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1., Summary

The problem of sequentially testing whether the drift of a Wiener process is
positive or negative, given an a priori normal distribution, is reduced to the
solution of a free boundary problem involving a diffusion equation.

2. Introduction

This paper is concerned with an approach to obtaining an asymptotically
optimal solution (as sampling cost approaches zero) of the problem of sequen-
tially testing whether the unknown mean p of a normal distribution with known
variance is positive or negative. That is the sequential test of H;: p > 0 versus
H,: 12 =< 0.

In a number of problems of varying degrees of generality the following pro-
cedure has been found to yield asymptotically optimal solutions [6], [7]. This
procedure consists of selecting some nondegenerate a priori distribution on the
unknown states of nature and of studying the limiting behavior of the corre-
sponding Bayes solution. Therefore we shall investigate the sequential problem
where the a priori distribution of the unknown parameter will be assumed to be
normal with fixed mean y and variance oZ.

The nature of the Bayes solution will depend in part on the loss function. The
case where there is an indifference zone, that is, the regret associated with either
terminal action is zero in some interval about u = 0, has been solved and gen-
eralized by G. Schwarz [13]. A case which seems of more interest is that where
the loss functions corresponding to the two terminal actions are approximately
linear in a neighborhood of the origin. Then, the regret due to taking the wrong
action may be expressed by
2.1) r(u) = klu| + o(1)
as p — 0. We shall confine our attention to this case although our attack applies
more generally, covering quadratic regret among others. Assuming that the cost
of sampling is ¢ per observation where ¢ — 0, a relatively simple-minded study
will indicate that the main contribution of the Bayes risk is due to values of g
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close to zero and that, with large probability, many observations will be taken
when the Bayes test is applied.

This immediately suggests that the solution of our problem is approximately
that of a corresponding problem involving the Wiener process with drift x and
variance ¢? per unit time. There it is desired to test sequentially whether the
drift is positive or negative where the regret function is

(2.2) 7(w) = klul
and p has an a priori normal distribution with mean u, and variance o3 and there
is a cost of ¢ per unit time of sampling.

The substance of this paper will deal with the “reduction” of this problem to
the solution of a free boundary problem involving the diffusion equation.

3. Normalization

In this section we normalize the problem of testing for the drift of a Wiener
process to the case where the constants k, 2, and ¢ are replaced by 1.
Let

(3.1) Xg = [.lt + Zt,

where X, is the observed Wiener process. Then Z; is a continuous process of
independent Gaussian increments with mean 0 and variance E[Z;]? = ¢%.
Let

X:t = aX ty
(3.2) ©* = Bu,
t* = ~t.
Then X% is a Wiener process with drift u* per unit time (measured in t¥) if
3.3 = =1
(3.3) By
Furthermore X has unit variance per unit time if
2.2
3.4 2 =1
(3.4) »
Finally the Bayes risk for an arbitrary procedure in the original problem is
(3.5) ® = E[cT + e(u)k|ul],

where T is the time of sampling, ¢(x) is the probability of error when u is the
mean drift with the given a priori distribution. Then

(3.6) ® = < ®*,
v
where
®* = E[T* + e*(u* Z_/I; l#*l],
3.7

T* =T, €@*) = ew).
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If
. ’Yk
(3.8) i 1,
the problem of minimizing ® has been reduced to that of solving a corresponding
problem with the constants ¢, o, and k replaced by ones. Note that the mean u,
and variance o3 of the a priori distribution are replaced by

(3.9 B = Buo,  of® = Blai.
The solution of equations (3.3), (3.4), and (3.8) yields

— 3L— —4
a = cUs13g—4/3

(3.10) B = ¢ U3 3g—23,
y = c¥3f—2g23

and consequently

(3.11) ® = cl3k3gIRH,

If ¢ is small, ordinary values of x* in the normalized problem correspond to
values of u of the order of magnitude of ¢!?. Similarly ordinary values of t*
correspond to values of ¢ of the order of magnitude of ¢—2/3. The values of y
and ¢} are transformed to values of the order of magnitude ¢~'/® and ¢~%/3 respec-
tively. Thus our original problem has been reduced to a normalized one where
the a priori distribution has large mean and standard deviation.

. Hereafter we shall treat the normalized problem unless the contrary is
specified.

4. A posteriori probability

Cameron and Martin [5] have shown that the Radon-Nikodym derivative
for X,, where 0 < s < ¢, corresponding to two values of u can be expressed in
terms of X,. Furthermore, the probability measures of X, on [0, ¢] corresponding
to different values of u are absolutely continuous with respect to one another.
Consequently the a posteriori distribution of u given X, on [0, {] may be com-
puted in terms of X using the data

(4.1) L(Xelw) = N(ut, t)
and
(42) °e(/‘) = 9((/40, 0'(2’)’

where £ represents distribution law and 9(a, b) represents the normal distribu-
tion with mean a and variance b. Consequently a straightforward computation

yields

r+a
(4.3) LXi=2) =N '—Tol -1
t+ =5 t+ =
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It can be shown that an optimal Bayes procedure can be theoretically pro-
duced as follows. Using the a posteriori distribution at time ¢, compute ®;, the
conditional risk due to stopping and accepting H;. Also compute ®,, the infimum
of risks corresponding to all sequential tests based on data X, — X, with ¢/ = &.
Continue sampling if ®; < min (®,¢, Bs;). Otherwise stop and accept the hy-
pothesis corresponding to the smaller stopping risk. (If ®;; = ®,, any measur-
able procedure can be used to decide between H; and H,.)

Because the conditional distribution depends on the past only through X,
this procedure can be represented by continuation and stopping sets in the (z,t)
plane. Consequently we can confine our attention to procedures which can be
so represented and where the stopping rule does not involve past history. In
fact, X (t) is a sufficient statistic for X (s), where 0 < s < ¢. Presumably this can
be used to prove that given any measurable sequential test procedure, there is
one with equivalent operating characteristics which can be represented by con-
tinuation and stopping sets in the (z, t) plane.

Now let
(4.4) Xe=X+% r=14 1—
Then
(4.5) Xl =) = RN (%’, t_1,>

By this transformation, optimal procedures for all versions of our problem
corresponding to normal a priori distributions can be represented by two stop-
ping regions and a single continuation region in an (z’, t') plane. Each version
is distinguished by the point (uo/03, 1/0%) from which the process starts. Thus
the Bayes risk for the optimal procedure can be represented by some function
By(z', ') evaluated at &' = w/o? and ¢’ = 1/0%. Similarly the conditional Bayes
risk given X,, where 0 < s < ¢, is equal to Bo(X: + po/0s, t + 1/03).

Finally, the stopping regions and continuation regions in the (2, ¢') space can
be regarded as determining the Bayes solution for the testing problem where
the a priori distribution is replaced by a uniform distribution from (—«, «).

Hereafter we shall treat the normalized problem in the (z/, ¢') plane and delete
the primes unless the contrary is specified. Corresponding to each point (z, t),
the a posteriori distribution of x will be

(4.6) X =a) =T (;ﬁ, %)
The conditional risk of stopping at ¢ and accepting H; given X, = z is
0 1
(.7) Dz, §) = / e (5 1),

where ¢(y; a, b) is the normal density with mean a and variance b. Then

@ neo- ()50 <)
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where ¢(y) = ¢(y; 0, 1) is the standardized normal density and ®(y) is the corre-
sponding cdf. Thus it follows that for the specified loss function, r(u) = |ul, if
one should stop at time ¢ with X; = z he should select the hypothesis according
to the sign of z, and his stopping risk is

4.9) D(z, t) = \/i v ( \";t)

where

-yl — & , 0,
(4.10) W) = {‘P(y) yl ] y >

e(y) — y2(y), y <O0.

Note that ¥ (y) is symmetric and well behaved except at y = 0, where the right
and left derivatives are —1/2 and +1/2 respectively.

5. Diffusion equation

Let us consider an arbitrary measurable test where the continuation rule can
be represented by an open set in the (z, t) plane and the conditional Bayes risk
is continuous everywhere and sufficiently differentiable for every point in the
continuation set. (This condition can be relaxed considerably. Boundedness of B
will imply analyticity on the continuation set.) We shall assume that upon
stopping the best terminal decision is made and hence B(x,¢) = D(z,t) on
the stopping set.

Let B(z, t) represent the conditional Bayes risk which takes 1nto account the
probability of error and the expected cost of sampling further We shall now
derive equation

(5.1) 1+B,+f}3z+%”=o

for points in the continuation set and the boundary condition
(5.2) B = D.
First we note that if X, = z,

(5.3) Xepw =z + hu + Vi,
where
(54) £(m) = 70, 1).
Furthermore

x 1

where 7. is independent of 7, and

(5.6) £(n2) = N0, 1).
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Hence

51 Xup =2 (1 + ?) +[n (1 + ?)]”2 "

where, as in the remainder of this paper, n denotes a standardized normal variate.
Then the probability that | X, — x| > afor some sin (¢, t + h) is o[exp (—a2/4h)].
If (z,t) is an interior point of the continuation set, there is an a so that the
probability of termination with & units of time is o[exp (—a?/446)] as & — 0 and

(5.8)
Bty =+ [ Blu,t+d)e [u;x (1 + ‘:) 5 (1 + %)]du + o(e=a/),

X—a
Hence
(5.9) B(,t) =6+ E [B + B+ YB.+ 3 Y2B,,:| + o(8),
where
(5.10) - éf + [a (1 + %)]”2 .

and the expectation is with respect to the normal distribution of #. Then
(5.11) B=a+B+aB,+§fB,+‘s—g—"+o(5)

and equation (5.1) follows. Note that 1 would be replaced by c(t) if ¢(t) were the
cost of observation per limit time at time ¢. The boundary condition follows
from the continuity of B. Under weaker conditions this boundary condition may
break down. In fact to prevent breakdown it is required that the boundary be
well behaved. Thus the condition fails where the boundary has a vertical section.

It should be noted that this equation can be reduced to the heat equation by
the transformation

z 1
(5.12) y=y s =57 0<t<oo,
Then, if
(5.13) B, ) = B@, 1) + 5

where B represents the conditional risk including the amount already spent on
sampling, we have

(5.14) B, = B..
with the boundary condition

(.15 B=D (2% i) + zi - x@:p(—%_s) o- = By, 9).
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6. The free boundary problem

In section 4 we pointed out that there was a continuation set in terms of
which the Bayes strategies for all a priori normal distributions could be repre-
sented. This set has the property that it simultaneously minimizes B(z, {) every-
where. (In relation to the condition posed at the beginning of section 5, it is
not difficult to show that for the optimal strategy B(z,!) is continuous and
bounded.) In particular the optimal set or associated optimal boundary has the
property that the corresponding solution of the diffusion equation is a minimum
everywhere.

We shall now heuristically indicate that this minimization property is equiva-
lent to the extra boundary condition

(61) Bz = Dz

which determines the “free” boundary.

Suppose that the boundary is specified by two functions u,(¢) and us(¢) from
ty to «. This determines the Bayes risk B(z, ) for all (z, s) with s = #. Then it
is desired to extend the boundary backward so as to uniformly minimize

us(t) ui(t)
6.2) HO = [ Bar+ [*"Daz+ [, D
for t < &. Since B = D on the boundary,
Uz ui «
uL - o0 us
If
(6.4) Biy(uy, t) 5= Dy(uy, 1),

an instantaneous change in u; (increase if B, < D; and decrease if B: > D)
would increase dH/dt and lead to smaller values of H for ¢ < t. Thus if the
optimal boundary has finite slope we must have

(6.5) B, =D,

on the boundary. Differentiating B = D along the boundary u.(t), we have
du. du.

(6.6) B. a + B; =D, a + D,

(6.7) B, = D,,

and hence
du. du‘l

(68) z.: dt +th zz dt +D:ct

and

dli — th _ th_
dt - Dzz - Bzz

Furthermore, differentiating the diffusion equation

(6.9)
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; 1 B
(6.10) B., = _B”t - B,t -
we can express du;/dt in terms of the known function D and B(z, t,). This
should permit us to approximate the extension of the optimal boundary back-
ward in time.

To summarize, we have heuristically indicated that the minimizing property
of the optimal boundary yields the extra boundary condition B; = D, or equiv
alently B, = D, and that these conditions characterize the optimal boundary.
Needless to say there are a number of serious shortcomings of the above deriva-
tion. The following remarks may serve to clarify the situation.

First, the optimal boundary from ¢ to « determines B(z, {) on the con-
tinuation set as the solution of the diffusion equation. Assuming that B(z, t)
defined on the continuation set and boundary has third order continuous deriva-
tives with respect to x at the boundary point (x, f) it is possible to express
B(xy — 14, ty — 8) in terms of the slopes of a straight-line boundary from ¢, to
to — 8. This expression is

(6.11) B(xy — 16, tg — 8) = B(o, to) — 6[(D: — rB,) + s(B, — D,)] + 0(5).

For the optimal boundary to have finite slope, we must have B, = D,. Expand-
ing the above expression further, and substituting B, = D, and its consequence
B, = D,, the next term is

4(r —s) r , By
(6.12) \/57}- 53/2[1 + B, + B. ; 4 B ]

Clearly, this implies that the diffusion equation is satisfied at the boundary.
Incidentally, for the specified regret function r(u) = ||, it follows that

(6.13) D,+Dx:§+%= 0

everywhere except for # = 0. Hence
(6.14) D,, =B, + 2

on the boundary. The next term, which is the one requiring the use of B, is
of order 8% and s appears in it quadratically. This term is

zz — Dz D:E Bzzz
615 oo (P=5E) s (Dt Bah + 52+ )

2 P
+ (D” — Dttr L - anr bl rBézz - T2D¢ ha T2>]'

Selecting s to minimize this expression yields

D; | B
D, + Bzz% + -t— -+

' 2
(6.16) s = B  Da )

2 2
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which is equivalent to equation (6.9) if one assumed that the diffusion equa-
tion may be differentiated with respect to x at the boundary. Here only deriva-
tives of B with respect to = appear.

This approach serves to show that if the boundary and B are sufficiently well
behaved, B, = G, on the boundary. Furthermore, it can be used to show that a
differentiable boundary for which the solution satisfies the two boundary condi-
tions yields the desired optimal strategy. Such a proof is complex and requires
using the fact that replacing a small portion of the curve by a chord increases B
everywhere from the minimum attainable by at most o(8) and differs from
the B corresponding to the curve by at most 0(8). Dividing a section of the
curve into many such small sections yields a function B arbitrarily close to the
minimum and to that of the curve. Thus the curve has the desired minimum
property.

7. Remarks

7.1. Truncation rules. Suppose that a rule is imposed that the sampling pro-
cedure be truncated at time ¢, and that if sampling does not terminate before #,
the statistician should be assigned a positive risk depending upon his position
at time 4. Then the derivation of the diffusion equation and the free boundary
conditions apply for 0 < ¢t < {, for the optimal strategy subject to this termina-
tion rule. In particular if the assigned risk coincides with B for the nontruncated
problem, we get the solution of the nontruncated problem. If the assigned risk
at &, is changed by less than ¢, the corresponding B is modified by at most e.
Since D(x, t) approaches 0 uniformly in z as t — o, it follows that an arbitrary
assignment of termination risk for large ¢ has negligible effect on the optimal B
and therefore on the optimal boundary for finite values of ¢.

Incidentally this is an appropriate place to indicate that for the problem which
is not arbitrarily truncated, the optimal boundary is not truncated. To prove
this all that is required is to compare D(0,t) with the risk B*(0,t) for the
nonoptimal procedure which proceeds for e units of time after ¢ and then ter-
minates. In fact,

7.1) D, 1) = (2mt)-112
and

* — 1 _ (€ b R
(7.2) B0, 1) = (m)w[l (t> -I—O(e)]

On the other hand a similar comparison shows that the optimal procedure for
the discrete time sequential problem does terminate. This termination point is
of the order of magnitude of ¢—! which is large compared to ¢—2?/3, the scale in
which ¢ is measured.

7.2. Relation between the discrete and continuous solutions. The discrete prob-
lem, when normalized, can be regarded as a solution of the continuous problem
where the stopping set is confined to sets corresponding to a sequence of ¢,
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t, = B + ne, where 0 < 8 < e and ¢ = O(c?3). In the continuous problem con-
sider the procedure which consists of terminating sampling at o 4+ ne if X(#)
crosses the opiimal boundary for the first time between @ + (2 — 1)eand a + ne.
The Bayes risk for this procedure differs from the optimal by at most ¢, which is
more than the cost of extra sampling. On the other hand an optimal procedure
which permits termination only at the times a + ne can be expressed in terms
of the values of X at these times alone. It follows that the minimum risk for the
discrete problem converges to that of the continuous problem as e — 0. At the
same time the definition of the optimal stopping sets obtained by comparing B
and D shows that the optimal boundary of the discrete problem also converges
to that of the continuous problem. In fact the convergence of both B and the
continuation sets are monotone when ¢ — 0 through a sequence ¥2—%. At present
J. V. Breakwell and the author are engaged in the numerical computation of
the optimal boundary using the solution of the discrete problem as the ap-
proximation.

Since Sobel [14] has shown that the Bayes strategies for the discrete problem
yield continuation sets which are intervals for each n, the above argument
extends this result to the continuous case.

7.3. Application to other regret functions and costs of sampling. It is evident
that the free boundary approach is applicable when the marginal cost of sampling
is a function of time or when the regret due to error is given by some other
function than |u|. The differential equation is replaced by

(7.3) o) + B+ EB.+ B2 =g,

where c¢(f) is the additional cost of observation per unit time at time {. The
boundary condition is changed in that D is replaced by a modified function
depending on r(u).

7.4. Applicability of the diffusion equation to bounds. The behavior of B(z, t)
and the optimal boundary as ¢ — 0 is of special interest. The diffusion equation
may furnish simple bounds as follows. Let B* be the solution of the equation
for a prescribed boundary. Since the optimal boundary minimizes B everywhere,
B* < D implies B < D and consequently the optimal rule calls for continued
sampling at those points where B* < D.

A trivial related argument uses the fact that B is bounded. This is so
because one may sample for one unit of time for a cost of one and B(z, t) <
G(z,t) £ 1fort = 1. Hence (z, t) is in the continuation set if G(z,t) = 2. But
forz = (—atlogt)2ast—0,

1 tla—D/2

7.4 Gz, t) = —y¢[(—alog )] ~ —= .
‘( ) (1) \/t‘#[( gt)"] Vor (—alogt)

Hence the value of z at the upper boundary is larger than (—at log ¢)!/?
for a < 1 and ¢ — 0. The author has reason to conjecture that along the optimal
boundary x ~ (—3t log t)V/2.
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7.5. A property of the optimal boundary. The following argument due to Stein
indicates that for the upper portion of the optimal boundary, x/ V't is a decreas-
ing function of . This, together with the continuity of B, implies that the optimal

upper boundary is continuous and is differentiable except for a set of ¢t measure 0
on which the slope may be —e.

Let
. _ X
5 ‘\/to’
@) w = Vi
t
* — 2.
=
Then
(7.6) L(XE|u*) = T(u*er, t*)
and
*
(7.7) L(uHXE = 2%) = N (”:—* tl*)

At time ¢, with t* = 1, the problem of minimizing the Bayes risk
L TOM *

(7.8) BIT + ()] = B[ 67" + J“T}g}“—l]

is equivalent to that of minimizing

(7.9) E[2T 4 *(u*)|u*(]

which is the same as our original problem except that the cost of sampling is /2.
Clearly the continuation set decreases as the cost of sampling increases. Hence
the upper boundary value of z* at time ¢, decreases with ¢,. The desired result
follows.

8. Some historical comments and acknowledgments

The sequential probability ratio test, for testing a simple hypothesis versus a
simple alternative was introduced by Wald in 1943 (see [15]). He conjectured
that the test was optimal in the sense that among tests with error probabilities
as small, this minimized the expected sample size under both hypotheses stmul-
taneously. This property, together with the Bayes nature of the test, was obtained
in 1948 by Wald and Wolfowitz [16] and Arrow, Blackwell, and Girshick [3].
This test has been customarily applied to problems, such as ours, which involve
composite hypotheses by replacing the composite hypotheses by simple ones
corresponding to somewhat arbitrarily selected points of the related parameter
sets.

Sobel [14] characterized an essentially complete class of one-sided sequential
tests of composite hypotheses with bounded loss functions where the observa-
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tions have a Koopman-Darmois type distribution. This essentially complete
class, which could be called the class of generalized sequential probability ratio
tests, was also discussed for more general distributions by Kiefer and Weiss [11].

Breakwell [4] conjectured and DeGroot [8] proved that the minimax sequen-
tial test for the Wiener process problem with linear regret function is the Wald
test. The derivation involves demonstrating that the least favorable distribu-
tion is a two point distribution and thus the minimax test has a continuation
set consisting of two appropriately placed horizontal parallel straight lines which
is essentially a special case of the Wald sequential probability ratio test.

Several authors have proposed modifications of the Wald test. In particular
Armitage [2] proposed a two-sided test for u = 0 for which the boundary con-
sists of straight line segments. He gave approximations to the operating char-
acteristics. This term is used loosely to include the expected sample size or its
distribution in addition to the error probabilities. Donnelly [9] and Anderson [1]
both proposed one-sided tests consisting of pairs of not necessarily parallel
straight lines and derived the operating characteristics. All three converted to
the Wiener process. Donnelly obtained his results by solving the diffusion equa-
tion which has always been closely associated with the Wiener process.

The free boundary approach, which is the substance of this paper, was in-
dependently developed by Dennis V. Lindley. He derived the boundary condi-
tion B, = G, but was apparently unaware at the time we communicated that
this extra condition should suffice to determine the optimal boundary.

Free boundary problems for diffusion equations have recently been the sub-
ject for considerable research. These problems are somewhat different than ours.
Some examples are in the work of Friedman [10] and Kolodner [12].

I wish to thank C. M. Stein and M. M. Schiffer for their comments and
discussions, which proved helpful to me.
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