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Abstract. Utilizing the gap between homogenous subsets which is introduced
in this paper, the perturbations for the Moore–Penrose metric generalized in-
verses of bounded linear operators in Banach spaces are discussed. Under
range–preseving, kernel–preseving and general case, respectively, we get some
new results about error estimate of the perturbations for the Moore–Penrose
metric generalized inverse of bounded linear operators.

1. Introduction

The expressions and perturbations of the generalized inverse have been widely
studied in the last decades which have its genetic in context of the ”ill–posed”
linear problem. In 1997, Chen and Xue introduced the notation so–called sta-
ble perturbation of linear bounded operator in [3]. Using this notation, they
established the perturbation analysis for the generalized inverse and for the op-
erator equation Tx = b on Banach space in [4]. Later the stable perturbation
has been generalized to the Banach Algebra, Hilbert C*–module and closed op-
erator on Banach space (resp. Hilbert space) (cf. [6, 17, 18] ). However, linearly
generalized inverse can not deal with the extremal solutions, the minimal norm
solutions, and the best approximation solutions of an ill-posed linear operator
equations in Banach spaces. In order to solve the best approximation problems
for an ill–posed linear operator equation in Banach spaces, Nashed and Votruba
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introduced the concept of the (set–valued) metric generalized inverse of a linear
operator in Banach spaces(cf. [11]). In 2003, H. Wang and Y. Wang introduced
the Moore–Penrose metric generalized inverse for linear operator on Banach space
in [16], which is a homogeneous and nonlinear operator.

In recent years, some papers on the perturbation of the Moore–Penrose metric
generalized inverse have appeared. In [1], J.Cao and Y.Xue give the expression
of (T + δT )M under the condition range–preserving and kernel–preserving and
investigate the equivalent conditions for the Moore–Penrose metric generalized in-
verse of perturbed operator which have the simplest expression TM(I+δTTM)−1.
Meanwhile, the stability of some operator equations in Banach spaces is obtained.
Some results on the perturbation of the Moore–Penrose metric generalized inverse
similar to the linearly generalized inverse are obtained in [10] by H.Ma, et al. un-
der the assumption that TM is quasi–additive and metric projection πN(T ) is linear
and R(δT ) ⊆ R(T ), N(T ) ⊆ N(δT ). Some other results about metric generalized
inverse, please see [12, 14], etc.

It is well known the metric projection is a bounded homogeneous and nonlin-
ear operator, and then the Moore–Penrose metric generalized inverse is different
with the linearly generalized inverse. In this paper, utilizing the gap between ho-
mogeneous subsets, we investigate the perturbation of the Moore–Penrose metric
generalized inverse again. Under the range–preserving, the kernel–preserving and

general case, we present the upper bounds of ‖TM‖ and ‖TM−TM‖, respectively.

2. Preliminaries

Throughout this paper X, Y will be Banach spaces. Let B(X, Y ) denote the set
of all bounded linear operators from X to Y . For any T ∈ B(X, Y ), D(T ), R(T )
and N(T ) denote the domain, the range and the kernel of T , respectively.

Let M be a subset in X. If λx ∈M whenever x ∈M and λ ∈ R, then we call
M a homogeneous subset. A nonlinear operator T : X → Y is called a bounded
homogeneous operator if T maps every bounded set in X into a bounded set in
Y and T (λx) = λTx for all λ ∈ R. Let H(X, Y ) denote the set of all bounded
homogeneous operators from X to Y . Equipped with the usual linear operations
on H(X, Y ) and norm on T ∈ H(X, Y ) defined as ‖T‖ = sup

‖x‖=1

‖Tx‖, H(X, Y )

become a Banach space(cf. [13, 15]). Obviously, B(X, Y ) ⊆ H(X, Y ).
Recall that a nonlinear operator T is called quasi–additive on a subspace M ⊂

X if

T (x+ z) = T (x) + T (z), ∀x ∈ X, ∀z ∈M.

If a homogeneous operator T ∈ H(X,X) is quasi–additive on R(T ), then we call
T a quasi–linear operator.

Let M ⊂ X be a subset of X, we define the distance of a point x ∈ X to the
set M as dist(x,M) = inf

∀y∈M
‖x− y‖. Then the (set–valued) metric projection PM

defined on X is a mapping from X to M :

PM = {z ∈M | ‖x− z‖ = dist(x,M),∀x ∈ X}.
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If PM 6= ∅, then M is called proximinal set. If PM is singleton, then M is said
to be a Chebyshev set. In this case, we denote PM by πM . Moreover, πM satisfies
the following properties:

Proposition 2.1. [1, 10, 13] Let M ⊂ X be a subspace of X. Then

(1) π2
M(x) = πM(x), ∀x ∈ X, i.e., πM is idempotent.

(2) ‖x− πM(x)‖ ≤ ‖x‖ and so that ‖πM(x)‖ ≤ 2‖x‖, ∀x ∈ X.
(3) πM(λx) = λπ(x), ∀x ∈ X, ∀λ ∈ R, i.e., πM is homogenous.
(4) πM(x + z) = πM(x) + πM(z) = πM(x) + z for any z ∈ M , i.e., πM is

quasi–additive on M .
(5) πM is a closed operator if M is a Chebyshev subspace.

Lemma 2.2. [5, 13] Let M ⊂ X be a proximinal subspace. Then π−1M (0) is a
closed linear subspace if and only if M is Chebyshev and πM is continuous and
linear operator.

Lemma 2.3. [9] Let X be a reflexive Banach space. Then X is strictly convex if
and only if every nonempty closed convex subset M ⊂ X is a Chebyshev set.

Let X∗ be the dual space of X and M⊥ = {x∗ ∈ X∗|〈x, x∗〉 = 0, x ∈M}. Now,
we recall the notation so called dual–mapping.

Definition 2.4. The set–valued mapping FX : X → X∗ defined as

FX(x) = {x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X.

is called the dual–mapping of X, where 〈x, x∗〉 = x∗(x).

Lemma 2.5. (Generalized Orthogonal Decomposition Theorem) [7, 13] Let X
be a Banach space and M ⊂ X be a proximinal subspace. Then for any x ∈ X,
we have

(1) x = x1 + x2 with x1 ∈M and x2 ∈ F−1X (M⊥).
(2) If M ⊂ X is a Chebyshev subspace, then the decomposition in (1) is unique

such that x = πM(x) + x2. In this case, we write X = M+̇F−1X (M⊥).

Where F−1X (M⊥) = {x ∈ X | FX(x) ∩M⊥ 6= ∅}.

Lemma 2.6. [13, Theorem 1.2.9] Let X be a Banach spaces, M ⊂ X be a
subspace. Let x ∈ X\M , x0 ∈M . Then x0 ∈ PM(x) iff FX(x− x0) ∩M⊥ 6= ∅.

The following definition of the Moore–Penrose metric generalized inverse comes
from [13, 16].

Definition 2.7. [13, 16] Let T ∈ B(X, Y ). Assume that R(T ) and N(T ) are
Chebyshev subspaces. If there is a bounded homogeneous operator TM such that

(1) TTMT = T, (2) TMTTM = TM ,

(3) TTM = πR(T ), (4) TMT = I − πN(T ),

then TM is called the Moore–Penrose metric generalized inverse of T .
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By Definition 2.7 and Lemma 2.5, if TM exists, then the space X, Y have the
following unique decompositions:

X = N(T )+̇F−1X (N(T )⊥), Y = R(T )+̇F−1Y (R(T )⊥).

From [13, Theorem 4.3.1], We know if R(T ) and N(T ) are Chebyshev sub-
spaces, then TM uniquely exists and

TM(y) = (T |F−1
X (N(T )⊥))

−1πR(T )(y), ∀y ∈ D(TM) = Y.

The gap between homogenous subsets play an important role in the pertur-
bation analysis of the Moore–Penrose metric generalized inverse in this paper.
First, we look back the concept of the gap between subspaces and its properties.
For convenience, we denote M the closure of the subspace (resp. homogeneous
subset) M ⊂ X in the context.

Definition 2.8. [8] Let M,N be the subspaces of Banach space X. Put

δ(M,N) =

{
sup{dist(x,N) |x ∈M, ‖x‖ = 1}, M 6= {0}
0 M = {0}

.

We call δ̂ = max{δ(M,N), δ(N,M)} the gap between M and N .

From Definition 2.8, we get a useful inequality as following:

dist(x,N) ≤ ‖x‖δ(M,N), ∀x ∈M.

Proposition 2.9. [19, Proposition 1.3.2] Let L,M,N be the subspaces of Banach
space X. Then

(1) 0 ≤ δ(M,N) ≤ 1, 0 ≤ δ̂(M,N) ≤ 1 and δ̂(M,N) = δ̂(N,M).

(2) δ(M,N) = δ(M,N), δ̂(M,N) = δ̂(M,N).

(3) δ(M,N) = 0 iff M ⊆ N , δ̂(M,N) = 0 iff M = N .
(4) δ(L,N) ≤ δ(L,M) + [1 + δ(L,M)]δ(M,N).

(5) δ̂(L,N) ≤ 2[δ̂(L,M) + δ̂(M,N)].

Now we generalize the definition of the gap between subspaces to the gap be-
tween homogenous subsets. It is naturally to define the gap between homogenous
subsets as:

Definition 2.10. Let M,N be the homogenous subsets. Set

η(M,N) =

{
sup{dist(x,N) |x ∈M, ‖x‖ = 1}, M 6= {0}
0 M = {0}

.

Define the gap between homogenous subsets M and N as

η̂(M,N) = max{η(M,N), η(N,M)}.

Since M and N are homogeneous subsets, we have x0 =
x

‖x‖
∈ M,∀x ∈ M

with ‖x0‖ = 1 and so that

dist(x,N) ≤ ‖x‖η(M,N), ∀x ∈M.

From the definition 2.10, we get the following properties:
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Proposition 2.11. Let M,N be the homogenous subsets. Then

(1) 0 ≤ η(M,N) ≤ 1 if 0 ∈ N and 0 ≤ η̂(M,N) ≤ 1 if 0 ∈M and 0 ∈ N .
(2) 0 ≤ η(M,N) ≤ 2, 0 ≤ η̂(M,N) ≤ 2 and η̂(M,N) = η̂(N,M).
(3) η(M,N) = η(M,N), η̂(M,N) = η̂(M,N).
(4) η(M,N) = 0 iff M ⊆ N , η̂(M,N) = 0 iff M = N .

Proof. (1) is obvious.

(2) For any z ∈ N , we have z0 =
z

‖z‖
∈ N with ‖z0‖ = 1 since N is a

homogenous subset. Thus, for any x ∈M with ‖x‖ = 1, we have

0 ≤ dist(x,N) ≤ ‖x− z0‖ ≤ ‖x‖+ ‖z0‖ ≤ 2.

So, the results follows.
(3) Similar to the proof of [19, Proposition 1.3.2 (2)].

(4) For any x ∈ M ,
x

‖x‖
∈ M since M is a homogenous subset. Hence,

η(M,N) = 0 implies that dist(
x

‖x‖
, N) = 0 for any x ∈ M by (2). Thus,

x

‖x‖
∈ N and consequently M ⊆ N for N is a homogenous subset.

Conversely, if M ⊆ N , then dist(
x

‖x‖
, N) = 0 for any x ∈ M and so that

η(M,N) = 0.
Since η̂(M,N) = 0 iff η(M,N) = η(N,M) = 0, we have η̂(M,N) = 0 iff

M = N by the above argument. �

In the following, we investigate the properties of the gap between homogenous
Chebyshev subsets.

Proposition 2.12. Let M ⊂ X be a Chebyshev subspace. Then

η(F−1X (M⊥),M) = 1.

Proof. Since M is a Chebyshev subspace, we have N(πM) = F−1X (M⊥) by Lemma
2.5. Thus, for any x ∈ F−1X (M⊥), πM(λx) = 0 for πM is a homogeneous operator.
This show λx ∈ F−1X (M⊥), i.e., F−1X (M⊥) is a homogenous subset.

For any x ∈ F−1X (M⊥) with ‖x‖ = 1, by Lemma 2.5, πM(x) = 0. Thus,

dist(x,M) = ‖x− πM(x)‖ = ‖x‖ = 1.

This illustrate η(F−1X (M⊥),M) = 1. �

Proposition 2.13. Let X be a Banach space, M,N are homogenous Chebyshev
subsets of X. Then

(1) η(M,N) < 1 implies that M ∩ F−1X (N⊥) = {0}.
(2)

1

2
‖(I − πN)πM‖ ≤ η(M,N) ≤ ‖(I − πN)πM‖ ≤ 2‖πM − πN‖ if 0 ∈M .

Proof. (1). If M ∩ F−1X (N⊥) 6= {0}, then there is a x ∈ M ∩ F−1X (N⊥) such that
‖x‖ = 1 since M and F−1X (N⊥) are homogenous subsets. Thus, πN(x) = 0.
Consequently, dist(x,N) = ‖x − πN(x)‖ = ‖x‖ = 1. This shows η(M,N) = 1,
which contradicts to the assume that η(M,N) < 1.
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(2). For any x ∈ X,

‖(I − πN)πM(x)‖ = dist(πM(x), N) ≤ ‖πM(x)‖η(M,N) ≤ 2‖x‖η(M,N)

implies
1

2
‖(I − πN)πM‖ ≤ η(M,N).

On the other hand, for any z ∈M with ‖z‖ = 1, z = πM(z) and so that

dist(z,N) = ‖z − πN(z)‖ = ‖πM(z)− πN(πM(z))‖
= ‖(I − πN)πM(z)‖
≤ ‖(I − πN)πM‖.

This indicates η(M,N) ≤ ‖(I − πN)πM‖ = ‖(πM − πN)πM‖ ≤ 2‖πM − πN‖. �

Let T be a linear operator. The reduced modulus γ(T ) of T is defined as

γ(T ) = inf{‖Tx‖ | dist(x,N(T )) = 1, ∀x ∈ D(T )}

Obviously, γ(T )dist(x,N(T )) ≤ ‖Tx‖.

Lemma 2.14. Let X, Y be Banach spaces and T ∈ B(X, Y ) with R(T ), N(T )
are Chebyshev subspaces. Then

1

‖TM‖
≤ γ(T ) ≤ ‖TT

M‖
‖TM‖

Proof. Since R(T ), N(T ) are Chebyshev subspaces, TM exists. Thus, we have

dist(x,N(T )) = ‖x− πN(T )x‖ = ‖TMTx‖ ≤ ‖TM‖‖Tx‖

and so that γ(T ) ≥ 1

‖TM‖
.

Noting that dist(x,N(T )) = ‖TMTx‖, we have

γ(T )‖TMTx‖ = γ(T )dist(x,N(T )) ≤ ‖Tx‖.

Hence, for any y ∈ Y ,

γ(T )‖TMy‖ ≤ ‖TTMy‖

and consequently, γ(T ) ≤ ‖TT
M‖

‖TM‖
. �

From [19, Lemma 1.3.5], we know

γ(T )δ(N(T ), N(T )) ≤ ‖δT‖ and γ(T )δ(R(T ), R(T )) ≤ ‖δT‖.

Associated with Lemma 2.14, we have the following proposition:

Proposition 2.15. Let X, Y be Banach spaces and T ∈ B(X, Y ), T = T + δT ∈
B(X, Y ) with R(T ), N(T ) are Chebyshev subspaces. Then

δ(R(T ), R(T )) ≤ ‖δT‖‖TM‖ and δ(N(T ), N(T )) ≤ ‖δT‖‖TM‖.
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The linear outer generalized inverse with prescribed range and kernel A
(2)
T,S is

a kind of important generalized inverse. Most linear generalized inverse such as
Moore–Penrose inverse, Drazin inverse, group inverse, etc. can be written as

A
(2)
T,S when we chose the suitable subspaces T and S. In [2], J.Cao and Y.Xue

first define and characterize the homogeneous (resp. quasi–linear) operator out

generalized inverse with prescribed range and kernel A
(2,H)
T,S (resp.A

(2,h)
T,S ), where T

and S are homogeneous subsets.

Definition 2.16. [2] Let A ∈ B(X, Y ). T and S are homogeneous subsets of X
and Y , respectively. The operator B ∈ H(Y,X) such that the following equations:

BAB = B, R(B) = T, N(B) = S

is called the homogeneous outer generalized inverse of A with prescribed range T

and kernel S. Denoted by A
(2,H)
T,S . In addition, if B is quasi–additive on AT , then

B is called the quasi-linear outer generalized inverse of A with prescribed range

T and kernel S. We denoted it by A
(2,h)
T,S .

Lemma 2.17. [2] Let A ∈ B(X, Y ). T and S are homogeneous subsets of X and

Y , respectively. Then A
(2,h)
T,S exists if and only if Y = AT +̇S and N(A)∩T = {0}

and T is closed linear subspace. In addition, if A
(2,h)
T,S exists, then it is unique.

Proposition 2.18. Let A ∈ B(X, Y ) be a linear operator. N(A), R(A) are
Chebyshev subspaces. Assume that πN(A) is a continuous linear operator. Then

AM = A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
.

Proof. Since πN(A) is continuous linear operator, by Lemma 2.2, F−1X (N(A)⊥) is
a closed linear subspace.

Since N(A), R(A) are Chebyshev subspaces, by Lemma 2.5,

N(A) ∩ F−1X (N(A)⊥) = {0}, and AF−1X (N(A)⊥)+̇F−1Y (R(A)⊥) = Y.

So, A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
exists by Lemma 2.17.

For any y ∈ Y , set y0 = AA
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
y. Since A

(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)

is quasi–additive on AF−1X (N(A)⊥), we have

y − y0 ∈ N(A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
) = F−1Y (R(A)⊥).

This shows FX(y − y0) ∩ R(A)⊥ 6= ∅. By Lemma 2.6, we have y0 ∈ PR(A)(y).
Since R(A) is a Chebyshev subspace, we have y0 = πR(A)(y), that is,

AA
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
y = πR(A)(y).

For any x ∈ X, set x0 = A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
Ax

x− (x− x0) = A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
Ax ∈ F−1X (N(A)⊥).
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So, FY (x− (x− x0))∩N(A)⊥ 6= ∅. By Lemma 2.6, we have x− x0 = πN(A)x and
so that

A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
Ax = x− πN(A)x.

It is easy to verify

AA
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
Ax = Ax,

and

A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
AA

(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
y = A

(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
y.

Consequently, AM = A
(2,h)

F−1
X (N(A)⊥),F−1

Y (R(A)⊥)
. �

Proposition 2.19. Let A ∈ B(X, Y ) with R(A), N(A) are Chebyshev subspaces.
Then AM = (I−πN(A))A

−πR(A) for any A− ∈ B(Y,X) which satisfy AA−A = A.

Proof. Since R(A), N(A) are Chebyshev subspaces, we have AM exists and

AAM = πR(A), AMA = IX − πN(A).

Set B = (I − πN(A))A
−πR(A). Obviously, B is a bounded homogeneous operator

and

B = (I − πN(A))A
−πR(A) = AMAA−AAM = AM .

�

3. The perturbation analysis of the Moore–Penrose metric
generalized inverse

In this section, we consider the perturbation for the Moore–Penrose metric
generalized inverse of bounded linear operators on Banach space. In virtue of the
gap between homogenous subsets, we obtain some new results.

Theorem 3.1. Let X, Y be reflexive strictly convex Banach spaces. T ∈ B(X, Y )
with R(T ) closed and T = T + δT ∈ B(X, Y ). Assume that R(T ) = R(T ) and
TM is quasi–additive on R(T ). If

η(R(T
M

), R(TM)) <
1− ‖TM‖‖δT‖
1 + ‖T‖‖TM‖

then

(1)

‖TM − TM‖
‖TM‖

≤ ‖TM‖‖δT‖+ (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))

1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))
,

(2)

‖TM‖ ≤ ‖TM‖
1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T

M
), R(TM))

.
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Proof. Since X, Y are reflexive strictly convex Banach spaces, R(T ) = R(T ),

N(T ), N(T ) are Chebyshev subspaces. Thus, TM , T
M

exist and R(TM), R(T
M

)
are homogeneous subsets.

Since R(T ) = R(T ) closed, we have

D(TM) = D(T
M

) = R(T )+̇F−1Y (R(T )⊥) = Y.

Let W = T
M − TM . For any ξ ∈ D(TM) = D(T

M
) = R(T )+̇F−1Y (R(T )⊥) = Y ,

there exist u ∈ R(T ) = R(T ), u′ such that ξ = u+ u′. Thus, u = TT
M
y for some

y ∈ D(T
M

). Since

dist(T
M
y,R(TM)) ≤ ‖TM

y‖η(R(T
M

), R(TM)),

for any ε > 0, there is y′ ∈ D(TM) such that

‖TM
y − TMy′‖ ≤ dist(T

M
y,R(TM)) + ε ≤ ‖TM

y‖η(R(T
M

), R(TM)) + ε.

Let v = TTMy′ ∈ R(T ), then

‖TTM
y − TTMy′‖ = ‖TTM

y − TTMy′ + δTT
M
y‖

≤ ‖TTM
y − TTMy′‖+ ‖δTTM

y‖

≤ ‖T‖‖TM
y‖η(R(T

M
), R(TM)) + ε‖T‖+ ‖δT‖‖TM

y‖.

Noting that N(TM) = F−1Y (R(T )⊥) = F−1Y (R(T )⊥) = N(T
M

) and TM is quasi–
additive on R(T ), we have

‖Wξ‖ = ‖TM
ξ − TMξ‖ = ‖TM

u− TMu‖

≤ ‖TM
u− TMv‖+ ‖TMu− TMv‖

≤ ‖TM
y − TMy′‖+ ‖TM‖‖TTM

y − TTMy′‖

≤ ‖TM
y‖{‖TM‖‖δT‖+ (1 + ‖T‖‖TM‖)η(R(T

M
), R(TM))}+ ε(1 + ‖T‖‖TM‖).

Since

‖TM
y‖ = ‖TM

u‖ = ‖Wξ + TMξ‖ ≤ ‖Wξ‖+ ‖TM‖‖ξ‖,
it follows that

‖Wξ‖ ≤ (‖Wξ‖+ ‖TM‖‖ξ‖){‖TM‖‖δT‖

+ (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))}+ ε(1 + ‖T‖‖TM‖).

Therefore, by letting ε→ 0+,

‖Wξ‖ ≤ ‖TM‖‖δT‖+ (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))

1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))
‖TM‖‖ξ‖.

Consequently,

‖TM − TM‖ ≤ ‖TM‖‖δT‖+ (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))

1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))
‖TM‖.
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Furthermore,

‖TM‖ = ‖W + TM‖ ≤ ‖W‖+ ‖TM‖

≤ ‖TM‖‖δT‖+ (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))

1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))
‖TM‖+ ‖TM‖

=
‖TM‖

1− ‖TM‖‖δT‖ − (1 + ‖T‖‖TM‖)η(R(T
M

), R(TM))
.

�

Theorem 3.2. Let X, Y be reflexive strictly convex Banach spaces. T ∈ B(X, Y )
with R(T ) closed and T = T + δT ∈ B(X, Y ). Assume that N(T ) = N(T ) and
TM is quasi-additive on R(T ) and R(δT ). If

η(N(T
M

), N(TM)) <
1− ‖TM‖‖δT‖
‖T‖‖TM‖

then

(1)

‖TM − TM‖
‖TM‖

≤

{
1 + ‖TM‖‖T‖

}
η(N(T

M
), N(TM)) + ‖TM‖‖δT‖

1− ‖TM‖‖δT‖ − ‖TM‖‖T‖η(N(T
M

), N(TM))
.

(2)

‖TM‖ ≤ ‖TM‖+ ‖TM‖η(N(T
M

), N(TM))

1− ‖TM‖‖δT‖ − ‖TM‖‖T‖η(N(T
M

), N(TM))
.

Proof. Let W = T
M−TM and B′ = I−TTM

, B = I−TTM . Since N(T ) = N(T ),
we have

R(T
M

) = F−1X (N(T )⊥) = F−1X (N(T )⊥) = R(TM).

Since TM is quasi-additive on R(T ) and R(δT ), it follows that

W = T
M − TM = TMTT

M − TMTTM

= TMTT
M − TMδTT

M − TMTTM

= TM(B −B′)− TMδTT
M
.

Since B′ξ ∈ N(T
M

) for any ξ ∈ Y , we have

dist(B′ξ,N(TM)) ≤ ‖B′ξ‖η(N(T
M

), N(TM)).

Thus, for any ε > 0, there is a u ∈ Y such that

‖B′ξ −Bu‖ ≤ ‖B′ξ‖η(N(T
M

), N(TM)) + ε

and so that

‖TM(B′ξ −Bu)‖ ≤ ‖TM‖‖B′ξ‖η(N(T
M

), N(TM)) + ‖TM‖ε.
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Noting that TMB = 0, we have

‖Wξ‖ = ‖TM(B −B′)ξ − TMδTT
M
ξ‖

≤ ‖TMB′ξ‖+ ‖TMδTT
M
ξ‖

= ‖TM(B′ξ −Bu)‖+ ‖TMδTT
M
ξ‖

≤ ‖TM‖‖B′ξ‖η(N(T
M

), N(TM)) + ‖TM‖ε+ ‖TM‖‖δT‖‖TM
ξ‖.

But ‖B′ξ‖ ≤ ‖ξ‖+ ‖T‖‖TM
ξ‖ and ‖TM

ξ‖ ≤ ‖Wξ‖+ ‖TMξ‖. Thus,

‖Wξ‖ ≤ ‖TM‖‖B′ξ‖η(N(T
M

), N(TM)) + ‖TM‖ε+ ‖TM‖‖δT‖‖TM
ξ‖

≤ ‖TM‖η(N(T
M

), N(TM))‖ξ‖

+ ‖TM
ξ‖‖TM‖{‖T‖η(N(T

M
), N(TM)) + ‖δT‖}+ ‖TM‖ε

≤ ‖TM‖η(N(T
M

), N(TM))‖ξ‖

+ {‖TMξ‖+ ‖Wξ‖}‖TM‖{‖T‖η(N(T
M

), N(TM)) + ‖δT‖}+ ‖TM‖ε.
By ε→ 0+, we have

‖Wξ‖ ≤ η(N(T
M

), N(TM))‖ξ‖+ ‖TMξ‖{‖T‖η(N(T
M

), N(TM)) + ‖δT‖}
1− ‖TM‖‖δT‖ − ‖TM‖‖T‖η(N(T

M
), N(TM))

‖TM‖.

Consequently,

‖TM − TM‖ ≤

{
1 + ‖TM‖‖T‖

}
η(N(T

M
), N(TM)) + ‖TM‖‖δT‖

1− ‖TM‖‖δT‖ − ‖TM‖‖T‖η(N(T
M

), N(TM))
‖TM‖.

Furthermore,

‖TM‖ ≤ ‖TM‖+ ‖TM‖η(N(T
M

), N(TM))

1− ‖TM‖‖δT‖ − ‖TM‖‖T‖η(N(T
M

), N(TM))
.

�

In order to estimate the upper bounds of ‖TM‖ and ‖TM−TM‖ for the general
case, we need to construct an operator B such that R(B) = R(T ) and N(B) =
N(T ).

Theorem 3.3. Let X, Y be reflexive strictly convex Banach spaces. Let T ∈
B(X, Y ), T = T+δT ∈ B(X, Y ) with R(T ), R(T ) closed and TM is quasi-additive

on R(T ) and R(δT ). Set δ1 = η(R(T
M

), R(TM)), δ2 = η(N(T
M

), N(TM)) and

κ = ‖T‖‖TM‖. Assume that R(T ) ∩N(TM) = {0} and ‖TM‖‖δT‖ ≤ κ

3(1 + κ)
.

If

δ1 <
1

(1 + κ)2
and δ2 <

‖T‖ − 3(1 + κ)‖δT‖
‖T‖(1 + κ)

,

then

‖TM‖ ≤ 1 + δ2

1− ρ{‖δT‖ − ‖T‖δ2}
ρ
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and

‖TM − TM‖ ≤
{δ2 + ρ

{
‖T‖δ2 + ‖δT‖

}
1− ρ

{
‖T‖δ2 + ‖δT‖

} + 2‖TM‖‖δT‖+ (1 + κ)δ1

}
ρ.

Here,

ρ =
‖TM‖

1− 2‖TM‖‖δT‖ − (1 + κ)δ1
.

Proof. Let B = πR(T )T . Since TM is quasi-additive on R(δT ), it follows that
πR(T )δT is linear operator and B = T + πR(T )δT ∈ B(X, Y ). Clearly, R(B) =

R(T ). For any x ∈ N(B), TTMTx = πR(T )Tx = 0 indicates Tx ∈ R(T ) ∩
N(TM) = {0}. Therefore N(B) ⊆ N(T ) and consequently N(B) = N(T ). Since
R(T ) and N(T ) are Chebyshev subspaces, BM exists.

By Defintion 2.7,we have

BBM = πR(B) = πR(T ) = TTM

and

BMB = I − πN(B) = I − πN(T ) = T
M
T .

Consequently, R(BM) = R(T
M

) and N(BM) = N(TM).

Put δ1 = η(R(T
M

), R(TM)) = η(R(BM), R(TM)).

Since ‖TM‖‖δT‖ ≤ κ

3(1 + κ)
<

κ

2(1 + κ)
and

δ1 <
1

(1 + κ)2
≤ 1− 2‖TM‖‖δT‖

1 + κ
≤

1− ‖TM‖‖πR(T )δT‖
1 + κ

,

by Theorem 3.1, we have

‖BM − TM‖ ≤
‖TM‖‖πR(T )δT‖+ (1 + κ)δ1

1− ‖TM‖‖πR(T )δT‖ − (1 + κ)δ1
‖TM‖

≤ 2‖TM‖‖δT‖+ (1 + κ)δ1
1− 2‖TM‖‖δT‖ − (1 + κ)δ1

‖TM‖

and

‖BM‖ ≤ ‖TM‖
1− ‖TM‖‖πR(T )δT‖ − (1 + κ)δ1

≤ ‖TM‖
1− 2‖TM‖‖δT‖ − (1 + κ)δ1

.

Let δ2 = η(N(T
M

), N(TM)) = η(N(T
M

), N(BM)).
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Noting that T = B + (I − πR(T ))δT and

δ2 <
‖T‖ − 3(1 + κ)‖δT‖
‖T‖(1 + κ)

=
1− 3‖TM‖‖δT‖ − 1

1 + κ
‖T‖‖TM‖

<
1− 3‖TM‖‖δT‖ − (1 + κ)δ1

‖T‖‖TM‖

<
1− ‖BM‖‖δT‖
‖T‖‖BM‖

≤
1− ‖BM‖‖(I − πR(T ))δT‖

‖T‖‖BM‖
,

by Theorem 3.2,

‖TM −BM‖ ≤

{
1 + ‖BM‖‖T‖

}
δ2 + ‖BM‖‖(I − πR(T ))δT‖

1− ‖BM‖‖(I − πR(T ))δT‖ − ‖BM‖‖T‖δ2
‖BM‖

≤

{
1 + ‖BM‖‖T‖

}
δ2 + ‖BM‖‖δT‖

1− ‖BM‖‖δT‖ − ‖BM‖‖T‖δ2
‖BM‖,

and

‖TM‖ ≤ ‖BM‖+ ‖BM‖δ2
1− ‖BM‖‖(I − πR(T ))δT‖ − ‖BM‖‖T‖δ2

≤ ‖BM‖+ ‖BM‖δ2
1− ‖BM‖‖δT‖ − ‖BM‖‖T‖δ2

.

For convenience, we set ρ =
‖TM‖

1− 2‖TM‖‖δT‖ − (1 + κ)δ1
. Thus, ‖BM‖ ≤ ρ

and

‖TM − TM‖ = ‖TM −BM +BM − TM‖

≤ ‖TM −BM‖+ ‖BM − TM‖

≤

{
1 + ‖BM‖‖T‖

}
δ2 + ‖BM‖‖δT‖

1− ‖BM‖‖δT‖ − ‖BM‖‖T‖δ2
‖BM‖+

2‖TM‖‖δT‖+ (1 + κ)δ1
1− 2‖TM‖‖δT‖ − (1 + κ)δ1

‖TM‖

≤
δ2 + ‖BM‖

{
‖T‖δ2 + ‖δT‖

}
1− ‖BM‖

{
‖T‖δ2 + ‖δT‖

} ‖BM‖+
{

2‖TM‖‖δT‖+ (1 + κ)δ1
}
ρ

≤
{δ2 + ρ

{
‖T‖δ2 + ‖δT‖

}
1− ρ

{
‖T‖δ2 + ‖δT‖

} + 2‖TM‖‖δT‖+ (1 + κ)δ1

}
ρ.
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Furthermore,

‖TM‖ ≤ ‖BM‖+ ‖BM‖δ2
1− ‖BM‖‖δT‖ − ‖BM‖‖T‖δ2

≤ 1 + δ2

1− ρ{‖δT‖ − ‖T‖δ2}
ρ.

�
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