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Abstract. The main purpose of this article is to develop the generalized
analytic Fourier–Feynman transform theory. We introduce a generalized ana-
lytic Fourier–Feynman transform and a multiple generalized analytic Fourier–
Feynman transform with respect to Gaussian processes on the function space
Ca,b[0, T ] induced by a generalized Brownian motion process. We then estab-
lish a relationship between these two generalized analytic transforms.

1. Introduction

The main purpose of this article is to develop the generalized Fourier–Feynman
transform theory, which is defined in terms of generalized Brownian motion pro-
cesses. To explain what this transform is in its original context, let H be the
class of absolutely continuous paths x from [0, T ] to R which start at 0 and with
Dx ≡ dx/dt ∈ L2[0, T ], and let D be the non-existent Lebesgue measure on H.
With in this heuristic context, the Fourier–Feynman transform of functionals F
on H is defined by

T−iq(F )(y) = exp

{
iq

2
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H
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}
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for q ∈ R \ {0}, where Zq is a certain ill defined normalization constant which is
supposed to normalize 1

Zq
exp{ iq

2
‖x‖2

H}D to be a probability measure.

Through the formal observation above, one can see that ‘Fourier’ refers to the
exp{−iq〈x, y〉H} term while ‘Feynman’ refers to the exp{ iq

2
‖x‖2

H} term in the
integrand. Of course this is a very heuristic description. To head towards a
rigorous definition, let (H,W, ν) be the abstract Wiener space with H ↪→ W . For
each λ > 0, let us use the usual informal expression for Wiener measure with
variance λ−1 given by

dνλ(x) =
1

Zλ
exp

{
− λ

2
‖x‖2

H

}
D(dx).

Then an informal evaluation shows that for y ∈ H,
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1
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− 1

2
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=

∫
H

F (λ−1/2x+ y)dν(x).

Thus we should expect that for y ∈ W ,

T−iq(F )(y) = lim
λ→−iq

∫
W

F (λ−1/2x+ y)dν(x), (1.1)

where one must first assume that λ →
∫
W
F (λ−1/2x + y)dν(x) has an ‘analytic

continuation’ in the right-half complex plane and that the above limit exists
appropriately. Equation (1.1) with y = 0 can be considered as the Feynman path
integral which has been developed by many authors over many years.

Let (C0[0, T ],M,mw) denote the classical Wiener space, where C0[0, T ] is the
space of real-valued continuous functions x(t) on [0, T ] with x(0) = 0, M is
the class of all Wiener measurable subsets of C0[0, T ], and mw is the Gaussian
measure on C0[0, T ] with mean zero and covariance function r(s, t) = min{s, t}.

The concept of the ‘analytic’ Feynman integral on the Wiener space C0[0, T ]
was introduced by Cameron [2]. There is a great deal of published research on the
analytic Feynman integral theory, and the analytic Fourier–Feynman transform
on C0[0, T ] has also been developed in the literature. In particular, the concept
of the L1 analytic Fourier–Feynman transform defined by the formula (1.1) on
Wiener space C0[0, T ] was introduced by Brue in [1]. Since then, the Lp ana-
lytic Fourier–Feynman transform for 1 ≤ p ≤ 2 was further developed by many
mathematicians. For instance, see [3, 19]. For an elementary introduction to the
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analytic Feynman integral and the analytic Fourier–Feynman transform, see [25]
and the references cited therein.

On the other hand, the concepts of the analytic Zh-Wiener integral (i.e.,
the Wiener integral with respect to Gaussian process Zh) and the analytic Zh-
Feynman integral (i.e., the analytic Feynman integral with respect to Gaussian
process Zh) on C0[0, T ] were introduced by Chung, Park and Skoug in [12], and
were further developed in [5, 10, 22, 23]. In [5, 10, 12, 22, 23], the Zh-Wiener
integral was defined by the Wiener integral∫

C0[0,T ]

F (Zh(x, ·))dmw(x)

where Zh(x, ·) is the Gaussian path given by the stochastic integral Zh(x, t) =∫ t
0
h(s)dx(s) with h ∈ L2[0, T ].
Next, let D = [0, T ] and let (Ω,B, P ) be a probability space. A generalized

Brownian motion process (GBMP) on Ω×D is an Gaussian process Y ≡ {Yt}t∈D
such that Y0 = c almost everywhere for some constant c ∈ R (in this paper we
set c = 0), and for any 0 ≤ s < t ≤ T ,

Yt − Ys ∼ N
(
a(t)− a(s), b(t)− b(s)

)
,

where N(m,σ2) denotes the normal distribution with mean m and variance σ2,
a(t) is a continuous real-valued function on [0, T ], and b(t) is a monotonically
increasing continuous real-valued function on [0, T ]. Thus, the GBMP Y is de-
termined by the functions a(t) and b(t). For more details, see [26, 27]. Note
that when a(t) ≡ 0 and b(t) = t, the GBMP is a standard Brownian motion
(Wiener process). We are obliged to point out that a standard Brownian motion
is stationary in time, whereas a GBMP is generally not stationary in time, and
is subject to a drift a(t).

In [6, 8], the authors defined the generalized analytic Feynman integral and the
generalized analytic Fourier–Feynman transform (GFFT) on the function space
Ca,b[0, T ], and studied their properties and related topics. The function space
Ca,b[0, T ], induced by a GBMP, was introduced by Yeh in [26], and was used
extensively in [6, 7, 8, 9, 13]. There have also been several recent attempts to
construct financial mathematical theories using this process [11, 14, 16, 21].

In this paper, we define a generalized analytic Feynman integral, a generalized
analytic Fourier–Feynman transform, and a multiple generalized analytic Fourier–
Feynman transform via a Gaussian process

Zh(x, t) =

∫ t

0

h(s)dx(s), h ∈ L2
a,b[0, T ], x ∈ Ca,b[0, T ],

where L2
a,b[0, T ] denote the separable Hilbert space associated with the continuous

functions a(·) and b(·) that characterize the GBMP. We then investigate a rotation
formula involving the two generalized analytic transforms on the general function
space Ca,b[0, T ].

The Wiener process used in [1, 2, 3, 4, 19] is stationary in time and is free of
drift, while the Gaussian process used in [5, 10, 12, 22, 23] is non-stationary in
time and is free of drift. However, the stochastic process used in this paper, as
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well as in [6, 7, 8, 9, 11, 13, 21, 26], is non-stationary in time and is subject to a
drift a(t).

2. Preliminaries

In this section, we briefly list some of the preliminaries from [6, 7, 8, 9] that
we need to establish our results in the next sections.

Let a(t) be an absolutely continuous real-valued function on [0, T ] with a(0) = 0
and a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, continuously differen-
tiable real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. The
GBMP Y determined by a(t) and b(t) is a Gaussian process with mean function
a(t) and covariance function r(s, t) = min{b(s), b(t)}. For more details, see [6, 8].
By [27, Theorem 14.2], the probability measure µ induced by Y , taking a sepa-
rable version, is supported by Ca,b[0, T ] (which is equivalent to the Banach space
of continuous functions x on [0, T ] with x(0) = 0 under the sup norm). Hence,
(Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y where B(Ca,b[0, T ])
is the Borel σ-algebra of Ca,b[0, T ]. We then complete this function space to obtain
(Ca,b[0, T ],W(Ca,b[0, T ]), µ) where W(Ca,b[0, T ]) is the set of all µ-Carathéodory
measurable subsets of Ca,b[0, T ].

We note that the coordinate process defined by et(x) = x(t) on Ca,b[0, T ]×[0, T ]
is also the GBMP determined by a(t) and b(t). For more detailed studies about
this function space Ca,b[0, T ], see [6, 8, 26].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided ρB
is W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable set
N is said to be scale-invariant null provided µ(ρN) = 0 for all ρ > 0. A prop-
erty that holds except on a scale-invariant null set is said to hold scale-invariant
almost everywhere (s-a.e.). A functional F is said to be scale-invariant mea-
surable provided F is defined on a scale-invariant measurable set and F (ρ · ) is
W(Ca,b[0, T ])-measurable for every ρ > 0. If two functionals F and G defined on
Ca,b[0, T ] are equal s-a.e., we write F ≈ G.

Let L2
a,b[0, T ] be the space of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue-Stieltjes measures on [0, T ]
induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] :=

{
v :

∫ T

0

v2(s)db(s) < +∞ and

∫ T

0

v2(s)d|a|(s) < +∞
}

where |a|(·) denotes the total variation function of the function a(·). Then
L2
a,b[0, T ] is a separable Hilbert space with inner product defined by

(u, v)a,b :=

∫ T

0

u(t)v(t)dm|a|,b(t) ≡
∫ T

0

u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue-Stieltjes measure induced by |a|(·) and b(·). In

particular, note that ‖u‖a,b ≡
√

(u, u)a,b = 0 if and only if u(t) = 0 a.e. on [0, T ].
Note that all functions of bounded variation on [0, T ] are elements of L2

a,b[0, T ].
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The following Cameron-Martin subspace of Ca,b[0, T ] plays an important role
throughout this paper. Let

C ′a,b[0, T ] :=

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′a,b[0, T ], with w(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ], let D : C ′a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

Dw(t) := z(t) =
w′(t)

b′(t)
. (2.1)

Then C ′a,b ≡ C ′a,b[0, T ] with inner product

(w1, w2)C′a,b :=

∫ T

0

Dw1(t)Dw2(t)db(t) =

∫ T

0

z1(t)z2(t)db(t) ≡ (z1, z2)0,b

is a separable Hilbert space.
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C ′a,b[0, T ] are homeo-
morphic under the linear operator given by equation (2.1). The inverse operator
of D is given by

(D−1z)(t) =

∫ t

0

z(s)db(s), t ∈ [0, T ].

Recall that above, as well as in papers [6, 7, 8], we require that a : [0, T ]→ R
is an absolutely continuous function with a(0) = 0 and with

∫ T
0
|a′(t)|2dt < ∞.

Our conditions on b : [0, T ] → R imply that b′ is continuous and δ < b′(t) < ∆,
t ∈ [0, T ], for some positive real numbers δ and ∆. Hence we have∫ T

0

|a′(t)|2db(t) =

∫ T

0

|a′(t)|2b′(t)dt <∞.

In this paper, in addition to the conditions put on a(t) above, we add the condition∫ T

0

|a′(t)|2d|a|(t) <∞. (2.2)

Then, the function a : [0, T ] → R satisfies the condition (2.2) if and only if a is
an element of C ′a,b[0, T ]. For more a detailed illustration for the condition (2.2),
see [9].

For each w ∈ C ′a,b[0, T ], the Paley-Wiener-Zygmund (PWZ) stochastic integral
(w, x)∼ is given by the formula

(w, x)∼ : = lim
n→∞

∫ T

0

n∑
j=1

(w, gj)C′a,bDgj(t)dx(t)

= lim
n→∞

∫ T

0

n∑
j=1

(z, αj)0,bαj(t)dx(t)

for µ-a.e. x ∈ Ca,b[0, T ] where {gj}∞j=1 is a complete orthonormal set in C ′a,b[0, T ]
such that for each j ∈ N, Dgj = αj is of bounded variation on [0, T ].
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Our definition of the PWZ stochastic integral is different than the definition
given in [6, 7, 8, 13]. But we will emphasis that the following fundamental facts
are still true:

(i) It follows from the definition of the PWZ stochastic integral and from
Parseval’s equality that if w ∈ C ′a,b[0, T ] and x ∈ C ′a,b[0, T ], then (w, x)∼

exists and we have (w, x)∼ = (w, x)C′a,b .

(ii) If Dw = z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ], then the PWZ sto-

chastic integral (w, x)∼ equals the Riemann-Stieltjes integral
∫ T

0
z(t)dx(t)

for µ-a.e. x ∈ Ca,b[0, T ].
(iii) The PWZ stochastic integral has the expected linearity properties. That

is, for any real number c, w ∈ C ′a,b[0, T ], and x ∈ Ca,b[0, T ], we have

(w, cx)∼ = c(w, x)∼ = (cw, x)∼.

From this, it follows that for each w ∈ C ′a,b[0, T ], (w, x)∼ exists for s-a.e.
x ∈ Ca,b[0, T ].

(iv) For each w ∈ C ′a,b[0, T ], (w, x)∼ is a Gaussian random variable with mean

(w, a)C′a,b and variance ‖w‖2
C′a,b

. For all w1, w2 ∈ C ′a,b[0, T ], we have∫
Ca,b[0,T ]

(w1, x)∼(w2, x)∼dµ(x) = (w1, w2)C′a,b + (w1, a)C′a,b(w2, a)C′a,b .

Thus, if {w1, . . . , wn} is an orthogonal set in C ′a,b[0, T ], then the Gaussian
random variables (wj, x)∼’s are independent.

For more details, see [9].

Throughout this paper, let C, C+ and C̃+ denote the set of complex numbers,
complex numbers with positive real part, and nonzero complex numbers with
nonnegative real part, respectively. For each λ ∈ C, λ1/2 denotes the principal
square root of λ; i.e., λ1/2 is always chosen to have nonnegative real part, so that

λ−1/2 = (λ−1)1/2 is in C+ for all λ ∈ C̃+. We then have the following: for λ ∈ C
with λ = α + iβ,

λ−1/2 ≡ (λ−1)1/2 =

√√
α2+β2+α

2(α2+β2)
− isign(β)

√√
α2+β2−α

2(α2+β2)
, (2.3)

where sign(β) = 1 if β ≥ 0 and sign(β) = −1 if β < 0.

3. Gaussian processes

For each t ∈ [0, T ], let I[0,t] denote the indicator function of the interval [0, t]

and for k ∈ C ′a,b[0, T ] with Dk = h and with ‖k‖C′a,b = [
∫ T

0
h2(t)db(t)]1/2 > 0, let

Zk(x, t) be the PWZ stochastic integral

Zk(x, t) := (D−1(hI[0,t]), x)∼. (3.1)

Let

γk(t) :=

∫ t

0

Dk(u)da(u) =

∫ t

0

h(u)da(u), (3.2)
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and let

βk(t) :=

∫ t

0

(Dk(u))2db(u) =

∫ t

0

h2(u)db(u). (3.3)

Then the stochastic process Zk : Ca,b[0, T ] × [0, T ] → R is Gaussian with mean
function ∫

Ca,b[0,T ]

Zk(x, t)dµ(x) =

∫ t

0

h(u)da(u) = γk(t)

and covariance function∫
Ca,b[0,T ]

(
Zk(x, s)− γk(s)

)(
Zk(x, t)− γk(t)

)
dµ(x)

=

∫ min{s,t}

0

h2(u)db(u) = βk(min{s, t}).

In addition, by [27, Theorem 21.1], Zk(·, t) is stochastically continuous in t on
[0, T ]. If h = Dk is of bounded variation on [0, T ], then, for all x ∈ Ca,b[0, T ],
Zk(x, t) is continuous in t. Of course if k(t) ≡ b(t), then Zb(x, t) = x(t). Further-
more, if a(t) ≡ 0 and b(t) = t on [0, T ], then the function space Ca,b[0, T ] reduces
to the classical Wiener space C0[0, T ] and the Gaussian process (3.1) with k(t) ≡ t
is an ordinary Wiener process.

Let C∗a,b[0, T ] be the set of functions k in C ′a,b[0, T ] such that Dk is continuous
except for a finite number of finite jump discontinuities and is of bounded vari-
ation on [0, T ]. For any w ∈ C ′a,b[0, T ] and k ∈ C∗a,b[0, T ], let the operation �
between C ′a,b[0, T ] and C∗a,b[0, T ] be defined by

w � k := D−1(DwDk), i.e., D(w � k) = DwDk, (3.4)

where DwDk denotes the pointwise multiplication of the functions Dw and Dk.
Then we observe the following algebraic structures:

• C ′a,b[0, T ]× C∗a,b[0, T ] 3 (w, k) 7→ w � k = k � w ∈ C ′a,b[0, T ].
• For every w ∈ C ′a,b[0, T ] and every k1, k2 ∈ C∗a,b[0, T ],

(w � k1)� k2 = w � (k1 � k2) and w � (k1 + k2) = w � k1 + w � k2.

• For every w1, w2 ∈ C ′a,b[0, T ] and every k ∈ C∗a,b[0, T ],

(w1 + w2)� k = w1 � k + w2 � k.

• For every w1, w2 ∈ C ′a,b[0, T ] and every k ∈ C∗a,b[0, T ],

(w1, w2 � k)C′a,b = (w1 � k, w2)C′a,b .
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We also observe that for w ∈ C ′a,b[0, T ] and k ∈ C∗a,b[0, T ],

‖w � k‖C′a,b = (w � k, w � k)
1/2

C′a,b

=

[ ∫ T

0

{Dw(t)}2{Dk(t)}2db(t)

]1/2

≤ ‖Dk‖∞
[ ∫ T

0

{Dw(t)}2db(t)

]1/2

= ‖Dk‖∞‖w‖C′a,b ,

(3.5)

where ‖ · ‖∞ denotes the essential supremum norm. Furthermore, (C∗a,b[0, T ],�)
is a commutative algebra with the identity b.

For w ∈ C ′a,b[0, T ] and k ∈ C∗a,b[0, T ], it follows that

(w,Zk(x, ·))∼ =

∫ T

0

Dw(t)d

(∫ t

0

Dk(s)dx(s)

)
=

∫ T

0

Dw(t)Dk(t)dx(t)

= (w � k, x)∼

(3.6)

for s-a.e x ∈ Ca,b[0, T ]. Thus, throughout the rest of this paper, we require k to
be in C∗a,b[0, T ] for each process Zk. This will ensure that the Lebesgue-Stieltjes
integrals

‖w � k‖2
C′a,b

=

∫ T

0

(Dw(t))2(Dk(t))2db(t),

and

(w � k, a)C′a,b =

∫ T

0

Dw(t)Dk(t)Da(t)db(t) =

∫ T

0

Dw(t)Dk(t)da(t)

will exist for all w ∈ C ′a,b[0, T ] and k ∈ C∗a,b[0, T ].
Using equation (3.6), the change of variable theorem, and [7, equation (2.15)],

we obtain the following integration formula: for w ∈ C ′a,b[0, T ], k ∈ C∗a,b[0, T ] and
ζ ∈ C,∫

Ca,b[0,T ]

exp{ζ(w,Zk(x, ·))∼}dµ(x) = exp

{
ζ2

2
‖w � k‖2

C′a,b
+ ζ(w � k, a)C′a,b

}
.

(3.7)

4. Generalized analytic Fourier–Feynman transform
with respect to Gaussian process

Let G be a stochastically continuous Gaussian process on Ca,b[0, T ]× [0, T ]. We
define the G-function space integral (namely, the function space integral with re-
spect to the Gaussian paths G(x, ·)) for functionals F on Ca,b[0, T ] by the formula

IG[F ] ≡ IG,x[F (G(x, ·))] :=

∫
Ca,b[0,T ]

F (G(x, ·))dµ(x)

whenever the integral exists.
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Definition 4.1. Let q be a nonzero real number and let Γ be a connected

neighborhood of −iq in C̃+ such that (0,+∞) ∩ Γ is an open interval of pos-
itive real numbers. Let G be a stochastically continuous Gaussian process on
Ca,b[0, T ]× [0, T ], and let F be a C-valued scale-invariant measurable functional
on Ca,b[0, T ] such that

JF (G;λ) := IG,x[F (λ−1/2G(x, ·))]
exists and is finite for all λ > 0. If there exists a function J∗F (G;λ) analytic

on Int(Γ), the interior of Γ in C̃+, such that J∗F (G;λ) = JF (G;λ) for all λ ∈
(0,+∞)∩Γ, then J∗F (G;λ) is defined to be the analytic G-function space integral
(namely, the analytic function space integral with respect to the paths G(x, ·)) of
F over Ca,b[0, T ] with parameter λ, and for λ ∈ Int(Γ) we write

Ianλ
G [F ] ≡ Ianλ

G,x [F (G(x, ·))] ≡
∫ anλ

Ca,b[0,T ]

F (G(x, ·))dµ(x) := J∗F (G;λ). (4.1)

Next let F be a measurable functional whose analytic G-function space integral
Ianλ
G [F ] exists for all λ ∈ Int(Γ). If the following limit exists, we call it the gen-

eralized analytic G-Feynman integral (the generalized analytic Feynman integral
with respect to the paths G(x, ·)) of F with parameter q and we write

I
anfq
G [F ] ≡ I

anfq
G,x [F (G(x, ·))] := lim

λ→−iq
Ianλ
G,x [F (G(x, ·))], (4.2)

where λ approaches −iq through values in Int(Γ).

Next we state the definition of the generalized analytic Fourier–Feynman trans-
form with respect to Gaussian process on function space.

Definition 4.2. Let F be a scale-invariant measurable functional on Ca,b[0, T ],
and let G be a stochastically continuous Gaussian process on Ca,b[0, T ] × [0, T ].
Let q be a nonzero real number, and let Γ be a connected neighborhood of −iq
in C̃+ such that for all λ ∈ Int(Γ) and y ∈ Ca,b[0, T ], the following analytic
G-function space integral

Tλ,G(F )(y) := Ianλ
G,x [F (y + G(x, ·))]

exists. For p ∈ (1, 2], we define the Lp analytic G-GFFT (namely, the GFFT with

respect to the paths G(x, ·)), T (p)
q,G (F ) of F , by the formula,

T
(p)
q,G (F )(y) := l. i.m.

λ→−iq
λ∈Int(Γ)

Tλ,G(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq
λ∈Int(Γ)

∫
Ca,b[0,T ]

∣∣Tλ,G(F )(ρy)− T (p)
q,G (F )(ρy)

∣∣p′dµ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic G-GFFT, T
(1)
q,G (F ) of F , by the

formula
T

(1)
q,G (F )(y) := lim

λ→−iq
λ∈Int(Γ)

Tλ,G(F )(y) = I
anfq
G,x [F (y + G(x, ·))] (4.3)
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if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q,G (F ) is defined only s-a.e.. We also note

that if T
(p)
q,G (F ) exists and if F ≈ G, then T

(p)
q,G (G) exists and T

(p)
q,G (G) ≈ T

(p)
q,G (F ).

Moreover, from equations (4.1), (4.2) and (4.3), it follows that

I
anfq
G [F ] ≡ I

anfq
G,x [F (G(x, ·))] = T

(1)
q,G (F )(0) (4.4)

in the sense that if either side exists, then both sides exist and equality holds.

Remark 4.3. Note that if k ≡ b on [0, T ], then the generalized analytic Zb-
Feynman integral, I

anfq
Zb [F ], and the Lp analytic Zb-GFFT, T

(p)
q,Zb(F ) agree with

the previous definitions of the generalized analytic Feynman integral and the
analytic GFFT respectively [6, 8].

Remark 4.4. When G = Zk, we will simply denote IZk [F ], Ianλ
Zk [F ], I

anfq
Zk [F ],

Tλ,Zk(F ) and T
(p)
q,Zk(F ) by Ik[F ], Ianλ

k [F ], I
anfq
k [F ], Tλ,k(F ) and T

(p)
q,k (F ) respectively.

5. Fresnel type class

We next introduce a Banach algebra of functionals on Ca,b[0, T ]. Suppose that
M(C ′a,b[0, T ]) is the space of C-valued, countably additive measures defined on
B(C ′a,b[0, T ]), the Borel class of C ′a,b[0, T ]. Then the measure f in B(C ′a,b[0, T ])
necessarily has finite total variation ‖f‖, and M(C ′a,b[0, T ]) is a Banach algebra
under the norm ‖ · ‖ and with convolution as multiplication [15, 24].

The Fresnel type class F(Ca,b[0, T ]) of functionals on Ca,b[0, T ] is defined as
the space of all stochastic Fourier transforms of elements of M(C ′a,b[0, T ]); that
is, F ∈ F(Ca,b[0, T ]) if and only if there exists a measure f inM(C ′a,b[0, T ]) such
that

F (x) =

∫
C′a,b[0,T ]

exp
{
i(w, x)∼

}
df(w) (5.1)

for s-a.e. x ∈ Ca,b[0, T ]. More precisely, since we shall identify functionals which
coincide s-a.e. on Ca,b[0, T ], F(Ca,b[0, T ]) can be regarded as the space of all
s-equivalence classes of functionals of the form (5.1).

The Fresnel type class F(Ca,b[0, T ]) is a Banach algebra with norm

‖F‖ := ‖f‖ =

∫
C′a,b[0,T ]

d|f |(w).

In fact, the correspondence f 7→ F is injective, carries convolution into pointwise
multiplication and is a Banach algebra isomorphism where f and F are related
by (5.1).

For a positive real number q0, k ∈ C∗a,b[0, T ], and w ∈ C ′a,b[0, T ], let

φ(q0, k;w) := exp
{

(2q0)−1/2‖Dk‖∞‖w‖C′a,b‖a‖C′a,b
}

(5.2)

and let

Γq0 :=
{
λ ∈ C̃+ : |Im(λ−1/2)| < (2q0)−1/2

}
. (5.3)
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Also, for λ ∈ C̃+, k ∈ C∗a,b[0, T ], and w ∈ C ′a,b[0, T ], let

ψ(λ, k;w) := exp

{
− 1

2λ
‖w � k‖2

C′a,b
+ iλ−1/2(w � k, a)C′a,b

}
. (5.4)

Then, using Cauchy–Schwartz’s inequality and (3.5), we observe that for all λ ∈
Γq0 ,

|ψ(λ, k;w)| ≤ exp
{
|Im(λ−1/2)|‖w � k‖C′a,b‖a‖C′a,b

}
< φ(q0, k;w). (5.5)

We note that for all real q with |q| > q0,

(−iq)−1/2 =
1√
2|q|

+ i
sign(q)√

2|q|

by equation (2.3). Also a close examination of equation (5.3) shows that −iq
is an elements of the region Γq0 . More precisely, −iq is an interior point of the

region Γq0 in C̃+. Furthermore, Γq0 is a connected neighborhood of −iq in C̃+,
and (0,+∞) ⊂ Γq0 .

For a positive real number q0 and an element k ∈ C∗a,b[0, T ], we define a subclass
F q0k of F(Ca,b[0, T ]) by F ∈ F q0k if and only if∫

C′a,b[0,T ]

φ(q0, k;w)d|f |(w) < +∞, (5.6)

where f and F are related by (5.1) and φ(q0, k;w) is given by (5.2) above.

Remark 5.1. Recall that letting a(t) ≡ 0 and b(t) = t on [0, T ], the function space
Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ]. In this case the Fresnel
type class F(Ca,b[0, T ]) reduces to the Fresnel class F(C0[0, T ]). Also, we see

that (w, a)C′a,b = 0 for all w ∈ C ′a,b[0, T ] = C ′0[0, T ]. Hence for all λ ∈ C̃+ and all

k ∈ C∗0 [0, T ], |ψ(λ, k;w)| ≤ φ(q0, k;w) ≡ 1 and so for any positive real number
q0, F q0k = F(C0[0, T ]).

It is known that F(C0[0, T ]) forms a Banach algebra over the complex field and
that F(C0[0, T ]) is isometrically isomorphic to the Banach algebra S(L2[0, T ])
introduced by Cameron and Storvick; see [4, 17, 20]. For a more detailed study
of Banach algebras of functionals on classical and abstract Wiener spaces, see
[18, pp.609–629].

Theorem 5.2. Let k be a nonzero element of C∗a,b[0, T ], let q0 be a positive real
number, and let F ∈ F q0k be given by equation (5.1). Then, for all real q with

|q| > q0, the L1 analytic Zk-GFFT, T
(1)
q,k (F ) of F exists and is given by the formula

T
(1)
q,k (F )(y) =

∫
C′a,b[0,T ]

exp{i(w, y)∼}ψ(−iq, k;w)df(w) (5.7)

for s-a.e. y ∈ Ca,b[0, T ], where ψ is given by equation (5.4).
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Proof. Let k ∈ C∗a,b[0, T ] \ {0} be given. Using (5.1), (3.6), the Fubini theorem,
(3.7), and (5.4), we have that for all λ > 0,

JF (y+·)(Zk;λ) ≡ Ik,x[F (y + λ−1/2Zk(x, ·))]

=

∫
C′a,b[0,T ]

exp

{
i(w, y)∼ − 1

2λ
‖w � k‖2

C′a,b

+ iλ−1/2(w � k, a)C′a,b

}
df(w)

=

∫
C′a,b[0,T ]

exp{i(w, y)∼}ψ(λ, k;w)df(w).

Next let Γq0 be given by (5.3) and let Int(Γq0) indicate the interior of the region

Γq0 in C̃+. Also let

J∗F (y+·)(Zk;λ) :=

∫
C′a,b[0,T ]

exp{i(w, y)∼}ψ(λ, k;w)df(w) (5.8)

for λ ∈ Γq0 . Then, under the condition (5.6), J∗F (y+·)(Zk; ·) is well defined, as a

function of λ, and J∗F (y+·)(Zk;λ) = JF (y+·)(Zk;λ) for all λ > 0. Thus it suffices to

show that J∗F (y+·)(Zk;λ) is an analytic function of λ on Int(Γq0) to establish the

desired result. We will use the Morera theorem to show that J∗F (y+·)(Zk;λ) is an

analytic function of λ on Int(Γq0). For each λ ∈ Int(Γq0), let {λl}∞l=1 be a sequence

in C+ which converges to λ. Then, for every l ∈ N, Re(λ
−1/2
l ) > |Im(λ

−1/2
l )| ≥ 0,

and so ∣∣ exp{i(w, y)∼}ψ(λ, k;w)
∣∣ =

∣∣ψ(λ, k;w)
∣∣

=

∣∣∣∣ exp

{
− 1

2λl
‖w � k‖2

C′a,b
+ iλ

−1/2
l (w � k, a)C′a,b

}∣∣∣∣
=

∣∣∣∣ exp

{
− 1

2

(
[Re(λ

−1/2
l )]2 − [Im(λ

−1/2
l )]2

+ i2Re(λ
−1/2
l )Im(λ

−1/2
l )

)
‖w � k‖2

C′a,b

+ i
(

Re(λ
−1/2
l ) + iIm(λ

−1/2
l )

)
(w � k, a)C′a,b

}∣∣∣∣
≤ exp

{
− Im(λ

−1/2
l )(w � k, a)C′a,b

}
≤ exp

{
|Im(λ

−1/2
l )|‖w � k‖C′a,b‖a‖C′a,b

}
.

Since λ
−1/2
l → λ−1/2 for given λ ∈ Int(Γq0), there exists a sufficiently large L ∈ N

such that |Im(λ
−1/2
l )| < 1/

√
2q0 for every l ≥ L, and so by the inequalities (5.5)
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and (5.6), ∫
C′a,b[0,T ]

∣∣ exp{i(w, y)∼}ψ(λl, k;w)
∣∣d|f |(w)

≤
∫
C′a,b[0,T ]

exp
{
|Im(λ

−1/2
l )|‖w � k‖C′a,b‖a‖C′a,b

}
d|f |(w)

=

∫
C′a,b[0,T ]

φ(q0, k;w)d|f |(w) < +∞

(5.9)

whenever l ≥ L. Thus, applying the dominated convergence theorem, we see
that J∗F (y+·)(Zk;λ) is a continuous function of λ on Int(Γq0). Since g(λ) ≡
exp{i(w, y)∼}ψ(λ, k;w) is analytic on Int(Γq0), applying the Fubini theorem, it
follows that ∫

4
J∗F (y+·)(Zk;λ)dλ =

∫
C′a,b[0,T ]

∫
4
g(λ)dλdf(w) = 0

for all rectifiable simple closed curve4 lying in Int(Γq0). Thus by the Morera the-
orem, J∗F (y+·)(Zk;λ) is analytic on Int(Γq0). Therefore, the analytic Zk-function

space integral Tλ,k(F )(y) ≡ Ianλ
k,x [F (y + Zk(x, ·))] = J∗F (y+·)(Zk;λ) exists and is

given by the right hand side of (5.8).
Finally, using (4.3), (5.8), and the dominated convergence theorem (the use of

which is justified by (5.9) for a sequence {λl} with λ→ −iq), it follows that for
s-a.e. y ∈ Ca,b[0, T ],

T
(1)
q,k (F )(y) = lim

λ→−iq
λ∈Int(Γ)

Tλ,k(F )(y)

= lim
λ→−iq
λ∈Int(Γ)

∫
C′a,b[0,T ]

exp{i(w, y)∼}ψ(λ, k;w)df(w)

=

∫
C′a,b[0,T ]

exp{i(w, y)∼} lim
λ→−iq
λ∈Int(Γ)

ψ(λ, k;w)df(w)

=

∫
C′a,b[0,T ]

exp{i(w, y)∼}ψ(−iq, k;w)df(w)

as desired. �

By a careful examination of the proof of Theorem 5.2 and equation (4.4), we
obtain the following corollary.

Corollary 5.3. Let k, q0 and F be as in Theorem 5.2. Then,

(i) for each λ in Int(Γq0), the analytic Zk-function space integral of F , Ianλ
k [F ]

exists and is given by the formula

Ianλ
k [F ] =

∫
C′a,b[0,T ]

ψ(λ, k;w)df(w)

; and
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(ii) for all real q with |q| > q0, the generalized analytic Zk-Feynman integral

of F , I
anfq
k [F ] exists and is given by the formula

I
anfq
k [F ] = T

(1)
q,k (F )(0) =

∫
C′a,b[0,T ]

ψ(−iq, k;w)df(w).

Theorem 5.4. Let k, q0 and F be as in Theorem 5.2. Then for all p ∈ (1, 2]

and all real q with |q| > q0, the Lp analytic Zk-GFFT of F , T
(p)
q,k (F ) exists and is

given by the right hand side of equation (5.7) for s-a.e. y ∈ Ca,b[0, T ].

Proof. Let Γq0 be given by equation (5.3). It was shown in the proof of Theorem
5.2 that Tλ,k(F )(y) is an analytic function of λ throughout the domain Int(Γq0)
in C+. In view of Definition 4.2, it will suffice to show that for each ρ > 0,

lim
λ→−iq
λ∈Int(Γ)

∫
Ca,b[0,T ]

∣∣Tλ,k(F )(ρy)− T (p)
q,k (F )(ρy)

∣∣p′dµ(y) = 0.

Fixing p ∈ (1, 2], and using the inequalities (5.5) and (5.6), we obtain that for
all ρ > 0 and all λ ∈ Int(Γq0),∣∣Tλ,k(F )(y)− T (p)

q,k (F )(y)
∣∣p′

≤
∣∣∣∣ ∫

C′a,b[0,T ]

exp{i(w � k, y)∼}
[
ψ(λ, k;w)− ψ(−iq, k;w)

]
df(w)

∣∣∣∣p′

≤

(∫
C′a,b[0,T ]

[∣∣ψ(λ, k;w)
∣∣+
∣∣ψ(−iq, k;w)

∣∣]d|f |(w)

)p′

≤

(
2

∫
C′a,b[0,T ]

φ(q0, k;w)d|f |(w)

)p′

< +∞.

Hence by the dominated convergence theorem, it follows that for each p ∈ (1, 2]
and each ρ > 0,

lim
λ→−iq
λ∈Int(Γ)

∫
Ca,b[0,T ]

∣∣Tλ,k(F )(ρy)− T (p)
q,k (F )(ρy)

∣∣p′dµ(y)

= lim
λ→−iq
λ∈Int(Γ)

∣∣∣∣ ∫
C′a,b[0,T ]

exp{i(w � k, ρy)∼}ψ(λ, k;w)df(w)

−
∫
C′a,b[0,T ]

exp{i(w � k, ρy)∼}ψ(−iq, k;w)df(w)

∣∣∣∣p′dµ(y)

=

∫
Ca,b[0,T ]

∣∣∣∣ ∫
C′a,b[0,T ]

exp{i(w � k, ρy)∼}

× lim
λ→−iq
λ∈Int(Γ)

[
ψ(λ, k;w)− ψ(−iq, k;w)

]
df(w)

∣∣∣∣p′dµ(y)

= 0
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and the theorem is proved. �

Remark 5.5. Let k, q0 and F be as in Theorem 5.2. For a real number q with
|q| > q0, define a set function fq,k : B(C ′a,b[0, T ])→ C by

fq,k(B) :=

∫
B

ψ(−iq, k;w)df(w), B ∈ B(C ′a,b[0, T ]),

where f and F are related by equation (5.1). Then it is obvious that fq,k belongs

to M(C ′a,b[0, T ]), and for all p ∈ (1, 2], T
(p)
q,k (F ) can be expressed as

T
(1)
q,k (F )(y) = T

(p)
q,k (F )(y) =

∫
C′a,b[0,T ]

exp{i(w, y)∼}dfq,k(w)

for s-a.e. y ∈ Ca,b[0, T ]. Hence T
(p)
q,k (F ) belongs to F(C ′a,b[0, T ]) for all p ∈ [1, 2].

6. Iterated generalized Fourier–Feynman transform with
Gaussian paths

For a positive real number q0, a finite subset {k1, . . . , kn} of C∗a,b[0, T ] \ {0},
and w ∈ C ′a,b[0, T ], let

Φ(q0, k1, . . . , kn;w) : =
n∏
j=1

φ(q0, kj;w)

= exp

{‖w‖C′a,b‖a‖C′a,b√
2q0

n∑
j=1

‖Dkj‖∞
}
,

(6.1)

where φ is given by (5.2). Also, for λ1, . . . , λn ∈ C̃+, k1, . . . , kn ∈ C∗a,b[0, T ] \ {0},
and w ∈ C ′a,b[0, T ], let

Ψn(λ1 . . . , λn, k1, . . . , kn;w) :=
n∏
j=1

ψ(λj, kj;w)

= exp

{
−

n∑
j=1

1

2λj
‖w � kj‖2

C′a,b
+

n∑
j=1

iλ
−1/2
j (w � kj, a)C′a,b

}
,

(6.2)

where ψ is given by (5.4). Then, using (3.5), we observe that for all λ1, . . . , λn ∈
Γq0 ,

|Ψn(λ1 . . . , λn, k1, . . . , kn;w)|

≤ exp

{ n∑
j=1

|Im(λ
−1/2
j )|‖w � kj‖C′a,b‖a‖C′a,b

}
< Φ(q0, k1, . . . , kn;w).

Given a positive real number q0 and a finite subset {k1, . . . , kn} of C∗a,b[0, T ] \
{0}, we define a subclass F q0k1,...,kn of F(Ca,b[0, T ]) by F ∈ F q0k1,...,kn if and only if∫

C′a,b[0,T ]

Φ(q0, k1, . . . , kn;w)d|f |(w) < +∞, (6.3)
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where f and F are related by equation (5.1) and Φ is given by equation (6.1).
From (5.6), (5.2), (6.1), and (6.3), one can see that the class F q0k1,...,kn is a

subclass of F q0kj for each j ∈ {1, . . . , n}. Furthermore we have the chain

F q0k1,...,kn ≡ F
q0
kπ(1),...,kπ(n)

⊂ F q0kπ(1),...,kπ(n−1)
⊂ F q0kπ(1),...,kπ(n−2)

⊂ · · · ⊂ Fkπ(1)
for any permutation π of {1, . . . , n}.

In view of Theorems 5.2, 5.4, and Remark 5.5, we obtain the following theorem.

Theorem 6.1. Let {k1, . . . , kn} be nonzero elements of C∗a,b[0, T ], let q0 be a
positive real number, and let F ∈ F q0k1,...,kn be given by equation (5.1). Then, for
every p ∈ [1, 2], all real numbers q1, . . . , qn with |qj| > q0, j ∈ {1, . . . , n}, the

iterated GFFT, T
(p)
qn,kn

(· · · (T (p)
q1,k1

(F )) · · · ) of F exists and is given by the formula

T
(p)
qn,kn

(· · · (T (p)
q1,k1

(F )) · · · )(y)

=

∫
C′a,b[0,T ]

exp{i(w, y)∼}Ψn(−iq1, . . . ,−iq2, k1, . . . , kn;w)df(w)
(6.4)

for s-a.e. y ∈ Ca,b[0, T ], where Ψn is given by equation (6.2).

7. Multiple generalized Fourier–Feynman transform with
Gaussian paths

In this section, we define a multiple generalized analytic Fourier–Feynman
transform with respect to Gaussian processes (Multi-G’s-GFFT) of functionals
on Ca,b[0, T ]. We then establish a relationship between the analytic Multi-G’s-
GFFT and the analytic G-GFFT.

Let F be a scale-invariant measurable functional on Ca,b[0, T ] and let Gj, j ∈
{1, . . . , n}, be stochastically continuous Gaussian processes on Ca,b[0, T ]× [0, T ].
For λ > 0 and y ∈ Ca,b[0, T ], define a transform Mλ,(G1,...,Gn)(F ) as follows:

Mλ,(G1,...,Gn)(F )(y)

: =

∫
Cna,b[0,T ]

F

(
y + λ−1/2

n∑
j=1

Gj(xj, ·)
)
dµn(x1, . . . , xn).

Let q be a nonzero real number, and let Γ be a connected neighborhood of

−iq in C̃+ such that (0,+∞) ∩ Γ is an open interval of positive real numbers.
Let Mλ,(G1,...,Gn)(F )(y) again denote an analytic extension of Mλ,(G1,...,Gn)(F )(y)
as a function of λ in Int(Γ). For p ∈ (1, 2], we define the Lp analytic Multi-

(G1, . . . ,Gn)-GFFT, M(p)
q,(G1,...,Gn)(F ) of F , by the formula

M(p)
q,(G1,...,Gn)(F )(y) := l. i.m.

λ→−iq
λ∈Int(Γ)

Mλ,(G1,...,Gn)(F )(y)

if it exists. We also define the L1 analytic Multi-(G1, . . . ,Gn)-GFFT,M(1)
q,(G1,...,Gn)(F )

of F , by the formula

M(1)
q,(G1,...,Gn)(F )(y) := lim

λ→−iq
λ∈Int(Γ)

Mλ,(G1,...,Gn)(F )(y)
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if it exists.
Clearly, we have that

Mλ,(G1)(F )(y) = Tλ,G1(F )(y)

for all λ ∈ Int(Γ), and

M(p)
q,(G1)(F )(y) = T

(p)
q,G1(F )(y)

for nonzero real q if the transforms exist.
For convenience, in this section we decided to work with p = 1; however, in

view of Remark 5.5, all of our results in this section also hold for 1 < p ≤ 2.
Using the techniques similar to those used in the proof of Theorem 5.2, we

obtain the following theorem.

Theorem 7.1. Let k1 and k2 be nonzero elements of C∗a,b[0, T ], let q0 be a positive
real number, and let F ∈ F q0k1,k2 be given by equation (5.1). Then, for all real q

with |q| > q0, the L1 analytic Multi-(Zk1 ,Zk2)-GFFT ,M(1)
q,(Zk1 ,Zk2 )(F ) of F exists

and is given by the formula

M(1)
q,(Zk1 ,Zk2 )(F )(y) =

∫
C′a,b[0,T ]

exp{i(w, y)∼}Ψ2(−iq,−iq, k1, k2;w)df(w) (7.1)

for s-a.e. y ∈ Ca,b[0, T ], where Ψ2 is given by equation (6.2).

For k1, k2 ∈ C ′a,b[0, T ] with ‖kj‖C′a,b > 0 and j ∈ {1, 2}, let Zk1 and Zk2 be the

Gaussian processes given by (3.1) respectively. Then the process

Xk1,k2 : Ca,b[0, T ]× Ca,b[0, T ]× [0, T ]→ R

given by

Xk1,k2(x1, x2, t) := Zk1(x1, t) + Zk2(x2, t)

is also a Gaussian process with mean

mk1,k2(t) :=

∫
C2
a,b[0,T ]

Xk1,k2(x1, x2, t)d(µ× µ)(x1, x2) = γk1(t) + γk2(t)

and variance

vk1,k2(t) : =

∫
C2
a,b[0,T ]

(
Xk1,k2(x1, x2, t)−mk1,k2(t)

)2
d(µ× µ)(x1, x2)

= βk1(t) + βk2(t)

where γk and βk are given by (3.2) and (3.3) respectively. In fact, the covariance
of Xk1,k2(x1, x2, ·) is given by∫
C2
a,b[0,T ]

(
Xk1,k2(x1, x2, s)−mk1,k2(s)

)(
Xk1,k2(x1, x2, t)−mk1,k2(t)

)
d(µ× µ)(x1, x2)

= βk1(min{s, t}) + βk2(min{s, t})
= vk1,k2(min{s, t}).
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Let k1 and k2 be elements of C ′a,b[0, T ] (resp. C∗a,b[0, T ]) with Dkj = hj, j ∈
{1, 2}. Then there exists a function s in C ′a,b[0, T ] (resp. C∗a,b[0, T ]) such that

(Ds(t))2 = h2
1(t) + h2

2(t) = (Dk1(t))2 + (Dk2(t))2 (7.2)

for m|a|,b-a.e. t ∈ [0, T ]. Note that the function ‘s’ satisfying (7.2) is not unique.
We will use the symbol s(k1, k2) for the functions ‘s’ that satisfy (7.2) above.

Next we will consider a stochastic process associated with Zs(k1,k2). Define a
process

Rk1,k2 : Ca,b[0, T ]× [0, T ]→ R

by

Rk1,k2(x, t) := Zs(k1,k2)(x, t) +A(k1, k2)(t), (7.3)

where

A(k1, k2)(t) :=

∫ t

0

(
Dk1(u) +Dk2(u)−Ds(k1, k2)(u)

)
da(u). (7.4)

Then Rk1,k2 is a Gaussian process with mean∫
Ca,b[0,T ]

Rk1,k2(x, t)dµ(x)

=

∫
Ca,b[0,T ]

Zs(k1,k2)(x, t)dµ(x) +A(k1, k2)(t)

= γk1(t) + γk2(t)

= mk1,k2(t)

and covariance∫
Ca,b[0,T ]

(
Rk1,k2(x, s)−mk1,k2(s)

)(
Rk1,k2(x, t)−mk1,k2(t)

)
dµ(x)

=

∫
Ca,b[0,T ]

(
Zs(k1,k2)(x, s)− γs(k1,k2)(s)

)(
Zs(k1,k2)(x, t)− γs(k1,k2)(t)

)
dµ(x)

= βs(k1,k2)(min{s, t})

=

∫ min{s,t}

0

[Ds(k1, k2)(u)]2db(u)

=

∫ min{s,t}

0

(
[Dk1(u)]2 + [Dk2(u)]2

)
db(u)

= βk1(min{s, t}) + βk2(min{s, t})
= vk1,k2(min{s, t}).

Also, Rk1,k2(·, t) is stochastically continuous in t on [0, T ].
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From these facts, one can see that the Gaussian processes Xk1,k2 and Rk1,k2

have the same distribution and that for any random variable F on Ca,b[0, T ],∫
C2
a,b[0,T ]

F (Xk1,k2(x1, x2, ·))dµ2(x1, x2)

≡
∫
Ca,b[0,T ]

[ ∫
Ca,b[0,T ]

F (Xk1,k2(x1, x2, ·))dµ(x1)

]
dµ(x2)

∗
=

∫
Ca,b[0,T ]

F (Rk1,k2(x, ·))dµ(x),

(7.5)

where by
∗
= we mean that if either side exists, both sides exist and equality holds.

Remark 7.2. In the case of a(t) ≡ 0, we observe that A(k1, k2)(t) ≡ 0 and so
Rk1,k2(x, t) = Zs(k1,k2)(x, t). Thus equation (7.5) can be rewritten as∫

C2
a,b[0,T ]

F (Xk1,k2(x1, x2, ·))dµ2(x1, x2)
∗
=

∫
Ca,b[0,T ]

F (Zs(k1,k2)(x, t))dµ(x).

Remark 7.3. In [13], the authors investigated a rotation property of the function
space measure µ. The result is summarized as follows: for a measurable functional
F , and all nonzero real p and q,∫

C2
a,b[0,T ]

F (px1 + qx2)dµ2(x1, x2)

∗
=

∫
Ca,b[0,T ]

F
(√

p2 + q2x+ (p+ q −
√
p2 + q2)a

)
dµ(x).

(7.6)

Let k1(t) = pb(t) and k2(t) = qb(t) on [0, T ]. Then from equations (3.1), (7.3)
and (7.5), we can obtain equation (7.6). But, by the observation of equation (7.2)
above, we obtain the alternative result∫

C2
a,b[0,T ]

F (px1 + qx2)dµ2(x1, x2)

∗
=

∫
Ca,b[0,T ]

F
(
−
√
p2 + q2x+ (p+ q +

√
p2 + q2)a

)
dµ(x).

Remark 7.4. Note that if k1, k2 ∈ C∗a,b[0, T ], then Rk1,k2 is a continuous process.

Theorem 7.5. Let k1, k2, q0 and F ∈ F q0k1,k2 be as in Theorem 7.1. Let s(k1, k2)
be an element of C∗a,b[0, T ] which satisfies equation (7.2). Then, for all real q with

|q| > q0, the L1 analytic Rk1,k2-GFFT, T
(1)
q,Rk1,k2

(F ) of F exists and is given by

the right hand side of equation (7.1), i.e.,

T
(1)
q,Rk1,k2

(F )(y) =M(1)
q,(Zk1 ,Zk2 )(F )(y)

for s-a.e. y ∈ Ca,b[0, T ].
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Proof. In view of the definition of the L1 analytic G-GFFT and Theorem 7.1, it
suffices to show that for all λ > 0,

Tλ,Rk1,k2 (F )(y) =Mλ,(Zk1 ,Zk2 )(F )(y)

for s-a.e. y ∈ Ca,b[0, T ].
First, using (7.3), (5.1), the Fubini theorem, and (3.7) with Zk replaced with

Zs(k1,k2), it follows that for all λ > 0 and s-a.e. y ∈ Ca,b[0, T ],

Tλ,Rk1,k2 (F )(y)

= IRk1,k2 ,x[F (y + λ−1/2Rk1,k2(x, ·))]

=

∫
C′a,b[0,T ]

exp
{
i(w, y)∼ + iλ−1/2(w,A(k1, k2))∼

}
× IZs(k1,k2)

,x

[
exp

{
iλ−1/2(w,Zs(k1,k2)(x, ·))∼}

]
df(w)

=

∫
C′a,b[0,T ]

exp

{
i(w, y)∼ + iλ−1/2(w,A(k1, k2))∼

− 1

2λ
‖w � s(k1, k2)‖2

C′a,b
+ iλ−1/2(w � s(k1, k2), a)C′a,b

}
df(w).

(7.7)
Next, using (7.2), (7.4), and (3.4), we observe that

‖w � s(k1, k2)‖2
C′a,b

=
(
w � s(k1, k2), w � s(k1, k2)

)
C′a,b

=

∫ T

0

(Dw(t))2(Ds(k1, k2)(t))2db(t)

=

∫ T

0

(Dw(t))2(Dk1(t))2db(t) +

∫ T

0

(Dw(t))2(Dk2(t))2db(t)

= ‖w � k1‖2
C′a,b

+ ‖w � k2‖2
C′a,b

(7.8)

and

(w � s(k1, k2), a)C′a,b + (w,A(k1, k2))∼

= (w � s(k1, k2), a)C′a,b

+

∫ T

0

Dw(t)d

[ ∫ t

0

(
Dk1(u) +Dk2(u)−Ds(k1, k2)(u)

)
da(u)

]
= (w � s(k1, k2), a)C′a,b −

∫ T

0

Dw(t)Ds(k1, k2)(t)da(t)

+

∫ T

0

Dw(t)Dk1(t)da(t) +

∫ T

0

Dw(t)Dk2(t)da(t)

=

∫ T

0

D(w � k1)(t)Da(t)db(t) +

∫ T

0

D(w � k2)(t)Da(t)db(t)

= (w � k1, a)C′a,b + (w � k2, a)C′a,b .

(7.9)
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Finally, using equations (7.7), (7.8), (7.9), (6.2), and (7.1), it follows that

Tλ,Rk1,k2 (F )(y) =

∫
C′a,b[0,T ]

exp

{
i(w, y)∼ − 1

2λ

2∑
j=1

‖w � kj‖2
C′a,b

+ iλ−1/2

2∑
j=1

(w � kj, a)C′a,b

}
df(w)

=

∫
C′a,b[0,T ]

exp{i(w, y)∼}Ψ2(λ, λ, k1, k2;w)df(w)

=Mλ,(Zk1 ,Zk2 )(F )(y)

for s-a.e. y ∈ Ca,b[0, T ]. �

The following theorem follows from the previous results, and the use of math-
ematical induction.

Theorem 7.6. Given kj ∈ C∗a,b[0, T ]\{0}, j ∈ {1, . . . , n}, let Zkj be the Gaussian
processes given by (3.1), and let Rk1,...,kn : Ca,b[0, T ]× [0, T ]→ R be the Gaussian
process given by

Rk1,...,kn(x, t) := Zs(k1,...,kn)(x, t) +

∫ t

0

[ n∑
j=1

Dkj(u)−Ds(k1, . . . , kn)(u)

]
da(u),

where s(k1, . . . , kn) is an element of C∗a,b[0, T ] which satisfies the condition

[Ds(k1, . . . , kn)]2 =
n∑
j=1

[Dkj]
2

for m|a|,b-a.e. on [0, T ]. Given q0 > 0, let F ∈ F q0k1,...,kn be given by equation (5.1).

Then, for all real q with |q| > q0, the L1 analytic Rk1,...,kn-GFFT, T
(1)
q,Rk1,...,kn

(F ),

and the L1 analytic Multi-(Zk1 , . . . ,Zkn)-GFFT ,M(1)
q,(Zk1 ,...,Zkn )(F ) of F exist and

M(1)
q,(Zk1 ,...,Zkn )(F )(y) = T

(1)
q,Rk1,...,kn

(F )(y) (7.10)

for s-a.e. y ∈ Ca,b[0, T ]. Also, both expressions in (7.10) are given by the right
hand side of equation (6.4) with q = q1 = · · · = qn.

Remark 7.7. When a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ]. In this case, equation (7.10) can
be rewritten as

M(1)
q,(Zk1 ,...,Zkn )(F )(y) = T

(1)
q,Zs(k1,...,kn)

(F )(y)

for all functionals F ∈ F(C0[0, T ]) and s-a.e. y ∈ C0[0, T ] in view of Remarks 5.1
and 7.2. Thus most of the results in [10] follow immediately from the results in
this paper.
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