,at

where, for every t, the H, is a self-adjoint operator on L2. This self-adjointness
ensures, according to known properties of Hilbert spaces, that any solution of
(1.5) keeps the same norm in L2 for every t; if, for t = 0, it has the norm 1,
which is required by (1.1), this equality remains valid for every t, and the solution
defines a valid wave function for every t, and finally a valid motion of the par-
ticle. The Hamiltonian H, or the function t -+ Ht, depends on the mechanical
conditions under consideration.
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2. Relativistic case

In special relativity no distinction is made between the three space variables
x, y, z and the time variable t. The universe is a space E4, a four-dimensional

affine space, having an associated vector space E4. We note that E4 is not a vector

space, it has no origin, and there is no sum of any two points; E4 is the space of

vectors of E4. If a and b are two points of E4, then b - a is a vector, belonging
to E4. On E4 is given a quadratic form, with signature (3.1) measuring the "uni-
verse lengths." A physical coordinate system is an orthonormal basis of E4,
given by an origin of E4 and four vectors of E4. If XI, X2, X3, x4 = ct are called
the corresponding coordinates of an event (an event is a point of E4), the observer
sees Xi, X2, x3 as its space coordinates and t as its time. A sense of time and an

orientation of E4 are also given.
The complete motion of a particle will be a wave function I, a complex func-

tion on E4. For a physical coordinate system T becomes a function of four var-
iables x1, X2, XS, t, and we are led back to the situation of section 1.
We shall consider that a given particle in given mechanical conditions is

characterized by all its possible motions. We may assume that all these possible
motions will be all the elements of norm 1 in a Hilbert space SC of functions on
E4. For instance, in the nonrelativistic case, for a particle characterized by the
Hamiltonian H, the Hilbert space 3C was formed by all the functions 'I of four
variables x, y, z, t satisfying (1.5) and belonging to LxVG for every t. The norm
in 3C was given by

(2.1) III|is = fjf jW(x, y, z, t) 2 dx dy dz,

the result being independent of t because of the self-adjointness of Ht. We can
certainly not have the same kind of results in the relativistic case, because it
is not Lorentz invariant.

It is an uninteresting restriction to force I to be a function; we shall only
assume I to be a distribution on E4, a wave distribution. Remember that a
distribution 'I is a continuous linear form on the space D(E4) of the infinitely
differentiable functions on E4, with compact support. The value of 'I on so E D
will be denoted by I(s) or <I, (p>. sC will be a subspace of the space VY(E4)
of the distributions on E4.- C will also have a given structure as a Hilbert space,
and we shall assume that the norm in 5C is such that convergence in UC implies
convergence in the sense of distributions. There are infinitely many choices of 3c,
each of which gives a possible particle in some well-defined physical situation,
and all the I EC SC, with norm 1 in XC, give all the possible motions of such a
particle in the situation considered. We are only interested in spaces 3c # {0}
since we have to deal with elements of $2 of norm 1.
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3. Free scalar elementary particle

For a detailed proof of the formulas given here, such as (3.3) and (4.5), see
Schwartz [1].

If the particle is free (no external fields), it has to be Lorentz universal, or
Lorentz invariant, in the sense that a Lorentz transformation on a possible
motion I must give a new possible motion.
Thus we shall assume that, for any element a of the Lorentz group and any

' of aC, the transformed distribution a* also belongs to 3C, and has the same
norm in 5C, that is,
(3.1) 11u'I'l||c = ll*'Iac.
Note that the transformed distribution a* is defined, for any function so E D
which is infinitely differentiable with compact support, by
(3.2) aI(,e) = *(C`o) = [1p(oX)]-
Therefore, a is a unitary operator on the Hilbert space SC, and the Lorentz group
G has here a unitary representation in 3C. We shall define as a free elementary
particle a free particle (thus Lorentz invariant) for which SC is minimal, in the
sense that no Lorentz invariant Hilbert space SC' 0 {0} contained in 3C exists
except SC' = 3C with a proportional norm. Therefore the unitary representation
of the Lorentz group G is simply an irreducible unitary representation.
What we call here the Lorentz group is the proper inhomogeneous Lorentz group,

that is, the group of all the affine operators of E4 onto itself, preserving the given
quadratic form, on E4, the orientation, and the sense of time. The word inhomo-
geneous simply means that we consider affine operators of E4 (for example,
translations), and the word proper means that we restrict ourselves to operators
preserving orientation (determinant + 1) and sense of time.
The complete list of all these Hilbert spaces aC C V'(E4), Lorentz invariant

and minimal, may be obtained by different techniques, all using Fourier trans-
forms. The result is the following. Of course, for every JC, one can also take the
same with a proportional norm, but we shall not distinguish them.

(a) There is one special JC, one-dimensional, all the elements of which are
constant functions '. It may be interpreted as the vacuum.

(b) There is a series of spaces C1, depending on one real parameter. These
cannot be physically interpreted.

(c) There is a normal series, physically interpretable. It depends on a param-
eter mo > 0, which may be interpreted as the rest mass of the particle, and a
parameter 4-, which may be interpreted as the electric charge.

In this way the only particles we have -found are the wr-mesons, with spin 0.
We find, in this way, every possible mass mo, including 0, which is not true in
nature! One can generalize and find all the known elementary particles by looking
for finite-dimensional vector-valued elementary particles, for which I is finite-
dimensional vector-valued, that is, I has a finite number of scalar components.
We find here charged particles only, because we considered complex-valued
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wave distributions T. With real-valued distributions neutral particles are
obtained.
The Hilbert space IC,,,. + may be described in the following way. Consider

the distribution on E4

(3.3) 27rA\2.cMO(X)
h

7rcrn N(2 emo2)~K 27ircmmrom N, (27r,'MO ,>_Y2) cOK(ro '2)
=p.v. .YIiX2) Y(X2)j

_ Y2 N/X2
- E(Xo)Jl (2)r1m

V_X2~~~~~X2X÷~~~~~~~~~~ Y(~~~~~~~~~~~~~~~~~~~~~~~x2)-e(Xo)8(X2)j.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)-E(o
In this rather complicated formula N1 is a Neumann function; K1 a Kelvin

function; J1 a Bessel function (one could use a shorter formula with Hankel
functions); A- is the name of the distribution, one of the "singular functions,"
that is, distribution of quantum mechanics; p.v. means Cauchy's principal value;
X2 means the value on the vector X E E4 of the Lorentz quadratic form; Y
means the Heaviside function where Y(r) = 1 for r > 0, and = 0 for r < 0; E iS
defined as the function e(Tr) = sign of T = +1 for r > 0, and -1 for T < 0, so

that if XO is the fourth component of X in any coordinate system X1, X2, X3, XO

then E(Xo), for elements X of the interior or the surface of the light cone, is +1

for X in the positive light cone, -1 for X in the negative light cone; 6(X2) is

defined from the 6(u) of one variable u by the change of variables u = X2 (we
denote here distributions in the physical way, as functions); c is the velocity of
light; h is Planck's constant. The parameter is written cmo/h so that mo may be
interpreted as rest mass of the particle. Then a distribution T on E4 belongs to
40a + if and only if the expression

(3.4) (,)
h

is bounded when so runs over a)(E4). Here * means convolution. In this case the
upper bound is the norm of T in FC,,,+.

All the I of aC,,.O + are solutions of the Klein-Gordon equation

(3.5) °I- M O= .

This equation is here not assumed; we find it as a consequence of our hypothesis
that 5C is Lorentz invariant and minimal.
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The Hilbert space XC,,, - is obtained in the same way from A+, which is ob-
tained from A- by changing i into -i.

4. Density of probability of presence

From now on we shall write JC instead of X. ,. Then every I of JC is a priori
a distribution. Actually one can prove it is a function, that is, a locally integrable
function defined almost everywhere on E4.

Consider a physical coordinate system. Thus T becomes a function of
(x, y, z, t), locally integrable, defined almost everywhere. Therefore, if we fix the
time t = to, then P is not defined as a function of x, y, z, since a hyperplane t = to
is a set of measure zero in E4. But one can prove the following result: it is pos-
sible to choose ' (initially defined only almost everywhere) so that it is a con-
tinuous function of t, with values in the space Voc of the locally integrable
functions of (x, y, z). Because of the continuity in t, the function I is then
determined not merely almost everywhere in E4 but, for every t, almost every-
where with respect to (x, y, z).

Finally, I defines for t = to, a well-defined Lebesgue class of functions A, and
also a well-defined distribution I'. on R3. Moreover, it can be proved that a
knowledge of Ph, the cross section of vI over the hyperplane t = to, completely
determines 'I (quantum-mechanical determinism). The system of the function
TtI is a subspace 3C4 of D'(R3), having a one-to-one correspondence 'I -+h with
sc. Carrying over the Hilbert structure of 3C onto JCet, we define JeCh as a Hilbert
space contained in 5'(R3), which may be called the cross section of the Hilbert
space 3C by t = to. Now any physical observable quantity at the time to, with
values in a set X, must be measured by a spectral decomposition of aC., relative
to X. If A -- P(A) = (3Cg),A is this spectral decomposition, the probability of
finding the value of a measurement of the quantity in A, when the wave function
is eE aC, with I I'IIf = 1, will be

(4.1) PR(A) = II(to )A 12,
where (Th)A is the orthogonal projection of Pt. on (3Ct.)A- Since IIt.lII = |I TI,
where the Hilbert structure on 5C4 is defined by carrying over that of ac, we
have that PR is, as desired, a probability law on X. We are interested in the
measurement of the position of the particle at the time to, whose physical quan-
tity, the position, has values in R3. Here the result is essentially different from
that of the nonrelativistic case. One cannot postulate that the manifold (aCt.)A
is formed by all the P equal to zero outside A, because, as is seen by studying
the scalar product in acto, in this case (nC)A and (nCt)B would not be orthogonal
subspaces in Xc.. In other words, ITt12 cannot be the density of probability of
presence. In yet other words, the "position operator" in coordinate xi for i =
1, 2, 3, cannot be multiplication by xi, as it is in the nonrelativistic case, because
such an operator is not self-adjoint in the Hilbert space act. In the physical
literature a density of probability of presence for the meson is often considered
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which is not even positive! What should be the spectral decomposition relative
to RI, corresponding to the measurement of position at the time to?

It is natural to ask whether there exists a one-to-one norm preserving, linear
transformation I'ts,, -- (,from 3CXi onto L2(R3), that is, covariant with the inhomo-
geneous proper orthogonal group r of RI. That is, tI, must be such that

(4.2) -to e implies T'It -TED
whenever r belongs to r. Note that r is the group of affine operators of R3,
preserving lengths and the orientation. Here inhomogeneous means that it con-
tains the translations, proper that it preserves the orientation.

In this case the trivial spectral decomposition of L2(R3) will define a spectral
decomposition of 3Ct. and (3Ct4)A will be the set of JCg. corresponding to the set of
L2 formed by all the D equal to zero outside A. Such a spectral decomposition
will be acceptable as a spectral decomposition for the measurement of the posi-
tion of the particle at the time to, and I E 12 will be acceptable as a possible density
of probability of presence at the time to, for the particle having the wave function
I or the instantaneous to-wave function ,to.
In fact, such a map *tI. - (E can be found. It is given as follows. If A is a

Laplacian on R8, by Fourier transform 5f there is classically defined an operator

) 2 (_ i\ ~~~+C2M?)/(4.3) /r2Q 2 + 1.

Thus, one has

(4.4) 4 h2

or

(4.5) =0 2 ( 2 + c2rn)l/4 at

where p is the distance from the origin.
Actually, it may be written as a convolution,

(4.6) [ cmr(_IO) p-714 K74 (2r PM '

where K is a Kelvin function, decreasing, classically, exponentially at infinity.
As we observe, @ is obtained from *tI by a convolution, which is a nonlocal
operation. Therefore, knowledge of *Iu in an open set Q of RI does not allow us to
know ED in Q; for this, a complete knowledge of t'. is necessary.
There are infinitely many other isometries of aCt. onto L2(RI) having the same

property of covariance with the orthogonal group. Namely, one can take the
previous one followed by any unitary transformation of L2 onto itself, commuting
with the inhomogeneous proper orthogonal group of RI. Such a unitary trans-
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formation e' - ED" is given, using the Fourier transform f, by the formula
(4.7) I/ =

where f(p) is an arbitrary measurable function of the distance p from the origin
of R3.

Therefore, all the possible operations ,t. flEare of the form

(4.8)
where

~~~~ ~~1/4
(4.9) = V2(4y~~~~2+1) etf(P).(4.9) F -V- ( 2 h2C1)14ef

Since the coefficient of eif(G) is real and nonnegative, while eifAi) itself is never real
and nonnegative unless f(p) = 2k7r, it can be seen that there is one and only one
transformation of the form (4.9), where S is a distribution of positive type,
having a positive measure as Fourier transform. But I do not see any physical
reason for £ to be of positive type.

I should rather think that in the correspondence between the physical particle
and the mathematical representation, there remains some arbitrariness. One
example is the choice of £, and the simplest choice is given in (4.6). The same
can be done for vector-valued (spin) particles.
REMARK. Of course, the formulas and equations given here are well known

in physics; only the point of view and the method of exposition are new (and,
eventually, the mathematical rigor!).
Our density of probability of presence was already introduced by Newton

and Wigner [2].
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