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1. Introduction

The purpose of the present paper is to use the general theory of the spatial
distribution of galaxies published earlier [1], [2], [3] in order to deduce for-
mulas representing the observable distributions, joint, marginal and conditional,
of the two important characteristics of field galaxies, namely their apparent
magnitude and redshift. These formulas, compared with their empirical counter-
part represented by the distributions constructed from the data in the catalogues
of galaxies, provide means of testing some of the hypotheses underlying the
theory and of estimating certain distributions as they exist in space. Specifically,
the problems treated include (i) estimates of the luminosity functions of galaxies
of specified types, (ii) the luminosity-redshift relation, (iii) the selection proba-
bility, and (iv) the relative abundance of various types of galaxies as they exist
in space. Some of the formulas deduced here have been published in [4] without
proof.
The paper is divided into two parts, theoretical and empirical. In the present

theoretical part I an attempt is made to use only assumptions that are of qualita-
tive character and to deduce results that may be of broader validity. Thus, for
example, while discussing the luminosity function of field galaxies, our assump-
tions regarding it are limited only to the condition that certain integrals are
convergent, but no specific parametric form of this function is postulated. The
only quantitative hypothesis adopted is that the observations refer to relatively
nearby galaxies for which the dimming due to redshift may be allowed for.

In the second part of the paper, to be published elsewhere, the theoretical
result of part I will be applied to obtain specific information regarding field
galaxies. Using the data of the well-known memoir [5] by Humason, Mayall
and Sandage, an attempt will be made to obtain actual estimates of the luminos-
ity functions of the several types of galaxies, the abundances of these types in
space, and so forth. Here, then, it will be necessary for us to particularize certain
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assumptions and to adopt parametric interpolation formulas with the hope that,
with an appropriate adjustment of parameters, these formulas will yield reason-
able approximations to the distributions existing in space.

2. Basic assumptions and notation

The basic assumptions underlying the present paper fall under two separate
headings. First there are the assumptions regarding the happenings in space,
that is, regarding the stochastic model of the universe. These particular assump-
tions are exactly those used in our earlier publications quoted above. The second
category of the basic assumptions needed in the present paper refers to the con-
nection between the happenings in space and what is to be found in the existing
or, possibly, in some future catalogues of galaxies. These particular assumptions
have to be explained in some detail. First we do so in operational terms. Next we
formulate them mathematically.

(i) Our first assumption is that the astronomer compiling a catalogue of
galaxies is able to distinguish field galaxies from those belonging to clusters.
Naturally, mistakes in this respect are unavoidable. Howvever, the theory that
follows presupposes that such mistakes are rare and ignores them. In fact, the
theory presented in this paper applies to field galaxies only. The theoretical
counterpart of a "field galaxy" is a "cluster" composed of only one member.

(ii) Whatever may be the equipment available to the astronomer, it is clear
that this equipment cannot be sufficient to measure the apparent magnitude and
the redshift of all the galaxies existing in space. For these measurements to be
feasible, the objects must be sufficiently bright. Also, it is clear that the degree
of brightness, as measured by the apparent magnitude, does not determine by
itself whether a given object is suitable for observation. For example, the red-
shift of a compact elliptical galaxy of 13 mag is likely to be measured easily using
a modest telescope. On the other hand, this need not be true of a galaxy with the
same apparent magnitude if it is irregular and very diffuse.
The basic assumption used in the present paper is that the galaxies are classi-

fied into several types and that this classification is sufficiently fine so that, for
any two galaxies G1 and G2 belonging to the same type, the relative ease of meas-
uring the apparent magnitude and the redshift depends upon their apparent
magnitude and on nothing else. In other words, it is assumed that, if GI and G2
belong to the same type and have the same apparent magnitude, then the ob-
servations of magnitude and redshift for these two galaxies are equally difficult.

(iii) Our third assumption is that the catalogue of field galaxies has been com-
piled with reference to a specified region R in the sky, free from galactic obscura-
tion, and with reference to the ease of measurements of the two characteristics,
the apparent magnitude and the redshift. Mlore specifically, wve assume that,
after selecting a suitable region R, the astronomer preparing the catalogue goes
over a set of uniform survey plates taken over this region, marks all those objects
which he feels are reasonably accessible to his instruments, classifies them accord-
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ing to the adopted system of types, and measures the apparent magnitude and
redshift for all the objects marked.

It must be obvious that the existing catalogues need not conform exactly to
the hypotheses made. In fact, in many cases, the existing catalogues represent
combinations of results of several observational programs, each conducted by a
different astronomer who may have different ideas not only on the relative ease
of making measurements but also on the relative desirability of studying galaxies
of different types. For example, cases are on record wvhere particular galaxies
were included in certain observational programs for the reason that the appear-
ance and/or location of these objects made them especially interesting.
The theory given below is applicable only to catalogues in which the frequency

of occurrences of the kind just described is negligible.
The mathematical counterpart of assumptions (ii) and (iii) is as follows. The

basic mathematical assumption is that the inclusion in the catalogue of any field
galaxy located in the region R is a random event with a fixed probability, not
necessarily the same for all galaxies, and that for any two galaxies these events
are independent.

Let s be the number of different types of galaxies considered and let m denote
the photographic apparent magnitude of a galaxy. For the tth type, t = 1, 2, * * *,
s, and for any m, we postulate the existence of the probability 4't(m) that a field
galaxy located in R, belonging to the tth type and having its apparent magnitude
equal to m, will be included in the catalogue. This probability will be described
as the selection probability.

In the present part of the paper the assumptions regarding the selection proba-
bilities tt(m) are limited to the postulate that, as m -* , the function cIt(m)
tends to zero sufficiently fast for certain integrals to converge. This is the counter-
part of the fact that, whatever the astronomer's equipment, there is a limit of
faintness beyond which galaxies are difficult to observe and, therefore, are not
likely to be included in the catalogue.
One of the purposes of the present part of the paper is to provide means

whereby the selection probabilities 4,(m) can be estimated from the data. In
part II the relevant formulas are applied to obtain the estimates of FPt(n).

Let A1, A2, * * *, A, denote the space densities of the s types of galaxies. In
other words, At stands for the expected, or average, number of field galaxies of
type t per unit volume in space. Also let A = A,. Then the quotients

(1) X = AtA

are positive numbers, adding up to unity, and represent the "space relative
abundances" of the different types or, simply, the "space abundances" of these
types. The space abundances are another subject of the present study, and must
be distinguished clearly from the "catalogue abundances."
Denote by N the total number of field galaxies in the catalogue and by N, the

number of those that belong to type t. Then the fraction
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(2) n NAt
is called the catalogue abundance of galaxies of type t. Clearly, the catalogue
abundance nt of a given type is related to the space abundance Xt. However, this
relation is not immediate and is affected by both the luminosity functions and by
the selection probabilities for the different types. For example, if some two types
t' and t" are equally abundant, so that Xt' = Xt", but the galaxies of type t' are
generally fainter than those of type t", it is plausible to suppose that nt, will be
smaller than nt,,, and so forth.

In the sequel we shall consider probability densities of various random
variables. The generic notation for the probability density of some variables
X, Y, * , Z is Px,y,. .,z(x, y, , z), where x, y, * , z stand for particular
values of the random variables considered. On several occasions it will be neces-
sary for us to distinguish between the "space distribution" of certain random
variables and their "catalogue distribution." This is the same kind of distinction
as that discussed above between the space abundances Xt and the catalogue
abundances nt of the various types of galaxies. In order to distinguish between
the space probability density of some variables and their catalogue density, the
latter will be marked with an asterisk. Thus px(x) stands for the space density
of X while px(x) represents the catalogue density. In other words, px(x) stands
for the conditional probability density of X, given that the galaxy characterized
by X has been selected for observation and for inclusion in the catalogue.
With each type of galaxy, we shall associate an appropriate luminosity func-

tion. In accordance with our earlier theory, the absolute magnitude of a galaxy
will be considered as a random variable, independent of all other random varia-
bles in the system. It will be denoted by M and its particular values by M. The
space luminosity function corresponding to the tth type of galaxies will be de-
noted by pjj(MI). This, then, is the conditional probability density of the ab-
solute magnitude M, given that the galaxy belongs to category t. In the present
part of the paper no assumption will be made regarding the luminosity functions
other than that certain integrals converge. The results obtained here will be
used in part II in order to obtain estimates of pi(MI) and then a certain para-
metric form of the function will be adopted.
The apparent magnitude u of a galaxy at a fixed distance t and with redshift

z, is given by the familiar formula

(3) =X-5 + 5 logio + K(z)
= .M -5 + a log t + K(z),

where the last term represents the dimming due to redshift. For not very distant
galaxies this term is close to zero and may be presumed not to affect the chances
of including a galaxy in the catalogue. Also, the dimming effect K(z) is approxi-
mately known so that the apparent magnitudes given in the catalogues may be
corrected for redshift. For purposes of the theory we shall assume that the
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corrections are perfectly successful and already have been introduced. With this
assumption, the term K(z) in (3) disappears.
The coefficient a = 5 logio e in the second line of formula (3) is introduced for

convenience in dealing with natural logarithms rather than with logarithms to
the base 10.
Because of the particular connection between g and JM the space conditional

probability density p,(mI%, t) of the corrected apparent magnitude of galaxies of
type t, given their distance t, is simply

(4) p,,(mj%, t) = px(m + t - a log Slt).
The three term argument m + 5 - a log t on the right is bound to appear

frequently in this paper. In order to achieve a typographical simplification,
rather than consider the apparent magnitude (corrected for redshift) as usually
defined, from now on we shall be concerned with the "modified" apparent magni-
tude defined as the usual apparent magnitude plus 5. The modified apparent mag-
nitude considered as a random variable will again be denoted by j& and its
particular values by m. Also, from now on, the symbol m appearing as the argu-
ment of 4Pg(m) will be understood to mean the modified apparent magnitude.
The distance of a galaxy contemplated as a random variable will be denoted by

E and its particular values by t. The last random variable to be considered is
the redshift

(5) Z X

The particular values of Z will be denoted by z.
To be completely realistic one should postulate that for a given t the red-

shift Z has a conditional probability distribution. The problem was first studied
by Hubble [6] who found that the conditional dispersion of Z given t is of the
order of 200 km/sec. More recently, using a different method and a considerably
larger amount of data, the problem was reexamined [7]. It was found that the
data are consistent with the assumption that oz = 0 and that, with probability
of error not exceeding 5 in 100, one can assert that o-z _ 150 km/sec. In these
circumstances, while recognizing the desirability of a theory treating Z as a
random variable with a nondegenerate conditional distribution given (, in this
paper we postulate that Z is simply proportional to E, so that, for all t we have
z = Ht, where H is the Hubble constant. As a result, the study of the distribu-
tion of Z becomes equivalent to that of the distribution of a and, for example,
the problem of the magnitude-redshift relation is equivalent to the problem of
the magnitude-distance relation, subject only to a change in scale.

3. The fundamental formula of the theory of clustering

The present study is essentially based on the fundamental formula of the
theory of simple clustering as published in [1] and then generalized in [2]. The
formula gives the joint probability generating function of the numbers N1,
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N2, * , Nr of galaxies located in a certain number r of disjoint regions in space,
say RI, R2, .*. X Rr, and, in a sense, "successful." The general theory leaves
the definition of "success" free. In our case, there will be several types of "suc-
cess," which will be discussed in some detail. One kind of "success" may be that
the galaxy in question be of type SO and that it have its apparent magnitude
between limits 13 to 14, and that it be included in the catalogue. Another kind
of success may be that the galaxy be of type EO and that it be included in the
catalogue, and so forth. We shall denote by s the total number of different
"successes" of the above kind and by Nij the number of galaxies located in R1
and having success of the kind j. The bold face letters N and v will stand for the
vectors N = (Nl, N12, * * - , Nr8) and v = (Vll, V12, * * *, Vrn). The fundamental
formula gives then the probability generating function

(6) GN(V) = exp (Xf { -G1 [1-E E pi(u)(1- vii)]} du)
of the random variables Nij, where X stands for total density of cluster centers
per unit volume, u = (U1, U2, U3) denotes the coordinates of a cluster center, the
integral on the right is a triple integral over - < U1, U2, U3 < + a), where
p,j(U) stands for the probability that a galaxy from a cluster centered at u will be
found in the region Ri and that it will have "success" of kind j, and, finally,
where G,(T) is the probability generating function of the number v of galaxies
per cluster.

For the present needs this general formula has to be specialized in accordance
with the various limitations of the study. Namely, we take into account that
we are concerned with field galaxies only, that is, with galaxies belonging to
clusters of just one member each. Thus, for each "cluster" considered, v = 1 with
probability unity. It follows that G,(r) _ T. As a result, formula (6) reduces to

(7) GN(v) = exp [-A E _ (1 - vi,) f pi(u) dul.

Inspection of formula (7) indicates that the numbers Ni, are mutually inde-
pendent random variables, each following a Poisson law with expectation
E(Nij) = A f pij(u) du.

In order to evaluate this integral we must deal with the conditional probability
density f(x - u) of the coordinates X = (X1, X2, X3) of the galaxy, given that
it belongs to the cluster centered at u. Also, it is necessary to specify the meaning
of success and the probability, say Oij(x) of the "jth success" in region Rt, given
that the galaxy is located at x = (X1, X2, X3). Whatever this probability may be,

(8) pij(u) = Rf(x - u)Oij(x) dx,
where the integral is again in three dimensions, extending over the region Ri.
Substituting (8) into E(Nij) and changing the order of integration, we have

(9) E(Ni,) = A fR Oii(x) dx J f(x - u) du.
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Because f is a probability density, its integral over the whole space must be
equal to unity. Therefore (9) reduces to

(10) E(Nij) = A fR i,(x) dx.

4. Space and catalogue abundances of different types of galaxies

Our first and simplest specialization of the general concept of "success" of
galaxies leads to the joint probability distribution of the catalogue numbers N,
of galaxies belonging to the specified type t.

In this case we consider just one region R in space, the solid angle subtended by
the region in the sky for which the catalogue is being compiled. Thus, in the
present case r = 1. For each galaxy within this region R we consider s different
exclusive kinds of success, the tth of them consisting in (a) the galaxy belonging
to type t and (b) the galaxy being included in the catalogue. According to the
preceding section, the number Nt of galaxies successful in this particular sense
is a Poisson variable, independent of Ni if i /- t, and has expectation com-
putable from a formula analogous to formula (10), namely,

(11) E(Ni) = A JR Ot(x) dx,

where Ot(x) stands for the probability that a field galaxy located at x belongs to
type t (the probability of this is Xt) and that it will be included in the catalogue
compiled in accordance with the assumptions enumerated in section 2. It fol-
lows that

(12) 0 (x) = XA 4)(m)pmi(m- a log 0) din

and, because AXt = A,

(13) E(N,) = A, |_O t(Dl) JR px(min - a log ) dx din,
where t is the distance of the point x from the origin. Taking into account that
the region R is a solid angle with its vertex at the origin of coordinates, the inte-
gral over R is easily calculated. We begin by introducing the polar coordinates

XI = CCos f Cos P

(14) x2 = cos v sin#

X3 = sin p

with 0 < 46 < 27r and Jpl < 7r/2. Then, denoting by X the region of variation of
p and 4' within R, we obtain

(15) JR pv(m -a log t) dx = k f0 tVpx(m -a log t) dt,
where
(16) k =ff cos dp d4

R
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is. a numerical constant depending upon the region in the sky covered by the
catalogue. Substituting (15) in (13) and replacing t by a new variable of integra-
tion r connected with it by the formula
(17) n -a log =

we obtain

(18) E(Nj) = k At It Jt k= At Xt
a a

(say), with

(19) it = | ,(m)e3-'/" dm

and

(20) J= f e3T/"pM(Tjt) dT.

At this point we make our restrictive assumptions regarding 4)t(m) and
pm(MJt) to the effect that both integrals (19) and (20) converge.

It will be noticed from (18) to (20) that the distribution of Nt depends both
upon the selection probabilities and upon the luminosity functions of the different
types of galaxies. It follows that the space abundances of the different types
cannot be estimated without the earlier estimation of 4t(m) and of p.(Mlt).
If this is done then the estimates of the abundances Xt are obtained as follows.

Because the catalogue numbers Nt are all independent Poisson variables,
their sum N is also a Poisson variable. The conditional distribution of the Nt
given N is known to be multinomial with probability generating finction

(21) GN,,,V. .-N,(VI, V2, E* v8) = E(N)) vi]

[E .~Vi]N,
where, for the sake of brevity, x. = E_ 1ixi.

This being the case, the maximum likelihood estimate St of the space abun-
dance of type t field galaxies is

(22) N1/x1 - 8

iNl/xi E ni/x
i=l~~~i =1

The precision of this estimate is, of course, of considerable interest. It can be
measured by the asymptotic standard error of et or, equivalently, by its square,
the asymptotic variance. In computing the latter it is necessary to be clear
about the sources of variation in (22). First there are the catalogue abundances
ni and we have
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E(n1) = Xix

(23) Var (ni) =-Nixi xixi

Coy (ni, nj) = -
2i.J

N x. x.
In addition to the catalogue abundances ni, the estimate of the space abun-

dance X, depends upon the quantities xi defined by (18) to (20) and dependent
upon the selection probabilities gt(m) and upon the luminosity functions
p,(M t) for each of the galaxy types considered. Whatever may be the a priori
considerations regarding these functions, it is clear that eventually they will have
to be estimated from the data subject to chance variation. Thus the quantities
xi have to be considered as random variables also. The distribution of xi will
depend upon the formulas used to approximate (g(m) and pm(MIt) and also on
the method employed in estimating them. This will be dealt with in part II
of this paper. For the present we notice that for i $d j, the quantities xi and xj
will have to be estimated from the distributions of magnitude and redshift of
galaxies of two different types and thus, given Ni and Nj, the random variables
xi and xj must be independent. Also, they are not correlated with the nk for
k = 1, 2, * * *, s. Taking this into account and denoting the asymptotic variance
of xi by ax.i, we can write the general formula for the asymptotic variance of

as follows, say

(24) 2
=

[( a,,)2 (,2)2 0_](24) E I Var (ni) + I IL\1an~i 4

+ E E dnd Cov (ninj),

where the derivatives have to be evaluated at ni = xiXi/x.. We have

(25) an= _xXt, d t X

for i #4 t, and

(26) .= (1-X,),cantt axXe, =- Xt( X)

It follows that

L j~~~~~1XiJ(27) ';, = x'X' 1 -2Xt + Xtxt iEl-i

+ , [(1 - 2X,) (x)2 + E( xt) ]

It will be seen that, if the xi are known, so that o-x = 0, and if they are all
equal, then Sv = nt and (27) reduces to the familiar formula Xt(1- Xt) IN.
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5. Catalogue distribution of magnitude and distance of field galaxies

Because of the independence of the catalogue abundances of particular types
of galaxies, the problem of the catalogue distribution of magnitude and distance
can be treated separately for particular types. Thus, all considerations in the
present section refer to field galaxies of one particular type and the subscript t
referring to the type of galaxies considered will be omitted throughout.
Our first purpose is to deduce the formula giving pE,,Q, m), the joint catalogue

probability density of the distance E and of the modified apparent magnitude
uA. In other words, our purpose is to find the conditional density of these variables,
given that the galaxy to which they refer has been included in the catalogue.

Let N denote the total number of galaxies (of the specified type) in the cata-
logue. For i = 1, 2, * , N let {( i, (i + bi] be a sequence of N nonoverlapping
but otherwise arbitrary intervals all located on the axis of distances between
zero and infinity. Also, let {(mi, mi + Ai]} be N arbitrary nonoverlapping
intervals on the axis of apparent magnitudes,- < mri < mi + Ai < +, for
i = 1,2,*-- ,N.
We begin by using the fundamental formula (7) in order to obtain the condi-

tional probability (given that the catalogue contains exactly N galaxies of the
specified type) that the ith of these galaxies will have its distance between (i
and (i + bi and its modified apparent magnitude between mi and mi + Ai.
When this probability is obtained, it will be divided by the product of all bi
and all Ai. Then a passage to the limit, when the increments bi and Ai tend to
zero, will yield the desired probability density.

In order to apply formula (7) we divide the solid angle R into N + 1 disjoint
regions. The ith of the first N regions, say Ri, is composed of that part of R
characterized by the distance t from the observer between the limits

(28) (i < t < {i+ bi, i = 1,2, *-- ,N.

The last regioD RN+1 represents the remainder of R, after the removal of
R,, R2, - *, RN. (Obviously RN+1 is composed of N + 1 disjoint regions but
this circumstance is entirely immaterial.)
For each of the first N regions Ri we define the "success" of a galaxy as a

compound event, consisting of the galaxy having modified apparent magnitude
between the limits mi and mi + Ai and of its being included in the catalogue.
The "success" of a galaxy in RN±1 will be defined as consisting of this galaxy's
being included in the catalogue, irrespective of the magnitude it may have.

Denoting, as formerly, by N1, N2, * * *, NN+1 the numbers of galaxies successful
in each of the N + 1 regions, we can use formula (7) to write the joint probability
generating function of these variables. This probability generating function can
then be used to compute the probability P{ n= I(Ni = 1) n (NN+1 = 0)} that
in the region R there will be included in the catalogue exactly N galaxies of
which exactly one satisfies the condition

29) i < ti + bt,. mi < 1A <mi+A.
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This probability is

(30) AN II f pj(U) du exp [-A E pi(u) du]

where pj(u) means the probability that a galaxy from a cluster centered at u
will be in Rj and will be "successful" in it. For j = 1, 2, * *, N we have

(31) pj(u) = iJf(x - u) fMIi+(i(m)p,(m- a log t) dm dx,

with x2= X + x2 + x3. Also

(32) PN+1 (U) = fR f(x - u) |_ 4'(m)p,r(m- a log t) dm dx.

Performing calculations exactly similar to those leading to formulas (8) to (10),
we obtain

(33) fpj(u) du = k | ni+Ai (n) ftii+i 42p(m(- a log t) dt dm,
j= 1, 2, *- N

and

(34) fpN+1(u) du

= k |+ b(m) [ f0 2p,(m- a log t) d ,- J5 2p.,(m - a log t)d] dm.

The unconditional probability that the catalogue compiled for the region R
will contain exactly N galaxies of the type considered is

(35) N! [A f po(u) du] exp [-A f pO (u) du],

where
(36) f po(u) du = k | ¢(m) f| 2pM(m- a log t) dt dm.

The value of this integral already has been calculated in the process of obtaining
(18). Dividing (30) by (35) and numbering the N galaxies in some particular
order (there are N! different ways of doing so) we find that the conditional
probability, given the total number N of the specified type of galaxies in the
catalogue, that the ith of them will satisfy (29) for i = 1, 2, , N, is rep-
resented by the formula

N | (pi(U) du -N+1
(37) fI exp -A E | pj(U) du- po(u) dull.i=lf po(u) du I L v

Now divide (37) by the product Hfl,- iAi and pass to the limit as each of the
increments 5, and Ai tends to zero. With reference to (33), (34), and (36), it will
be seen that the limit of the indicated ratio exists and is equal to the product
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N
(38, fJ C e cmi)pW(mi - a log {i),

i= 1

where C is the reciprocal of the double integral appearing in the right side of
(36). According to what was said before, the product (38) represents the joint
probability density of the modified apparent magnitudes and of the distances of
N galaxies, given that these N galaxies have been included in the catalogue.
Because this probability density is represented by a product in which each
factor corresponds to a different galaxy, the conclusion is that the couples of
random variables (,ii, Zi) are mutually independent. Thus, dropping the sub-
script i, the general formula for the catalogue probability density of ,u and : of
a field galaxy can be written as

(39) p,,-(m, t) = C t24(m)p,(m - a log t).
Formula (39) is basic for the present section and has several interesting

implications.
5.1. Catalogue distribution of the apparent magnitude. Integrating (39) for t

from zero to infinity and using (13) to (18), we obtain the catalogue probability
density of the corrected modified apparent magnitude ,u, namely,

(40) p*(m) - (m)e3m/af+rn X)eula dx

This formula is remarkable for the reason that, perhaps contrary to intuitive
expectation, it shows that the catalogue distribution of the apparent magnitude
corrected for dimming is completely determined by the selection probability
4D(m) and has no relation to the distribution of absolute magnitude in space.
Thus, while it would be futile to attempt to use the catalogue distribution of
apparent magnitude to estimate the luminosity function, the empirical catalogue
distribution of apparent magnitudes of field galaxies of specified type can be
used to estimate the selection probability cb(m).

Strictly speaking, this can be done only up to a constant factor

(41) D(m) = p,(m)em/a f_ 4(x)e Ix dx.

However, in cases where a catalogue has been compiled making an effort to have
it complete at least for the brightest galaxies, the difficulty may be avoided by
postulating that for very bright galaxies 4(m) = 1, which determines the con-
stant factor. The details of estimating c1(m) will be dealt with in part II of the
present paper.

5.2. Catalogue distribution of the absolute magnitude of field galaxies. Formula
(39) can be used to calculate the catalogue joint distribution of two variables,
the modified apparent magnitude A and the absolute magnitude tM of field
galaxies. This latter distribution determines the marginal catalogue distribution of
M. Our first step consists in passing from the system of variables (,u, :) to the
system (,, M), where
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(42) .M= u-a log .

Following the familiar steps we obtain

(43) p*x,(m, M) = -[cI(m)e3m/a p,(M)e-3M/a].
This again is a somewhat surprising result. Because of the indicated factoriza-

tion, the absolute magnitude and the apparent magnitude of galaxies in a cata-
logue are mutually independent. Furthermore, the catalogue distribution of the
absolute magnitude, given by

(44) FP*(Mj) = Cp,(J)e-3A1f/'a
is independeilt of the selection probability D(m). As a result, so loiig as the com-
pilation of a catalogue of field galaxies of a specified type depends only upon
their apparent magnitude, the distribution of absolute magnitude among the
selected galaxies will be the same whether this selection is made for measurement
with a 200 inch or with the limited capabilities of a much smaller telescope!

If one acts on the assumption that the redshift Z of a galaxy does not differ
very much from the product Ht of the Hubble constant and the distance (which,
of course, is a frequent assumption and is adopted in the present paper), then
the absolute magnitude M of a galaxy with modified apparent magnitude m and
redshift Z can be estimated by the familiar formula

(5) M = m + alogH-a logZ
= n + 5 logi0 H - 5 logio Z.

Using estimates of this kind, an empirical counterpart of p,(Mi) can be con-
structed. By multiplying each ordinate by exp [3M/a] and by norming, a direct
estimate of the space probability density p,,(l1) of the absolute magnitude is
obtained, namely

(46) ~~~pm(M) = C c-3.1[/ap*(g
A particular case of formula (46) was first found by Malmquist [8] with

reference to his study of the space distribution of stars. Malmquist's assumption
included the hypothesis that the space luminosity function of stars is normal.
This implied that the catalogue luminosity function is also normal with a slightly
different mean. The present formula (46) was first published in [4] without proof.
It indicates that no a priori assumption regarding the space luminosity function
is necessary and that the shape of this curve may be judged directly from the
shape of the catalogue distribution of tM, multiplied by the factor exp [3M/a].
An analysis of this kind will be found in part II of the present paper.

5.3. Catalogue distribution of the distance of galaxies. The integral of (39) for
m from - to + - yields the catalogue distribution of the distance 2: of a
galaxy from the observer,

(47) PA(t) Cf2f+ 4(m)p,(m - a log t) dm,
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or, substituting the value of the norming factor c,

(48) p4) = a ~2 J- F(n)p.M(m - a log t) dmt

J 4'(m)e / dm fJ e-3Iap,(t) dt

Formula (48) points to a fallacy occasionally encountered in the literature.
This fallacy consists in treating the product cZ2 as representing the space proba-
bility density of the distance : of field galaxies, valid for all t from zero to
infinity. This, of course, is nonsense. The probability density integrated over
the whole range of its validity must yield unity. However, the integral of Ce2,
taken from zero to infinity, diverges. In other publications, Ct2 is treated as the
catalogue density of distance E, on the assumption that this catalogue is com-
plete up to a certain limiting magnitude mi. This assumption of completeness
is equivalent to that of 41(m) being equal to unity for m < mi, and perhaps
to zero elsewhere. On this assumption (48) yields

322 fn-, log t pa(t) dt

()|)= e-3tapM(t) dt

a formula which does not reduce to a simple product of 42 by a constant but
involves a dependence on the space luminosity function p,(M) of the galaxies
considered. In general, of course, the catalogue distribution of the distance v
depends on both the probability of selection and on the space luminosity func-
tion. As far as the space distribution of Z is concerned, it is degenerate: whatever
the preassigned number (l the probability that v will exceed 4j is equal to unity.
The product Ct2 represents the conditional space probability density of the dis-
tance 2 given that the field galaxy concerned is at a distance between some fixed
limits A and B, so that A _ V _ B.

5.4. The magnitude-distance relation. The term magnitude-distance relation is
customarily used to describe either the catalogue regression function of the
distance - on the apparent magnitude it or, vice versa, the catalogue regression
of the apparent magnitude u on the distance Z:. Operationally, the first of these
interpretations means the average distance for a given apparent magnitude and
the second the average apparent magnitude for a given distance. Both can be
obtained from formula (39).

Dividing (39) by (40) we obtain the conditional catalogue distribution of ¢
given iu = m,

(50) p*(tjm) = ct2pm(m- a log t),
where c is a norming constant. The kth moment of this distribution is

(51) E(:kIm) = C | V2+kpM(m - a log t) dt,
and simple calculations yield
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(52) E(EkIm) = ekm/a Qk = 1okm/5 Qk
QO Qo

where, generally,

(53F) Qk=t+e e-(3+k)t/ap.M(t) dt.

Formula (52) is very interesting because it indicates that, irrespective of the
process of selection on apparent magnitudes and irrespective of what might be
the luminosity function pm(M) of the galaxies considered, the average of any
kth power of the distance v of galaxies in the catalogue, with the same magnitude
m, is proportional to the kth power of 10m15. The only thing that depends upon
the luminosity function is the coefficient of proportionality Qk/Qo-
The conditional variance ao(m) of v given ,u = mn is of interest because its

size is relevant to the question whether the apparent magnitude of a galaxy
might be taken as a distance indicator. Simple calculations yield

(54) o+(m) = 102m/5 Q2Qo -Q

Thus, the standard error of distance Z for a galaxy with its catalogue apparent
magnitude m is proportional to 10/15 and the ratio

(55) E4(m) = (Q2Qo-iQ2)12

is independent of m. It follows that the relative error in estimating the distance
a of a galaxy by its average value for a given ju = m is independent of the
apparent brightness of the galaxy and is determined by the space luminosity
function pj(M) as indicated in (55) and (54). This result suggests investigating
the random variable, say X, representing the proportional deviation of the value
of E from its conditional expectation given m, so that

(56) = (1+ X) E(Ilm) = (1 + X)e"-aQ
Using (51) and performing easy calculations, we find

(57) p*(xlm) = cpp{a[log Qo - log Q, - log (1 + x)]},

a distribution which is independent of m. This result may be summed up as
follows: whatever may be the modified apparent magnitude of a field galaxy,
the conditional catalogue distribution of

-v- E(~Irni)(58) x = E(m
representing the deviation of the galaxy's distance from its conditional expecta-
tion E(2Im), measured in terms of this expectation, is always the same and is
determined by the luminosity function of the type of galaxies considered.
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In the second part of this paper, after ol)tainling an estimate of pw, we shall
calculate p*x-(Xm) and thle quotient. (55). It will be seeni that, the apparenit niagni-
ttide of a field galaxy is a very poor distance indicator inideed.

Dividing (39) by (47), we obtaini the catalogue conditional probability density
of the apparent magnitude, given that the distance E of a field galaxv is e(qtual
to t (or equivalently, that its redshift Z has the value Ht),

(59) pd(mA) = Ca(m)pJi(m - a log t),
where c is a inor-iniig fact or depending Iupoii (. It is ol)vious that the probability
density (59) depenids both uipon the selection probability ¢(m1) and upon the
space luminosity functioni pi(3l). TIn part 11 of this paper, after estimating
+(mr) and pf(M1), we shall ret urn to the st0idy of (59).
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