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1. Introduction

1.1. The present paper contains some remarks on the comparison of two
samples in one and in two dimensions based on order statistics. The aim is to
point out some possibilities for refinement of two-sample tests and to obtain
statistics whose exact distribution can be calculated easily.

1.2. Tests based on order statistics have advantages and disadvantages over
tests which utilize the specific form of the distributions. The advantages include
(a) they are quick to use, in general, and (b) they do not presuppose the exami-
nation as to whether the samples agree with the assumed distributions. On the
other hand these tests, in general, are (a) not so efficient and (b) biased when
taking into account a wide range of alternatives. However in many cases of
practical applications we have some restricted sets of types of alternatives on the
one hand and we may refine the test on the other hand. These two circumstances
provide a possibility of diminishing the distance between parametrical and
nonparametrical procedures. This process has already been treated in the litera-
ture; the following considerations are some approaches from one side of the
question.
We speak first of the possibility of refinement by the use of a pair of statistics

instead of one statistic. The practical application of a pair of statistics seems to be
easy enough, although to go over to the use of three statistics seems to be far too
complicated.

1.3. In section 2 we consider the refinement property of the test based on a pair
of statistics, which will be obvious qualitatively. For a more quantitative treat-
ment, that is, for the problem of efficiency, we shall return later in some cases.

In section 3 we present some joint distributions which are related to the
two-sample test of Smirnov and to the Galton test. We mention also a modifica-
tion of the Smirnov statistic for the case of nearly equal sample sizes for which the
distribution can be calculated easily. We then make some further remarks con-
cerning the joint distribution and the limiting processes of the problems treated.

Finally, in section 4 we make two remarks on the two-dimensional case. In this
section there is a limiting distribution theorem for the maximum of the sums of
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independent random variables, for the case where the number of terms is also a
random variable.

2. On best critical regions

2.1. We use the following notation. Let t and X be random variables with
continuous distribution functions F(x) and G(x), respectively. Then let (l, 6,
*,*,*, and 71l, 772, * * * X m be independent observations on t and 1, respectively,
that is, samples taken from populations with distribution functions F(x) and
G(x). In the following we are interested only in the relative permutations of the
ordered sample elements. Therefore we introduce the union of the two samples in
order of magnitude,
(1) T7 < T2 < * * * < Tn2+m

and define the random variables

(2) a +, T*-f j
=i 77e.

In this case the sample space reduces to the n + m) possible arrangements of

the set (ti, t2, 6**X n+m). Under the assumption F(x) a G(x), each order has the

common probability (n + m

We now consider the hypothesis Ho: G(x) F(x), and an alternative HI:
G(x) _ FI(x) = 4,[F(x)], where A~(O) = 0, 4A(1) = 1, and 4,(y) is monotonically
increasing in 0 < y _ 1, with #(yo) 76 yo for some yo. Then we may construct,
with the aid of the method of Neyman and Pearson, a best test for deciding
between Ho and Hi. For this purpose we have to calculate the probability ratios

(3) P(61 = fEl, t2 = e2, .*%n+m = en+mIHl),
P(61 = el, t2 = f2e, * * X n+m = Ln+mlHo)

where Ei = + 1 occurs n times and f = -1 occurs m times. For the numerator
we have the formula

(4)~~~~~~~~~ 0m m°1 m° 1-C2- * -r-l) a°n+1)
(4)

a, 2 (M r °an+1

*fo foy foy [#P(Yl)]" [4'(Y2) - 4k(YI)]a* * ['P(YI) - 00r1)l
... [1 - (Yn)]a-+1dyidY2 ... dyn,

if ea,+l = = e+ . ...+a+r + 1 and thus the other ei are equal to

-1. The denominator has the value (n + m).
Calculating these probability ratios, we may construct the best critical region,

and using a suitable randomization we can reach a given exact level 1 where
,B is small.
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Nevertheless statisticians do not choose this way for comparison of two
samples. The first reason is that, even if such a definite alternative exists, the
critical region is not, in general, simple enough for practical use. Also they do not
choose this method because of numerical difficulties in the calculation of proba-
bilities (3). In connection with the latter, we should like to remark: it is not often
mentioned in the literature that a Monte Carlo method can be used, not only for
the solution of numerical problems of analysis such as differential equations, but
also to aid statisticians. In those cases we have a probabilistic model with certain
probability formulas to be calculated. This numerical calculation can sometimes
be carried out by using a Monte Carlo method. For example, if we have, in
practice, a given kind of alternative which often occurs, then the computation of
this a large number of times leads to the determination of the probability ratios
(3) so that we can construct the best critical region.

2.2. The method used by statisticians is to choose functions of the sample
elements with good properties, for example, with suitable statistical character-
istics, with simple distributions, and so forth. Classical and often used statistics
are those of Smirnov, the one- and two-sided maximum deviations,

D+.m = max[Fn(x) - Gm(x)],
(5) (x)

Dn ,m = maxIFn(x) - Gm(x)l,
(X)

where Fn(x) and Gm(x) denote the empirical distribution functions corresponding
to the two samples. The test based on Dn,m is asymptotically consistent against
all continuous alternatives. Given an alternative, then, for the best critical region
on the "one-dimensional" Dn,m space, we obtain a linear point set which we
may assume to be D1 < Dn,m < D2, say. If we now choose a second statistic
En, = En,m(l, t2, * * * , 4n+m), we have in the (D, E) plane a strip (Di <
Dn,m < D2; -a < En,m < +X). However, with the aid of the joint distribution
function
(6) H(x,y) = P{Dn,m < x, En,m < Y},
we obtain a best critical region in the two-dimensional (D, E) space which will
differ, in general, from the strip. This means that we have a better test and an
improvement on the test of Smirnov. There arises the question of whether this
refinement has a significant effect or is only qualitative. The answer depends on
the alternative and on the chosen statistic, but from heuristic reasoning we can
conclude that in certain cases the use of a pair of statistics is more efficient than
using only one statistic.

3. Joint distributions

3.1. The case m = n; the first maximum point.
3.1.1. Gnedenko and Korolyuk [6] determined the exact distribution of the

Smirnov statistic for the case m = n. In this case it is known that
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1D+n= - maxSs
(7) n (i)

Dn,n 1 maxISil,
n (x)

where Si= t +t2 + +t1, with 1 . i. 2n.
Let us now denote by Rn+n and R.,. the smallest value of i for which the maxi-

mum occurs, that is, for which Si = nDn+ and iS4l = nDn,. but S,.j < Si and
ISi-il < Sil, for j = 1, 2, * *, i- 1. In a previous paper [13] the author
determined the joint distributions of the pairs of statistics (D+,n R+nn) and
(D.n,n Rn,n).
For the construction of a general critical region, the knowledge of the condi-

tional expected value of Rn+n and Rn,n for a given deviation may be useful. In the
one-sided case the form is simple (see [14]).

)I +1) k 0,

(8) E( Rn+nlDn =n

2+ 1(1 2fl k=1,2,***n.
3.1.2. We want to mention an interesting property of the distribution of

R+,n. This is that

(9) P{R+,n = 2r - 1} = P{R+,n = 2r}, r = 1,2, - n,

which is a slightly modified version of a theorem of E. S. Andersen (see for
examples [4], p. 86).
K. Sarkadi [12] has given a very simple proof of this theorem with the aid of

the random walk model and has shown that these probabilities are decreasing in
r. This latter result is analogous to that of Birnbaum and Pyke [1] for the one-
sample case.

3.1.3. Let us assume now that our variables are distributed uniformly in the
interval (0,1). In this case the limiting process Q(t) of the random process

(10) tn(t) =A[Fn(t) - Gn(t)] 0 !9 t <_ 1,

under the null hypothesis F(x) -G(x) is Gaussian with expected value

(1 1) E[t(t)] = O, 0 : t ::! 1)
and covariance function

(12) E[t(t)t(t')] = t(l -t'), O <_ t :!! t, _ 1.

The marginal distributions of the limiting distributions of (D+,n, R+n~) and
(Dn,n, Rn,n) as known are the Kolmogorov-Smirnov distributions for the first
variables, and the uniform distribution for (R'n/2n). For the two-sided case, so
far as I know, the distribution function of the "absolute" maximum point is not
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in the literature. If wve denote by p the value of t w0here the G(aussian process
attainis the maximum of its absolute value, then

<) (r I 2Z dv f lu\F it('13) IPp f =UlfIIj2dIu(<Z =2) J [v(1 -v)]312 , \v1/2L (1 -v)'/2d
where

(14) f(u)' = (8)1E~(- 1) i(2i + 1) exp [2 (2i + 1)2].

The z-axis is a tangeint of the distribution curve of infinite order and the curve
is central symmetric relative to the point (1/2, 1/2). We will come back to a
further investigation of a series expansioni of this function.

3.2. Samnples with .slightly different .sizcs. The exact, calculation of the Srnirniov
probabilities is rather complicated. Exact formulas are given Blackman [2] for
the case m = kui onlly. A metlhod for calculating these probabilities is due to Ozols
[9] and the determiinationi of the significance probabilities is given by Hodges [71.
He uses a raindomii walk which is essentially the examination of the partial sums
Si = 11 + ?92 + * * * + t0i for i = 1, 2, *.. , 7n + ni. In a paper with J. Reimann
[10] we suggested the use of the statistics

B+m = max [nFn(x) -iiGm(x)]
(15) (2)

Bn,m = max nFn(x) -inG,,(x) + n2 - 2

where mi > n. Tlhese statistics have the form

W+ = max S,
(1 ) <i_71+m

Bn,m = max Si + 2, 2itt n
1 <i_n+m 2 2

Exact formulas can be obtained easily for the probabilities analogous to that of
the Gnedenko-Korolyuk probabilities. We proved that in the case when the
sample sizes differ only slightly, that is, if (m - n)/(m + n)"I -1 2c with
c _ 0 as n - oo, then the test based on Bn,m is asymptotically consistent against
all continuous alternatives and Bn+m is asymptotically consistent against all
continuous alternatives G(x) = FI(x) _ F(x) and Fl(xo) > F(xo) for some xo.

In the one-sided case it seems advisable to consider the last maximum point,
that is, the largest value of i for which Si takes its maximum. Denoting this value
of i by Tn+7m, we determined the joint distribution and limiting distribution of the
pair of statistics [Bn+m/(n + n)"/2, T+m./(n + in)]. In the two-sided case we
considered the first maximum only.
The limiting process of the random function

( nF (t) - inGm(t)(17) ~n,m(t) - (+ )1/2
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is Gaussian with expectation - 2ct and covariance function t - tt'(l + 4c2)
with 0 5 t _ t' 5 1.

3.3. Refinement of the Galton Statistic. In the case m = n, the Galton statistic,
as is well known, is the number of t*- S smaller than the correspondingqt1 - S
in the ordered samples

(18) *< t<* . .. < ,*
< t12 < ... <4Xn

Let us denote this statistic by -y, then y can be interpreted by considering a
particle walking randomly on the straight line, starting at the origin and return-
ing after 2n steps to it. Then 2-y is the "time," that is, the number of steps spent
by the particle above 0.

This statistic is not very efficient and in order to refine it we proceed in two
possible directions.

3.3.1. In the above scheme let us translate the (,t by K steps to the left

(19) tf {K{KV1 + 1 . ntn

1,* *,1-_ 17*.

Let us denote by K+ the smallest K for which each t*+f is smaller than the 7t
below it. Then the relation (see [3])
(20) Ko+ = nDn+ = n max[F"(x) - Gn(X)]

(z)

is valid, that is, K+' has a Gnedenko-Korolyuk distribution. Thus we have a simple
method for determining the maximum deviation.

Analogously if KO is defined by translating the (t to the right, then
(20') Ko = -nDnn = - n min[Fn(x) - Gn(x)]

(x)
holds.

Let us now denote by Kv+ the number of steps to the left required to have the
number of the v* exceeding the t*,+t be exactly v, if this is possible. The distribu-
tion
(21) P{v = alK,+ = k}
is given by Mihalevi6 [8]. Here v = a is the time spent by the particle above the
height K.+ = k. If v is small, then the corresponding K;' can be treated as the
"real" maximum and the corresponding pair of statistics (Kv, K;,,) is the range
containing most of the random walk. Here also is a possibility of refining the
Smirnov statistics. However the joint distribution of the statistics is, so far as I
know, not yet known.
The limiting distribution of (21) is not given in [8]. It is

(22) limP{z-2 <z +dzl=K u}

f [v(l-v)]312 exp y2 1 ]dv dz
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which shows that the measure of the t-set, for which the limiting process t(t),
with 0 . t S 1, exceeds y, has infinite density at the point z = 0.

3.3.2. There is another improvement of the Galton statistic, by E. Csaki and
I. Vincze [3]. Let us denote by X - 1 the number of the i for which either
Si-, = -1, Si = 0, Si+, = +1, or Si-, = +1, Si = 0, Si+, = -1 occurs.
Then, considering the random walk, X means the number of "waves" of the
random path, that is, if for, and only for, 2ai, 2(al + a2), * * *, 2(a, + a2 + * * -

+ a,-,) < 2n the mentioned event occurs, then the first 2ai steps lead above the
point 0, the next 2a2 steps below it, or conversely, and so forth.
We have, for the distribution of X,

(23) P{X =I}= n ( 1 = 1, 2,***,n.n (2n)

This expression, multiplied by (2)/2, agrees with the number of paths starting
at the origin and arriving for the first time after 2n steps at the height 21. Indeed,
one way of proving this formula is a one-to-one transformation of both kinds of
paths. There is another method which leads also to the determination of the
joint distribution. It is easy to see that this probability has the form
(24)

P{=11 2 1 /2a1\ 1 /2a)2. 1
. I2a,)\

2n al+.. ai=n al + al) a+1 +1a Ial)
(n) a,21

Let us denote by L(v) the generating function

(25) L(v) = , P{Xn =}1} n Vn,
n=1

and take further
(26) 1(v) = 1 - v - (1 -4v)12 1 (2)al

v =Ila +1 a

as is known. Now it follows that
(27) L(v) = 2[1(v)]'
which results, after a slight calculation, in the required mentioned probability.
We now treat the joint distribution of the Galton statistic -y and the number of

waves X,
(28) P{-y = g, X = l}.
For this probability we have a similar formula to that above but containing two
parts, the first of which corresponds to the paths starting in the positive direction,
in which case we have for the summation a, + a3 + * * * = g and a2 + a4 + *
= n - g, and the second similarly for the paths starting in negative direction



702 FOURTH BERKELEY SYMPOSIUM: VINCZE

al+ a3 + * =n- anda2 + a4+ = g. The calculation results in the
expression

2g n - 2g
12 29 92n2

(29) P{-Y =g,=} = 2 (9 2 29 ,2g(n -g) (2)

if 1 is even. If 1 is odd, we have

(30) P{~y g,X=} l 1 [ 2() {7 9' } ~~4g(n- g) (2n)[ _I+1) 9 _~I1)

g- 92 +2)+1 ___+
Here, if g = or n, thenI = 1, while if 1 g < n-1, then 1= 2, 3, ** , and
min (2g + 1, 2n - 2g + 1).

This pair of statistics has the advantage that the test based on it is (at the
same time) "two-sided."
The computations for the case of slightly different sizes may be carried out in

the same way as for the case of the B +, and Bn,m statistics (see [10], [3]).

For the limiting distribution we have
(31)

limPQ <yl __exp_du_dvn-m P{ < Z < Y} = 2Vw1-11 [v(1 - V)]3/2 ep4v(1 -v)]
0 _ y, 0 _ z _ 1.

4. Comparison of two-dimensional samples

4.1. Application of the Smirnov statistics. Let us denote by F(x, y) and G(x, y)
the common distribution functions of the independent vector variables (Q, iii)
fori = 1, 2, * - *, n and (Q, qf) for i = 1, 2, * * *, m, respectively.

In order to decide whether the null hypothesis Ho: G(x, y) 8 F(x, y) holds or
not, the following simple procedure can be used: let us project the sample points
on a straight line of the (x, y) plane, with its angle a with the x-axis chosen
randomly from (0, 27r). Let z = 0 be the projection of the point (0, 0) and let z be
the signed distance from it. Let us denote the projections of the sample points of
the two samples in order of magnitude by r*, 4', . *, and T1*, 2*, * * ,
Then the r4* and the 7t* are the ordered elements of two independent random
samples. The corresponding marginal distributions are denoted by Ff (z) and
G(a)(z), respectively. Now the comparison of the two samples may be carried out
with the aid of the Smirnov statistic
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(32) D(?,aI) = max IaFnt)(z) -G(na (z) ,
(z)

whose distribution under the null hypothesis is independent of a.
Under certain conditions (refer to R6nyi [11] and Gilbert [5]), which require

that a two-dimensional distribution be uniquely determined by its infinitely
many marginal distributions, this test is asymptotically consistent against all
continuous alternatives with probability 1 relative to the measure defined on the
a-set. This means that if G(x, y) F(x, y) only with probability 0 can we
choose a in such a way that for the corresponding marginal distributions
F(a) (z) = G(a) (z) holds.

Connected with this (uestion we raised a problem (see [15]) which seems to be
unsolved at present. It is to determine the distribution (or the limiting distribu-
tion) of the maximum deviation when we let a vary in the interval (0, 27r). The
answer will depend on the actual distribution function,

(33) Pfmax Dn"nt < z} = #6[z; F(x, y)].
(a)

A. N. Kolmogorov has suggested the extension of this question to the problem
of looking for the extreme functions,

sup

(34) (F) 4,[zi F(X, y)].
(F)

However, this test does not seem to be very efficient. We may repeat the
procedure by choosing another angle a', but then the determination of the exact
level of the test seems to be rather difficult.

4.2. A theorem on two samples of equal sizes. Using the notation given in section
4.1, let m = n and F(oo, y) = H(y), then (see [16])
THEOREM 1. If an j = y is chosen at random according to the measure defined

by H(y) and if we denote by Pn(n and Qn"n the probabilities of the events

(35) {max [Fn(X, Y) -Gn(X, y)] <
and

(36) {maxIFn(x y) -Gn(X, Y) < n-}
then we have

(37)
p(k) n n {2n - i -jX ri + i) { + iX

(2n + 1) (n i=O j=max(O,i-k) ( n W-i(L i J Vi- )J

and

(38)Q(3) _ 1 n min(n,i+k) /2n - i -i +i\)k (
=(2n + 1) (2n) j=ma(O,t-k) \ n - i )h + hkJ



704 FOURTH BERKELEY SYMPOSIUM: VINCZE

Our theorem has a combinatorial formulation

THEOREM 2. Consider a random sequence (til, 2X , 2n) consisting of

repeated n + 1 and n - 1, where each order has the common probability (2n .

Let us choose the value X from the set (0, 1, 2, * , 2n), each value with the proba-
bility (2n + 1)-1 and the indices a,, a2, * a aa ax from (1, 2, * , 2n) at random,
where each set has the same probability. Then the relations

(39) pn)= max (aI+ 6a- + + a,) < k}
and OIx
(40) Qnk= max 16,, + ta2 + + axI < }

holdfor k = 0, 1, 2, ,n.
For the limiting distributions if n - oo and k/\/2n r we have

(41)

limP(k) f1 [V V)]112) dv - exp [- 2r2]1J2([v-12 r) dv,

(42) limQn) E (-l)iexp [-2j2r2] l r((1 - v)] )r(42) iimQ(- r
\~ J [ -(1 - V)12

_ (v2j(v) r )]dv,

where r > 0 and

(43) e(r) = | exp[_u2] dt.
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