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1. Introduction

As a result of conversations with Dr. J. M. Hammersley the writer became
interested in the “random walk” which a comet performs along the energy scale
when making its successive revolutions about the sun. The subject is of course
far from being a new one; in particular, significant papers by H. N. Russell [13],
A. J. J. van Woerkom [17], and J. H. Oort {12] must be mentioned. Recently,
however, J. M. Hammersley and R. A. Lyttleton [9] have taken up some of
the stochastic problems involved in great detail, and following on their work the
relevant integral equations have been investigated (Kendall [10]) from a slightly
different point of view. In all this analysis a conspicuous role is played by the
frequency distribution of energy perturbations suffered by a comet during the
transition from one aphelion to the next, and it therefore seemed appropriate
to collect and discuss some empirical evidence on the form of this distribution
which is available in virtue of earlier computations.

It is important for the theoretical work that one should know the distribution
of energy perturbations for strongly bound as well as for loosely bound comets,
and it is fortunate that the evidence is not entirely restricted to the loosely
bound comets, even though the fragment of evidence relating to the other end
of the energy scale concerns just one comet (Halley’s) and that not a specially
typical one.

2. Energy perturbations for Halley’s comet

In 1907-1908 P. H. Cowell and A. C. D. Crommelin [1]-[5] made an extensive
series of computations concerning the motion of Halley’s comet. These were
inspired in the first instance by the forthcoming reappearance in 1910 and by the
desire to predict as accurately as possible the epoch of perihelion. Their best
known series of calculations, and the most accurate, relates to the motion
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of the comet between 1759 and 1910, but independently and by a less pre-
cise method Cowell and Crommelin followed the comet back to 240 B.C. and
were able to identify most of the 29 perihelia with recorded appearances, early
Chinese observations often forming the basis for these identifications.

If we write z for the negative of the total energy per unit mass (z = 0 for a
comet at rest at infinity) then 2 will be a positive constant multiple of 1/a,
where a is the semimajor axis of the instantaneous orbit, and it will be convenient
to measure the energy state z of the comet by 1/a in (astronomical units)—t. We
shall then have

1 1
(21) 2 = -(; = P_2/3,

where P is the instantaneous orbital period in years, and Russell’s study [13]
of the energy perturbations is based on the relations (2.1). He took Cowell and
Crommelin’s successive perihelion epochs, and differenced them to obtain suc-
cessive estimates of P; a second differencing then gives AP, from which Az can
be inferred. It is clear that Russell did not intend this to be more than a very
rough calculation, and in fact it is unsatisfactory in several respects. It is not
clear in all cases what Cowell and Crommelin’s final estimates of the perihelion
epochs were, and these estimates are besides confused at two points by calendar
ambiguities, which of course appear in amplified form in the column of second
differences. Another objection to the Russell procedure is that his periods P are
from perihelion to perihelion, whereas we are interested in the energy perturba-
tion from aphelion to aphelion. An entirely different method of reducing the
Cowell and Crommelin data has therefore been employed.

Cowell and Crommelin worked in terms of the mean motion for the instantane-
ous orbit; this is n = 2x/P in radians per year. For this their first-order per-
turbation formula was

6ral*m’ ¥ —zxz I\ .
(2.2) An = 365956 /{( e r'“) sin u
— (1 — )12 (Lp%ﬂ - ;‘jl,;) cos u  du.

Here An is in seconds of arc per day, a is the unperturbed semimajor axis for the
comet in a.u., m’ is the mass of the perturbing planet in solar units, (2, ¥, ¢’; ')
are the coordinates and solar distance for the planet in a.u. while (z, y, z; r) refer
similarly to the comet; p is the distance from the planet to the comet, ¢ is the
eccentricity of the unperturbed orbit, and u is the comet’s eccentric anomaly
in seconds of arc.

For their purposes Cowell and Crommelin had to take the integration at (2.2)
through a complete cycle (perihelion—perihelion), but fortunately for us they
recorded separately the results for the four quadrants, so that by fitting these to-
gether suitably we can effect the integration for an aphelion-aphelion cycle, which
is what we want. Their numerical quadratures were not carried out with the same
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accuracy throughout, and were subject to more extensive approximations for
the earlier revolutions. If we are to use their data we must thus accept the
approximations employed by Cowell and Crommelin at about 240 B.C. At this
stage of their work, however, their procedure was simplified to such an extent
that they were able to tabulate the perturbation An in mean motion, per quad-
rant of the comet’s orbit, against the planet’s mean anomaly in degrees, the
latter being referred to the epoch at which the comet entered or left the quadrant.
(The perturbations were tabulated for Jupiter and Saturn separately, and ‘‘the
planet” means Jupiter or Saturn, as appropriate; perturbations due to other
planets were neglected at this stage.)

In [2], pp. 177-179, we find a table which can be summarized in our table I.

TABLE 1

Tae Two OUTER QUADRANTS

Jupiter Saturn
u
90° 270° 90° 270°
0° +0.3320 +4-0.0932 +0.0808 —0.0284
6° 1® 9(0) 140) G©)

Here u is the comet’s eccentric anomaly at the entry into the second and depar-
ture from the third quadrant, respectively, and 6 is the mean anomaly of the
disturbing planet at the corresponding epoch, tabulated by steps of 10 degrees.
Similarly in the same issue of the Monthly Notices (pp. 458-459) we find table II.

TABLE II

Tae Two INNER QUADRANTS

Jupiter Saturn
1st quadrant  4th quadrant 1st quadrant  4th quadrant
0° +0.85 +0.26 +0.19 —0.03
0° h(6) k(6) H() K@

Here 6 is the mean anomaly of the planet at the epoch of the preceding perihelion
for the 1st quadrant, and at the epoch of the following perihelion for the 4th
quadrant. In each table the entry is the perturbation in the instantaneous mean
motion in seconds of arc per day.

If we take the instantaneous mean motion at perihelion (identified with the
mean motion in the undisturbed orbit) to be 7, seconds of arc per day, then the
eccentric anomaly of the undisturbed comet will be 270°, 0° (perihelion), and
90° when the mean anomaly of the disturbing planet is « — 8, @, and a + 8,
respectively, where
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(2.3) B=p8= 26919.9 (1 — 2—6) _ 10344.2 degrees, for Jupiter,
No T o

and

(2.4) B =B = 10839.4 (1 - '2—8) _ 41651 degrees, for Saturn.
No T No

(Here e = 0.9672; it is the eccentricity of the undisturbed orbit.) We have to
be able to read off the values of f(a & 8), and so on, from the Cowell and
Crommelin tables, and so it is necessary to choose a value of 8 which will be a
multiple of 10°. If we take ny = 44.975 then we shall have 8, = 230°, while if
we take ny = 46.279 then we shall have 8; = 90°. It is of course inconsistent to
use different values of n, for the calculations associated with the two planets,
but the two calculations are quite independent and the two values of ny lie
within the range of values found by Cowell and Crommelin; we shall therefore
accept this very convenient further approximation.

Let us now write n_ and n, for the instantaneous mean motions at the pre-
ceding and at the following aphelion, respectively, and let us put

A_(n) =ny — n_,

(25) Ay(n) = ny — ny,
and
(2.6) A(n) = A_(n) + Ay(n) = ny — n_;

it will be convenient to call these the entry, the exit, and the over-all perturba-
tions, respectively. The contributions to the several perturbations from the two
planets will then be as shown in table III. The over-all perturbation A(n) can

TABLE III
Perturbation ' Jupiter ! Saturn

A_(n) k(al) + g(a1 - 230) K(az) + G(az - 90)
Ai(n) h(ew) 4+ f(on 4+ 230) H(as) + F(az + 90)

be found by summing the entries in the columns; the total over-all perturbation
(both planets combined) then follows on adding the perturbations due to
Jupiter and Saturn separately.

The perturbation due to a single planet is thus a function defined on the per-
imeter of a cirele (a ranges from 0° to 360°), while the total perturbation is a
function defined on a torus (ez and a each range from 0° to 360°). Because the
mean anomalies of the two planets are essentially time variables and because
there is no permanent relation between their positions in their respective orbits,
it is clear that in order to find the distribution of values of the perturbation
we must regard «; and oz as independent random variables uniformly distributed
from 0° to 360°. In the present circumstances it will be sufficient to confine oy
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and a; to the values 0°, 10°, 20°, - - -, 350°, and to treat the 36 possible values
of each a-variable as equally likely. We are therefore replacing the true distribu-
tion of the perturbation by the distribution of the values assumed at a lattice
of 1,296 points on the torus on which it is defined.

A.n

Ficure 1

Perturbations An in the mean motion of Halley’s
comet when approaching (—) and receding from (+)
perihelion, for each ten degrees in the mean
anomaly of Jupiter.

As might be expected, the main perturbation is that due to Jupiter. Figure 1
shows the perturbations A_(n) and A,.(n) in mean motion (seconds of arc/day)
due to the influence of Jupiter alone for the 36 representative values of the mean
anomaly o of Jupiter when the comet is at perihelion. The point corresponding
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An (seconds of arc/ day)
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Over-all perturbations An in the mean motion of
Halley’s comet, as a function of the mean anomaly
of the perturbing planet when the comet is at perihelion.

to an = 0° is specially marked, and o increases in the direction of the arrow.

Figure 2 compares the over-all perturbations A(n) due to Jupiter and Saturn,
respectively. Here the horizontal scale measures oy for Jupiter and a: for Saturn.
It must be remembered that in order to find the total over-all perturbation we

]
-3 -2 -1 0 | 2 3 An
L] | ] I | ¥
- 150 -75 0 75 150
Az (UNITS 10 a.u)
Ficure 3

Distribution of the total over-all energy perturbation
per perihelion passage for Halley’s comet due to the
actions of Jupiter and Saturn together.
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have to combine each ordinate of the Jupiter curve equifrequently with each
ordinate of the Saturn curve.

Histograms for the over-all perturbations due to Jupiter and Saturn were
constructed separately and then combined by convolution; the result is shown
in figure 3, where the two horizontal scales show the over-all total perturbation
in n (in seconds of arc per day) and in the energy state z (in a.u.”). (The conver-
sion from 7 to z was based on the formulas dn/n = —3 da/2a = +3 dz/2z, with
no = 44.975.)

The root-mean-square total over-all perturbation in energy state was estimated to
be 0.000 765 a.u.7 L.

We can also calculate the average total entry and exit perturbations, taking
account of algebraic sign; we find

@7 algebraic mean value of A_(z) = —0.000 432 a.u.”;
) algebraic mean value of A.(z) = +0.000 428 a.u.7..

We shall refer to these figures below in connection with the work of E. Sinding,.
They indicate that, on the average, the orbit of Halley’s comet is nearer to the
parabolic form at perihelion than at aphelion.

3. Energy perturbations for some near-parabolic comets

In 1910 G. Fayet [6] made approximate determinations of the preorbits (that
is, the orbits prior to entry into the planetary zone) of 146 comets and in 1933
[7] he published similar determinations of the postorbits (the orbits after emer-
gence from the planetary zone) of 36 comets, all the comets in each of the two
series having very long periods and nearly parabolic orbits. These results of
Fayet have often been quoted, but it does not seem to have been noticed that
there are 28 comets common to both lists. One of these (1897 I) has to be rejected
because (according to Sinding) Fayet used erroneous elements for it, but even
so this leaves us with 27 comets for which both the preorbit and postorbit are
known, at least approximately. We are therefore able to find approximate
values for A_(z), A, (2), and A(z), and to examine their distribution.

Fayet worked with the eccentricity e instead of with the semimajor axis a,
and because of this a further approximation is needed before we can convert
his findings into energy perturbations. We have ¢ = a(1 — ¢), where ¢ is the
perihelion distance, and so

3.1) A <1> = %ﬁz + (1 -eA (—;—)

a

The value of A(g) is not known, but we can neglect the second term on the right
side of (8.1) because |1 — e| is small for these near-parabolic comets; we thus
have
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where ¢o is the perihelion distance actually observed. The resulting distribution
for A(z) (the over-all perturbation in energy state from entry into to exit from

the planetary zone) is shown in figure 4. The root-mean-square over-all perturba-
tion in energy state is 0.000 791 a.u.~".

-200 -100 0 100 200
-5 -1
Az (UNITS 10 o.u.)

FIGugre 4
Distribution of Az.

On comparing the preorbit with the perihelion orbit, and the latter with the
postorbit, we further find

3.3) algebraic mean value of A_(z) = —0.000 492 a.u.™;
) algebraic mean value of A (z) = +0.000 469 a.u.7.

As with Halley’s comet, we see that on the average the orbit moves toward the
hyperbolic form during the approach to perihelion, and moves back toward the
elliptic form during the recession from perihelion.

The correlation coefficient between A_(z) and A, (z) is +0.35, but this is not
significantly different from zero (t5s = +1.85).

The historical importance of Fayet’s work was the demonstration that the
hyperbolic form occasionally found for the perihelion orbit could be attributed
to a large negative value for A_(2), the preorbit being parabolic or even elliptic.
The approximate character of this investigation made it necessary for Fayet’s
findings to be checked by exact computation, and this program was initiated
by E. Strémgren [16] in 1914. Of 24 comets which have now been examined in
this way, 21 proved to have elliptic preorbits, and the three (1886 I, 1898 VII,
and 1899 I) with hyperbolic preorbits had a value for z_ not significantly dif-
ferent from zero. Evidence continues to accumulate and largely supports the
view that there are no genuinely hyperbolic preorbits. (A few preorbits have also
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been computed by Galibina [8], using Makover’s method. For comet 1914 III
she finds a hyperbolic preorbit with z_ = —0.000 094. I do not know how much
weight should be given to this exception.)

The calculations by Strémgren and others yield much more accurate values for
A_(z) than are available from the work of Fayet, but until quite recently there
were few correspondingly accurate values for A(z). In 1955 S. G. Makover [11]
presented a new method for computing accurate pre- and postorbits and this,
according to I. V. Galibina [8], is sufficiently simple for one to expect in the
future that accurate pre- and postorbits will be computed for all adequately
observed long-period comets as a matter of course. If this view is correct, data
of the kind we are discussing here may be expected to accumulate very rapidly
in the near future. Already Galibina has computed 20 postorbits; 12 were
hyperbolic and 8 were elliptic. The most extreme example of a hyperbolic
postorbit is that of comet 1899 I, for which 1/a, = —0.001 300 a.u.™!; previously
Sinding [15] had found 1/a,. = —0.000 775 for comet 1898 VII. These are comets
which have definitely been lost to the solar system.

We thus have available 24 accurate values for A_(z) computed by Strémgren
and his fellow workers, and 20 accurate values for A, (z) computed by Galibina;
unfortunately the number of comets for which both A_(z) and A, (2) are available
is rather small, and this has given rise to a method for estimating the distribution
of A(z) which must now be explained.

We have already remarked on the tendency for A_(z) to be negative and for
A, (z) to be positive. A theoretical explanation of this effect has been worked
out by E. Sinding [14], who showed that the algebraic mean values of A_(z)
and A,(z) should be about —(+4)0.000 54. Sinding’s calculations are approxi-
mate (for example, perturbations other than those due to Jupiter are neglected),
but it will be seen that his predictions agree both as to sign and order of magni-
tude with the values found by Fayet for long-period comets, and even with the
values we have found for Halley’s comet. In order to determine the distribution
of A(z) when only that of A_(z) [or of A.(2)] is known, it has been suggested
(see, for example, Oort [12]) that we can assume that A_(z) and A, (z) are iden-
tically and independently distributed about equal and opposite mean values;
if this is so then we can estimate the root-mean-square value of A(z) by calculat-
ing the standard deviation of A_(2) [or of A;(2)] and then multiplying it by the
square root of two. In this way we find

For 24 long-period comets (computations by Stromgren et al.)

algebraic mean value of A_(z) = —0.000 573;
standard deviation of A_(z) = 0.000 273;
estimated r.m.s. value of A(z) = 0.000 386.

For 20 long-period comets (computations by Galibina)

algebraic mean value of A, (z) = +0.000 473;
standard deviation of A,(z) = 0.000 474;
estimated r.m.s. value of A(z) = 0.000 671.
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It is suggested that the (significant) difference between the two standard devia-
tions is due to a selection effect; in selecting comets for study in this way priority
has been given to comets with hyperbolic perihelion orbits. If there are no gen-
uinely hyperbolic preorbits, this means that we are in effect selecting for large
negative values of A_(z), and this must have reduced the resulting standard
deviation for A_(z) (and made more negative the algebraic mean value). We
can eliminate this celection effect by using the estimate of the root-mean-square
over-all perturbation in energy state based on the values of A(2), namely, 0.000 671
a.u.l

\ Double- Exponential
/ Emplirical

Goussian

T ] T T
-200 -100 o 100 200

-8 -l

Az (UNITS (0 a.u.)

FIGURE 5

Comparison of Gaussian, double-exponential and
empirical distribution of Az.

To obtain an estimate of the distribution of A(z) from Galibina’s calculations
we have assumed that A_(2) and A.(2) are independent, and that A_(z) has the
same distribution as —A,(z); in this way we obtain the convolved histogram
shown in figure 5. The ordinates in figure 5 have been scaled so that the total
enclosed area is the same as in figure 4; thus a direct comparison of the two fre-
quency curves is legitimate. Frequency curves for a Gaussian distribution and
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for the double-exponential distribution used in [10] have been superimposed on
the convolved histogram.

Both figure 5 and figure 4 indicate that the assumption of a Gaussian distribu-
tion for A(z) (employed by Oort [12] and by Hammersley and Lyttleton [9]) is
quite reasonable. The rather peculiar distribution of A(z) for Halley’s comet
(shown in figure 3) need not be taken too seriously, because here we have exam-
ined the distribution of A(z) corresponding to variations in the phase (a4, a3) of
the solar system, the orbit of the comet itself being held fixed. It is not to be
supposed that the same distribution of A(z) would have been obtained if the
Cowell and Crommelin calculations had been carried out for another medium-
period comet.

The three estimates of the root-mean-square over-all perturbation in energy
state,

o1 = 0.000 76 (Halley’s comet),
(3.4) o2 = 0.000 79 (27 comets of Fayet),
o3 = 0.000 67 (20 comets of Galibina),

are in general accord with one another and with the value
3.5) ao = 0.000 78

found by van Woerkom [17] for a theoretical ensemble of parabolic comets
having a perihelion distance of 1 a.u., to which he applied an analysis of the Fayet
type. We may therefore confidently adopt a provisional value of ¢ = 0.000 75
a.u.”! until further data make possible a more accurate estimate.

In conclusion I should like to express my gratitude to Professor H. H. Plaskett,
F.R.S., who kindly made available to me the resources of the University Ob-
servatory, Oxford, while this paper was being written.
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