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Abstract. We study the diameter two properties in the (James type) Banach
spaces JH, JT∞ and JH∞. We show that the dual spaces of these three
Banach spaces fail every diameter two property. Also, we prove that JH and
JH∞ satisfy the strong diameter two property, and so the dual norms of these
spaces are octahedral. In addition, we find a closed hyperplane M of JH∞
such that its dual space, M∗, satisfies the w∗-strong diameter two property.
Finally, we get that the natural norms of M and M∗ are octahedral.

1. Introduction and preliminaries

We say that a Banach space has the slice diameter two property (slice-D2P),
respectively diameter two property (D2P), strong diameter two property (SD2P),
if every slice, respectively non-empty weakly open set, convex combination of
slices, in its unit ball has diameter two. We also define the weak-star versions of
the above properties: the weak-star slice diameter two property (w∗-slice D2P),
the weak-star diameter two property (w∗-D2P) and the weak-star strong diameter
two property (w∗-SD2P), asking for the above conditions for w∗-slices, nonempty
relatively w∗-open subsets and convex combination of w∗-slices.

The diameter two properties are extremely opposite to the well known Radon-
Nikodym property (RNP) in Banach spaces, since it is well known that the RNP
for a Banach space is characterized by the existence of slices with diameter arbi-
trarily small in every nonempty and bounded subset of the space. Let us remark
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that RNP is an isomorphic property, that is, independent on the equivalent norm
considered, while the diameter two properties are purely geometric properties,
depending on the equivalent norm considered.

In the last years a wide class of Banach spaces satisfying some of the diame-
ter two properties have appeared, as infinite-dimensional uniform algebras [14],
infinite-dimensional C∗-algebras [1], non-reflexive M -embedded spaces [9], Ba-
nach spaces with the Daugavet property [16], etc. However, the diameter two
properties have not so far been much investigated for what one would describe
as non- classical Banach spaces.

Probably the origin of non-classical Banach spaces is [10], where the space J
(James space) is constructed in order to provide an example of a non-reflexive
Banach space which fails to contain an isomorphic copy of c0 or `1. A year later
[11], James went further and modified the definition of the norm in order to show
that J and J∗∗ are isometrically isomorphic despite the fact that J is non-reflexive
(see [5] or [13] for background on the space J). It is known that J and J∗ have
the RNP both being separable duals.

After the construction of J , James defined in [12] the space JT (James tree
space), exhibiting an example of a separable Banach space whose dual space is
non-separable and so that it does not contain any isomorphic copy of `1, giving
a negative answer to a conjecture of Stephan Banach (again we refer to [5] or
[13] for background on JT space). It is known that JT satisfies the RNP and B,
the predual of JT , fails the RNP [5]. However, B is far from satisfying the slice
diameter two property. Indeed, in [15, Theorem 5.1] it is proved the existence of
a constant 0 < β < 2 such that every closed and convex subset of the unit ball
of B has a slice whose diameter is at most β (in fact, it is conjectured in [15,
Remark 5.2] that the above constant β could be, at most,

√
2). In any case, B

can be considered as the first non-classical Banach space where the size of slices
is studied.

Motivated by the analysis of B, the aim of this note is to study the slices of
the unit ball for some related, non-classical Banach spaces. Indeed, in section 2
we focus on the JT ∗∞ space, by showing that JT ∗∞ fails the w∗-slice diameter two
property, and so every diameter two property. Then the space B∞, the predual
space of JT∞, fails every diameter two property. In fact, we prove that the inf of
the diameters of slices in the unit ball of B∞ is, at most,

√
2. The same fact also

holds for the unit ball of the predual space B of JT , and so we can confirm [15,
Remark 5.2].

In section 3 we prove that the unit ball of JH has Fréchet differentiability points
and, as a consequence, the unit ball of JH∗ contains w∗-slices of arbitrarily small
diameter. Also, it is proved in this section that JH has the strong diameter
two property. As a consequence, we get that the norm in the dual space JH∗ is
octahedral.

In section 4 we introduce the JH∞ space, a Banach space which is not linearly
isomorphic to JH, since we show that unit ball of JH∗∞ has w∗ slices of diameter
strictly less than 2 and so JH∞∗ fails every diameter two property. Moreover,
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it is proved that JH∞ has the strong diameter two property, and so we deduce
from this fact that the norm of JH∗∞ is octahedral.

Finally, in section 5, we find a closed hyperplane M of JH∞ such that M∗

satisfies the w∗-strong diameter two property and we deduce that the natural
norms of M and M∗ are octahedral.

We shall now introduce some notation. We will consider real Banach spaces.
BX , respectively SX , stands for the closed unit ball, respectively the unit sphere,
of the Banach space X. We denote by X∗ the topological dual space of X. A
slice of a bounded subset A ⊆ X is a set defined by

S(A, x∗, α) := {x ∈ A | x∗(x) > supx(A)− α}

whenever x∗ ∈ X∗ and 0 < α. Similarly, a w∗-slice of a bounded subset B ⊆ X∗

is a set given by

S(B, x, α) := {x∗ ∈ B | x∗(x) > supx(B)− α}

whenever x ∈ X and 0 < α.
Recall that the norm of a Banach space X is octahedral (see [4]) if for every

ε > 0 and for every finite-dimensional subspace Y of X there is x ∈ SX such that

‖λx+ y‖ > (1− ε)(|λ|+ ‖y‖)

for every y ∈ Y and for every scalar λ. We remark that the norm of a Banach
space X is octahedral if, and only if, X∗ satisfies the w∗-strong diameter two
property and, dually, the norm of X∗ is octahedral if, and only if, X satisfies the
strong diameter two property (see [2]).

Also we recall that a Banach space X has the Daugavet property if the equation

‖T + I‖ = 1 + ‖T‖ (1.1)

holds for every rank one, linear and bounded operator on X, where I denotes the
identity operator.

The Banach space X is said to have the almost Daugavet property if there
is some norming subspace Y of X∗ such that the equation (1.1) holds for every
rank one operator T given by T = x⊗ y∗ for x ∈ X and y∗ ∈ Y . It is known [8]
that, for a separable Banach space, having octahedral norm and satisfying the
almost Daugavet property are equivalent properties. The above two equivalent
properties are also equivalent to the fact that X∗ has the w∗-strong diameter two
property, as can be deduced from the comments in the above paragraph. These
facts will be used freely below.

The following known result, see Lemma 2.1 and Proposition 3.1 in [3], will be
useful in order to estimate the infimum of diameters of w∗- slices in dual spaces.

Theorem 1.1. Let X be a Banach space and assume that A ⊆ X∗ satisfies
BX∗ = cow

∗
(A). If x ∈ SX , then

inf
α>0

diam(S(A, x, α)) = inf
α>0

diam(S(BX∗ , x, α)).
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2. The space JT∞.

We begin with the construction of JT∞. Let us define

T := {(α1, . . . , αk) | k ∈ N, α1, . . . , αn ∈ N} ∪ {∅}.

Given (α1, . . . , αk), (β1, . . . , βp) ∈ T we say that

(α1, . . . , αk) ≤ (β1, . . . , βp)⇔
{
|(α1, . . . , αk)| ≤ |(β1, . . . , βp)|

αi = βi ∀1 ≤ i ≤ k,

where |(α1, . . . , αn)| := n and |∅| := 0. This binary relation defines a partial order
on T .

A segment in T is a totally ordered and finite subset S ⊆ T .
Given x : T −→ R, let us consider

‖x‖ = sup

 n∑
i=1

(∑
t∈Si

x(t)

)2
 1

2

,

where the sup is taken over all families {S1, . . . , Sn} of disjoint segments of T .
Now JT∞ is defined as the completion of the space of finitely nonzero functions

defined on T (i.e. functions x : T −→ R such that {t ∈ T | x(t) 6= 0} is finite)
for the above norm. Given α ∈ T let us define

eα(β) :=

{
1 if β = α,
0 otherwise.

Then it is known that {eα}α∈T is a Schauder basis for JT∞ and that JT∞ is a
dual space. We denote by {e∗α}α∈T the biorthogonal sequence of {eα}α∈T . Then
B∞ := span{e∗α / α ∈ T}, where the closure is taken in JT ∗∞, is a complete
predual of JT∞.

The space JT∞ was introduced in [6], where it is proved that B∞ fails the
Radon-Nikodym property. Furthermore, every infinite-dimensional subspace of
JT∞ contains an isomorphic copy of `2 and so JT∞ does not contain isomorphic
copies of `1.

Now we pass to study the size of slices in BJT ∗∞ . As in [15], we define a molecule
as a functional of the form

x∗ :=
n∑
i=1

λifSi

for S1, . . . , Sn disjoint segments of T and
∑n

i=1 λ
2
i ≤ 1, where fS ∈ BJT ∗∞ is defined

by the equation

fS(x) :=
∑
t∈S

x(t)

whenever S ⊆ T is a segment of T .
Denote by M the set of molecules in JT ∗∞ and note that M is a symmetric

subset of BJT ∗∞ . The following lemma states that M is in fact a norming subset
of BJT ∗∞ .
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Lemma 2.1. M is a norming subset of BJT ∗∞. As a consequence

BJT ∗∞ = cow
∗
(M).

Proof. Let x ∈ SJT∞ be a finitely nonzero function defined on T . Pick an arbitrary
0 < ε < 1 and take 0 < δ < 1 such that (1− δ)2 > 1− ε. By the definition of the
norm in JT∞ we deduce that there exist S1, . . . , Sn disjoint segments in T such
that (

n∑
i=1

fSi
(x)2

) 1
2

> 1− δ.

For every i ∈ {1, . . . , n} we define λi := fSi
(x) and we note that, from the

definition of the norm in JT∞,
∑n

i=1 λ
2
i ≤ 1. Moreover, in view of the last

inequality, we have

n∑
i=1

λifSi
(x) =

n∑
i=1

fSi
(x)2 > (1− δ)2 > 1− ε.

As a consequence we can find elements in M whose evaluation at x is as close to
‖x‖ as desired. Hence M is a norming subset of BJH∗∞ .

From a separation argument we get now that BJT ∗∞ = cow
∗
(M). �

Using the previous lemma, we will prove that there exist w∗-slices in BJT ∗∞ with
diameter strictly less than 2.

Theorem 2.2. There exists x ∈ SJT∞ such that

inf
α>0

diam S(BJT ∗∞ , x, α) ≤
√

2.

Proof. Let 0 < ε < 1/2. Pick 0 < δ < min{ε, 2ε(1 − ε)} and 0 < α < 1/2 such
that (1− α)2 > 1− δ. Let us define

x := (1− ε)e∅ + εe(1) ∈ SJT∞ .

We consider S := S(M,x, α). Take
∑n

i=1 λifSi
,
∑m

j=1 µjfTj ∈ S.

In view of the form of x we can assure the existence of i ∈ {1, . . . , n}, j ∈
{1, . . . ,m} such that {∅, (1)} ⊆ Si∩Tj. Indeed, it is clear that (∪ni=1Si)∩{∅, (1)} 6=
∅, since

∑n
i=1 λifSi

∈ S. Now it is not possible that (∪ni=1Si) ∩ {∅, (1)} = {(∅)}
nor (∪ni=1Si) ∩ {∅, (1)} = {(1)}, since 0 < ε < 1/2, 0 < α < 1/2,

∑n
i=1 λ

2
i ≤ 1

and
∑n

i=1 λifSi
∈ S. Finally, it is not possible that there exist i 6= j such that

{(∅)} ∈ Si and {(1)} ∈ Sj, since if this is the case, we have that (1− ε)λi + ελj >
1− α. Hence

(1− α)2 < ((1− ε)2 + ε2)(λ2i + λ2j) ≤ (1− ε)2 + ε2

and thus, using the conditions on α, δ and ε, we get

1− 2(ε(1− ε)) < 1− δ < (1− ε)2 + ε2,

which is a contradiction. This proves the existence of i such that {∅, (1)} ⊆ Si.
The same argument proves the existence of j such that {∅, (1)} ⊆ Tj. Of course,
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we assume without loss of generality that i = j = 1. Now

n∑
i=1

λifSi
(x) = λ1(1− ε+ ε) = λ1 > 1− α⇒ λ21 > (1− α)2 > 1− δ.

From
∑n

i=1 λ
2
i ≤ 1 we get

∑n
i=2 λ

2
i < δ. By a similar argument µ2

1 > 1 − δ and
hence

∑m
j=2 µ

2
j < δ.

In order to estimate
∥∥∥∑n

i=1 λifSi
−
∑m

j=1 µjfTj

∥∥∥ pick y ∈ SJT∞ . Hence∣∣∣∣∣
(

n∑
i=1

λifSi
−

m∑
j=1

µjfTj

)
(y)

∣∣∣∣∣ ≤ |λ1fS1(y)− µ1fT1(y)|︸ ︷︷ ︸
A

+

∣∣∣∣∣
n∑
i=2

λifSi
(y)−

m∑
j=2

µjfTj(y)

∣∣∣∣∣︸ ︷︷ ︸
B

.

We shall begin by estimating B. In view of Hölder’s inequality we have

B ≤
n∑
i=2

|λi||fSi
(y)|+

m∑
j=2

|µj||fTj(y)| ≤

≤

(
n∑
i=2

λ2i +
m∑
j=2

µ2
j

) 1
2
(

n∑
i=2

fSi
(y)2 +

m∑
j=2

fTj(y)2

) 1
2

≤ (2δ)
1
2 2

1
2 = 2

√
δ

because
∑n

i=2 fSi
(y)2 ≤ ‖y‖2 = 1,

∑m
j=2 fTj(y)2 ≤ 1 due to the disjointness of

{S2, . . . , Sn} and {T2, . . . , Tm}. So B ≤ 2
√
δ. Now we will estimate A.

A ≤ |λ1 − µ1||fT1∩S1(y)|+ |λ1||fS1\T1(y)|+ |µ1||fT1\S1(y)|.

From 1 ≥ λ1 > 1− α and 1 ≥ µ1 > 1− α we get |λ1 − µ1| < α. Hence

A ≤ α‖fT1∩S1‖‖y‖+ |λ1||fS1\T1(y)|+ |µ1||fT1\S1(y)|

= α + |λ1||fT1\S1(y)|+ |µ1||fT1\S1(y)| ≤ α + |fS1\T1(y)|+ |fT1\S1(y)|.
Again, applying Hölder’s inequality, we have

A ≤ α +
√

2
(
fS1\T1(y)2 + fT1\S1(y)2

) 1
2 .

Since {S1 \ T1, T1 \ S1} ⊆ T is a family of disjoint segments, we have that
fS1\T1(y)2 + fT1\S1(y)2 ≤ ‖y‖2 = 1. Hence

A ≤ α +
√

2.

Summarizing gives∣∣∣∣∣
(

n∑
i=1

λifSi
−

m∑
j=1

µjfTj

)
(y)

∣∣∣∣∣ ≤ α +
√

2 + 2
√
δ.
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From the arbitrariness of y ∈ SJT∞ we have that∥∥∥∥∥
n∑
i=1

λifSi
−

m∑
j=1

µjfTj

∥∥∥∥∥ = sup
y∈SJT∞

∣∣∣∣∣
(

n∑
i=1

λifSi
−

m∑
j=1

µjfTj

)
(y)

∣∣∣∣∣
≤
√

2 + α + 2
√
δ.

Hence
diam(S) ≤

√
2 + α + 2

√
δ.

So
inf
α>0

diam(S(M,x, α)) ≤
√

2 + 2
√
δ.

Since 0 < δ < ε is arbitrary, we deduce that

inf
α>0

diam(S(M,x, α)) ≤
√

2.

In view of Lemma 2.1, Theorem 1.1 applies and

inf
α>0

diam(S(BJT ∗∞ , x, α)) ≤
√

2,

and we are done. �

In view of Theorem 2.2 , for each 0 < ε < 2 −
√

2 we can find a w∗-slice S in
BJT ∗∞ such that diam(S) <

√
2+ε. In particular, JT ∗∞ fails the w∗-slice diameter

two property and hence B∞ fails every diameter two property, since the inf of the
diameters of slices in the unit ball of B∞ agrees with the inf of the diameters of
w∗-slices in the unit ball of JT ∗∞. In fact, this inf is, at most,

√
2. Furthermore, it

is possible to obtain the same result for the space B, the predual of JT , with the
above proof, which shows that the conjecture in [15], that the inf of diameters of
slices in the unit ball in B is at most

√
2 holds.

3. The space JH.

We begin with the construction of JH. Following [5] we denote by

T := {(n, i) / 0 ≤ n <∞, 0 ≤ i < 2n}
the dyadic tree. We say that (n+ 1, 2i) and (n+ 1, 2i+ 1) are offsprings of (n, i)
for every (n, i) ∈ T . A segment will be a non-empty finite sequence

S = {t1, . . . , tn}
such that tj+1 is an offspring of tj for every j ∈ {1, . . . , n− 1}.

Now we are ready to define a partial order in T : Given t1, t2 ∈ T we say that
t1 < t2 if, and only if, t1 6= t2 and there exists a segment such that t1 is the first
element of the segment and t2 is the last one of it.

The set
{(n, i) | 0 ≤ i < 2n}

is called the n-th level of T for every 0 ≤ n <∞. Given a ∈ T , lev(a) is defined
as the integer number such that a belongs to the lev(a)-th level.

Given n,m ∈ N, n ≤ m we will say that a subset S ⊆ T is an n−m segment if
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• For every n ≤ k ≤ m there exists only one element in S which is in the
k-th level of T ,
• If (p, i), (q, j) ∈ S and p < q then (p, i) < (q, j) (in other words, S is a

totally ordered subset of T ).

Given x : T −→ R and S ⊆ T a segment in T , we define

fS(x) :=
∑
t∈S

x(t).

Note that the above sum is well defined because S is finite.
Given {S1, . . . , Sn} a family of segments in T we say that they are admissible

if:

i) There exist p ≤ q natural numbers such that Si is a p − q segment for
every i ∈ {1, . . . , n}.

ii) Si ∩ Sj = ∅ whenever i 6= j.

Given x : T −→ R, a finitely nonzero function, we define

‖x‖ := max
n∑
i=1

|fSi
(x)| = max

n∑
i=1

∣∣∣∣∣∑
t∈Si

x(t)

∣∣∣∣∣ ,
where the maximum is taken over all families S1, . . . , Sn of admissible segments
in T .

Now define JH as the completion of the space of finitely nonzero functions on
T in the above norm.

Given t ∈ T we define et ∈ JH by the equation

et(s) :=

{
1 if t = s
0 otherwise

.

Then it is known that {et}t∈T defines a Schauder basis in JH.
The JH space was introduced by J. Hagler in [7], where it is proved that JH

is a separable Banach space such that JH∗ is not separable and every infinite-
dimensional subspace of JH contains an isomorphic copy of c0. In particular JH
contains an isomorphic copy of c0, so it can not be a dual space [13, Proposition
2.e.8].

Lemma 3.1. Let x : T −→ R be a finitely non-zero function and n ∈ N \ {1}
such that

‖x‖ ≤ 1− 1

n
.

Pick a ∈ T such that lev(a) > max
t∈supp(x)

lev(t). Let ` ∈ N big enough such that

there exists t1, . . . , tn ∈ T so that

• lev(ti) = ` for each i.
• a < ti for all i.

If we define y : T −→ R such that

y(t) :=

 x(t) when t ∈ supp(x)
µi

1
n

when t = ti for i ∈ {1, . . . , n}
0 otherwise

,
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where µi ∈ {−1, 1} for every i ∈ {1, . . . , n}, then ‖y‖ ≤ 1.

Proof. Let {S1, . . . , Sk} be a family of admissible segments in T , λ1, . . . , λk ∈
{−1, 1} and define

x∗ :=
k∑
i=1

λifSi
.

In order to prove that ‖y‖ ≤ 1, we have to show that x∗(y) ≤ 1, according to the
definition of the norm in JH.

We consider the following possibilities:

(1)
k⋃
i=1

Si ∩ {t1, . . . , tn} = ∅.

In this case we have, in view of the definition of y, that

x∗(y) = x∗(x) ≤ ‖x‖ ≤ 1− 1

n

by hypothesis.

(2)
k⋃
i=1

Si ∩ {t1, . . . , tn} 6= ∅, but
k⋃
i=1

Si ∩ supp(x) = ∅.

In this case we have

x∗(y) =
k∑
i=1

λifSi
(y) ≤

n∑
i=1

1

n
= 1

(3)
k⋃
i=1

Si ∩ {t1, . . . , tn} 6= ∅ and
k⋃
i=1

Si ∩ supp(x) 6= ∅.

Finally, in this case we have that there exists only one i ∈ {1, . . . , n}

such that a ∈ Si (otherwise
k⋃
i=1

Si ∩ {t1, . . . , tn} = ∅ in view of the order

defined on T ). We can assume, without loss of generality, that i = 1. If
Sj is a p− q segment, we can write

Sj := Tj ∪Rj

where Tj is a p − (` − 1) segment and Rj is a ` − q segment for each
j ∈ {1, . . . , k}.

In view of the disjointness of S1, . . . , Sk we have for each j ∈ {2, . . . , n}
that Sj ∩ {t1, . . . , tn} = ∅. In addition, as ` > max

t∈supp(x)
lev(t), we deduce

that

fRi
(y) = 0 ∀i ∈ {2, . . . , n}.

Hence

x∗(y) =
k∑
i=1

λifTi(y) + λ1fR1(y).

Now we have that {T1, . . . , Tk} is a family of admissible segments on T .
Hence

x∗(y) ≤ ‖x‖+ λ1fR1(x) ≤ 1− 1

n
+ fR1(y).
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Now, as {t1, . . . , tn} are incomparable nodes on T at the same level, we
have that {t1, . . . , tn} ∩R1 has one element. Hence

x∗(y) ≤ 1− 1

n
+ fR1(y) ≤ 1− 1

n
+

1

n
= 1.

By the previous discussion we deduce that ‖y‖ ≤ 1, as desired. �

Theorem 3.2. JH has the strong diameter two property (and so the norm of
JH∗ is octahedral).

Proof. Let C :=
∑n

i=1 λiS(BJH , x
∗
i , α) be a convex combination of slices of BJH .

Let us prove that diam(C) = 2.
To this aim pick xi : T −→ R a finitely non-zero supported function on T such

that ‖xi‖ < 1 and

x∗i (xi) > 1− α,
for each i ∈ {1, . . . , n}. For each i ∈ {1, . . . , n} we can find ai ∈ supp(xi) such
that lev(ai) = max

t∈supp(xi)
lev(t).

As ‖xi‖ < 1 for each i ∈ {1, . . . , n} we can find m ∈ N such that ‖xi‖ ≤ 1− 1
m

for each i ∈ {1, . . . , n}. Now we can find a ∈ T such that lev(a) > max
1≤i≤n

lev(ai),

k > max
1≤i≤n

lev(ai) big enough and {ti1, . . . , tim} a family of nodes on T at level k

such that a < tip for each i ∈ {1, . . . , n}, p ∈ {1, . . . , 2m} and such that

tip 6= tjq if i 6= j or p 6= q.

In other words, the last condition guaranties that {tip | i ∈ {1, . . . , n}, p ∈
{1, . . . , 2m}} is a family of pairwise different nodes at level k which are bigger
than a.

For each i ∈ {1, . . . , n} we define yi, zi : T −→ R finitely non-zero functions on
T as follows

yi(t) :=


xi(t) if t ∈ supp(xi)

sign
(
x∗i

(
etip

))
1
m

if t = tip, for p ∈ {1, . . . ,m}
0 otherwise

and

zi(t) :=


xi(t) if t ∈ supp(xi)

sign
(
x∗i

(
etip

))
1
m

if t = tip, for p ∈ {m+ 1, . . . , 2m}
0 otherwise

.

In view of Lemma 3.1 we have that ‖yi‖ ≤ 1 and ‖zi‖ ≤ 1.
Let us prove that, in fact, yi, zi ∈ S(BJH , x

∗
i , α) for each i ∈ {1, . . . , n}. To

this aim pick i ∈ {1, . . . , n}. We shall prove that yi ∈ S(BJH , x
∗
i , α), the case of

zi is similar. Using the linearity of x∗i we have

x∗i (yi) = x∗i (xi) +
m∑
p=1

1

m
sign

(
x∗i

(
etip

))
x∗i

(
etip

)
=
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= x∗i (xi) +
m∑
p=1

1

m

∣∣∣x∗i (etip)∣∣∣ ≥ x∗i (xi) > 1− α.

Hence
∑n

i=1 λiyi,
∑n

i=1 λizi ∈ C. Then

diam(C) ≥

∥∥∥∥∥
n∑
i=1

λiyi −
n∑
i=1

λizi

∥∥∥∥∥ .
Now we shall prove that ‖

∑n
i=1 λiyi −

∑n
i=1 λizi‖ = 2. To this aim note that

{{tip} / i ∈ {1, . . . , n}, p ∈ {1, . . . , 2m}} is a family of admissible segments on T .
Hence

f :=
n∑
i=1

m∑
p=1

sign
(
x∗i

(
etip

))
f{(tip)} −

2m∑
p=m+1

sign
(
x∗i

(
etip

))
f{(tip)}

is an element on JH∗ whose norm is, at most, one (in view of the definition of
the norm in JH). So∥∥∥∥∥

n∑
i=1

λiyi −
n∑
i=1

λizi

∥∥∥∥∥ ≥ f

(
n∑
i=1

λiyi −
n∑
i=1

λizi

)
=

=
n∑
i=1

λi
1

m

m∑
p=1

sign
(
x∗i

(
etip

))2
+ λi

1

m

2m∑
p=m+1

sign
(
x∗i

(
etip

))2
=

= 2
n∑
i=1

λi = 2.

So ‖
∑n

i=1 λiyi −
∑n

i=1 λizi‖ = 2, as wanted. �

We will now show that JH∗ is far from having any diameter 2 property. Our
aim is to prove that BJH∗ has w∗-slices with arbitrary small diameter. In fact,
we will find x ∈ SJH such that inf

α>0
diam(S(BJH∗ , x, α)) = 0.

If we denote by

A :=

{
n∑
i=1

λifSi

∣∣∣∣ λi ∈ {−1, 1}
{S1, . . . , Sn} is a family of admissible segments in T

}
it is clear that A ⊆ BJH∗ is a norming subset (by the definition of the norm on
JH). Hence

cow
∗
(A) = BJH∗

by the Hahn-Banach theorem.
Now we are ready to show that BJH∗ has w∗-slices of arbitrarily small diameter.

Theorem 3.3. There exists x ∈ SJH satisfying that

inf
α>0

diam(S(BJH∗ , x, α)) = 0.
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Proof. Pick 0 < ε < 1
4

and put

x = (1− ε)e(0,0) + εe(1,0) − εe(1,1) − εe(2,0) − εe(2,1) − εe(2,2) + εe(2,3).

It is clear that ‖x‖ ≥ 1, since {{(0, 0), (1, 0)}} is a family of admissible segments.
It can also be checked that if {S1, . . . , Sr} is a family of admissible segments in
T which is different from the family {{(0, 0), (1, 0)}} then

r∑
i=1

∣∣∣∣∣∑
t∈Si

x(t)

∣∣∣∣∣ ≤ max{1− ε, 4ε} < 1.

Hence ‖x‖ = 1. Moreover, if we take {S1, . . . , Sr} to be a family of admissible
segments and λ1, . . . , λr ∈ {−1, 1} such that

r∑
i=1

λifSi
(x) > 1− α

for 0 < α < min{1− 4ε, ε} < 1 then r = 1, S1 = {(0, 0), (1, 0)} and λ1 = 1. So

S(A, x, α) =
{
f{(0,0),(1,0)}

}
⇒ inf

α>0
diam(S(A, x, α)) = 0.

Now Theorem 1.1 applies and as a consequence we get that

inf
α>0

diam(S(BJH∗ , x, α)) = 0,

so we are done. �

Remark that the element x of Theorem 3.3 is a Fréchet differentiability point
of BJH , see [4], so as a consequence of the above result we deduce that the unit
ball JH∗ has denting points.

4. The space JH∞.

We begin with the construction of JH∞ from JH, by a process similar to the
construction of JT∞ from JT .

We consider T as in section 2. A segment S = {t1, . . . , tk} is a n−m segment,
for n ≤ m, if |t1| = n and |tk| = m.

If {S1, . . . , Sk} is a finite family of segments in T , we say that is admissible if

(1) There exist natural numbers n,m satisfying n ≤ m and Si is a n − m
segment for every i ∈ {1, . . . , k}.

(2) Si ∩ Sj = ∅ if i 6= j.

Given x : T −→ R a finitely nonzero function we define

‖x‖ := sup
k∑
i=1

∣∣∣∣∣∑
t∈Si

x(t)

∣∣∣∣∣ ,
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where the sup is taken over all families of admissible segments {S1, . . . , Sk} of
T . We define the space JH∞ as the completion of the space of finitely nonzero
functions on T in the above norm. If S ⊆ T is a segment, then we denote

fS(x) :=
∑
t∈S

x(t).

Note that fS ∈ S(JH∞)∗ .
Moreover, in view of the definition of the norm we have that given a fam-

ily of admissible segments {S1, . . . , Sk} then
∑k

i=1 λifSi
∈ B(JH∞)∗ , whenever

λ1, . . . , λk ∈ {−1, 1}.
Given α ∈ T define

eα(β) :=

{
1 if β = α
0 otherwise

Let us remark that JH∞ is not isomorphic to JH. Indeed, we know that JH does
not contain isomorphic copies of `1. However it is enough consider the sequence
{eαn}, where {αn} is an infinite sequence of immediate successors of the first node
in T , to get an isometric copy of the usual basis in `1. Furthermore it is clear
that JH∞ contains isometric copies of JH.

Now, we can get, as in the previous section, the following result.

Theorem 4.1. JH∞ has the strong diameter two property (and so the norm of
JH∗∞ is octahedral).

Now we pass to study diameter two properties in JH∗∞. To this aim, the next
Lemma will help us to estimate the diameter of certain w∗-slices in BJH∗∞ .

Proposition 4.2. Let R, S be two disjoint segments in T which are p − q and
p− r segments for suitable p, q, r ∈ N, p ≤ q ≤ r. Then

‖fR − fS‖ ≤
5

3
.

Proof. If r = q, then {S,R} is a family of admissible segments in T . Hence

‖fR − fS‖ = 1 <
5

3
.

Now, we assume that q < r. Then we can find U , a p − q segment, and V , a
(q + 1)− r segment, such that

U ∪ V = R⇒ fR = fU + fV .

Let α ∈ R+
0 be such that ‖fR − fS‖ = 2 − α and ε ∈ R+. Then there exists a

finitely nonzero function x : T −→ R, ‖x‖ ≤ 1, such that

(fR − fS)(x) > 2− α− ε⇒ fR(x) > 1− α− ε and fS(x) < −1 + α + ε.

As U is a p − q segment disjoint with S we have that {U, S} is a family of
admissible segments. As a consequence ‖fU − fS‖ ≤ 1. Hence

2− α− ε < fR(x)− fS(x) = (fU − fS)(x) + fV (x) ≤ 1 + fV (x)

and so
fV (x) > 1− α− ε.
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Moreover
1 ≥ fR(x) = fU(x) + fV (x) ≥ 1− α− ε+ fU(x),

hence
fU(x) ≤ α + ε. (4.1)

Now, again from the fact that {S, U} is a family of admissible segments, we have
‖fU + fS‖ ≤ 1. Hence

−1 ≤ (fU + fS)(x) < fU(x) + (−1 + α + ε).

Then
fU(x) > −α− ε. (4.2)

From (4.1) and (4.2) it follows that

|fU(x)| ≤ α + ε.

Now, as x has finite support, we can find W , a (q + 1) − r segment, such that
S∪W is a p−r segment disjoint with R and we can assume that x(t) = 0 ∀t ∈ W .
From this we deduce that {R, S ∪W} is a family of admissible segments in T .
Hence

1 ≥ ‖x‖ ≥ |fR(x)|+ |fS∪W (x)| = |fU(x) + fV (x)|+ |fS(x)| ≥
≥ |fV (x)| − |fU(x)|+ |fS(x)| ≥ (1−α− ε)− (α+ ε) + (1−α− ε) = 2− 3α− 3ε.

From the arbitrariness of ε we deduce that

1 ≥ 2− 3α⇒ α ≥ 1

3
.

Then ‖fS − fT‖ = 2− α ≤ 2− 1
3

= 5
3
, as we wanted. �

Now we can conclude that there are w∗-slices in BJH∗∞ with diameter strictly
less than two. In fact, we can find w∗-slices with diameter less than 5

3
+ ε for

every 0 < ε < 1
3
.

Theorem 4.3. There exists x ∈ SJH∞ such that

inf
α>0

S(BJH∗∞ , x, α) ≤ 5

3
.

Proof. We define

A :=

{
n∑
i=1

λifSi

∣∣∣∣ |λi| = 1 i ∈ {1, . . . , n}
{S1, . . . , Sn} family of admissible segments

}
.

It is clear that cow
∗
(A) = BJH∗∞ by an easy separation argument.

Fixed an arbitrary 0 < δ < 1/2, we put x := (1−δ)e∅+δe(1) and pick 0 < α < δ.
Then, if

∑n
i=1 λifSi

∈ S(A, x, α), we have that n = 1, S1 is a 0 − p segment for
suitable p ≥ 1, ∅, (0) ∈ S1 and λ1 = 1.

So, in order to estimate diam(S(A, x, α)), pick fS, fR ∈ S(A, x, α). Note that
S ∩ R 6= ∅ (both segments contain the set {∅, (1)}). However, we can find two
disjoint segments, U and V , which are p − q and p − r segments, for suitable
p, q, r ≥ 2, such that

S = (S ∩R) ∪ U and R = (S ∩R) ∪ V.
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Then

fR − fS = fS∩R + fV − fS∩R − fU = fV − fU .
By Proposition 4.2 we deduce that

‖fV − fU‖ ≤
5

3
⇒ ‖fR − fS‖ ≤

5

3
.

From the arbitrariness of fR, fS ∈ S(A, x, α) we deduce that

diam(S(A, x, α)) ≤ 5

3
.

Hence

inf
α>0

diam(S(A, x, α)) ≤ 5

3
.

Now Theorem 1.1 applies and

inf
α>0

diam(S(BJH∗∞ , x, α)) ≤ 5

3
,

so we are done. �

In particular, the above theorem shows that JH∗∞ fails the w∗-slice diameter
two property, and so every diameter two property.

In view of the element x defined in last theorem, it seems that ∅ ∈ supp(x)
is a very important condition in order to get the desired result (it allowed us to
describe easily the elements of S(A, x, α)). This will become clear in the next
section.

5. A hyperplane of JH∗∞ satisfying the w∗-strong diameter two
property.

We will consider T defined as in the previous section. Let

N :=

{
x : T −→ R

∣∣∣∣ x is a finitely nonzero function
x(∅) = 0

}
.

Now consider on N the norm defined in the previous section. In other words

‖x‖ := sup
k∑
i=1

∣∣∣∣∣∑
t∈Si

x(t)

∣∣∣∣∣ ,
where the sup is taken over all families of admissible segments {S1, . . . , Sk} in T .

Now we define M as the completion of N under the above norm.
Note that i : N ↪→ JH∞ is a linear isometry. So, it can be uniquely extended

to a linear isometry Φ : M −→ JH∞ and, as a consequence, M can be viewed as
a closed subspace of JH∞.

Remark 5.1. Given x ∈ N , note that in the definition of the norm we need only
to consider families of admissible segments which are p− q segments with p ≥ 1.
This is an important fact which will allow us to conclude the w∗-strong diameter
two property in M∗
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For S ⊆ T a segment, we define fS ∈M∗ by

fS(x) =
∑
t∈S

x(t) ∀x ∈ N.

The first consequence of the Remark 5.1 is that

A :=


n∑
i=1

λifSi

∣∣∣∣∣∣
|λi| = 1 ∀i ∈ {1, . . . , n}

{S1, . . . , Sn} family of admissible segments
∅ /∈ Si ∀i ∈ {1, . . . , n}


is a norming set in BM∗ . Hence

BM∗ = cow
∗

(A) , (5.1)

is an immediate consequence of Hahn-Banach’s theorem.
We will use (5.1) in order to prove that M∗ enjoys the w∗-strong diameter two

property.

Theorem 5.2. M∗ has the w∗-strong diameter two property.

Proof. Let C :=
∑n

i=1 λiS(BM∗ , xi, ε) be a convex combination of w∗-slices in
BM∗ , where x1, . . . , xn are finitely non-zero functions defined on T . Our goal is
to prove that diam(C) = 2.

To this aim, from (5.1), for each i ∈ {1, . . . , n} we can find ni ∈ N, a family of
admissible segments in T , {Si1, . . . , Sini

}, and µi1, . . . , µ
i
ni
∈ {−1, 1} such that

n∑
i=1

λi

ni∑
j=1

µijfSi
j
∈ C.

Now, for every i ∈ {1, . . . , n} we have that Sij is a pi − qi segment for each
j ∈ {1, . . . , ni}. We can assume that q1 = q2 = . . . = qn = r and that r > max

1≤i≤n
pi

because x1, . . . , xn have finite support and each element on T has infinitely many
offsprings.

Again, due to the finiteness of supp(xi) for each i ∈ {1, . . . , n}, we can find a
branch B in T such that

B
⋂(

n⋃
i=1

supp(xi)

)
= ∅.

For each i ∈ {1, . . . , n} we can choose Si ⊆ B, a pi − r segment, in T . As
Si∩ supp(xi) = ∅ and {Si1, . . . , Sini

, Si} is a family of admissible segments in T we
deduce that

n∑
i=1

λi

(
ni∑
j=1

µijfSi
j
± fSi

)
∈ C.

Hence

diam(C) ≥

∥∥∥∥∥
n∑
i=1

λi

(
ni∑
j=1

µijfSi
j

+ fSi

)
−

n∑
i=1

λi

(
ni∑
j=1

µijfSi
j
− fSi

)∥∥∥∥∥ =
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= 2

∥∥∥∥∥
n∑
i=1

λifSi

∥∥∥∥∥ .
Let us prove that ‖

∑n
i=1 λifSi

‖ = 1. Note that the equality ‖
∑n

i=1 λifSi
‖ ≤ 1 is

clear from the triangle inequality. Moreover, as Si is a pi − r segment in T and

pi < r ∀i ∈ {1, . . . , n}, we deduce the existence of α ∈
n⋂
i=1

Si. Now eα ∈ SM .

Hence ∥∥∥∥∥
n∑
i=1

λifSi

∥∥∥∥∥ ≥
n∑
i=1

λifSi
(eα) =

n∑
i=1

λi = 1.

Thus diam(C) = 2, as desired. �

The last theorem shows that M∗ has the w∗-strong diameter two property and
so the norm of M is octahedral. Moreover, it is easy to check that M has the
strong diameter two property, as proved for JH, and so the norm of M∗ is also
octahedral. As M is separable, we deduce from the comments in the introduction
the following

Corollary 5.3. M has the almost Daugavet property.
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