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Abstract. This article addresses the following question; ’how to approximate
the spectrum of random bounded self-adjoint operators on separable Hilbert
spaces’. This is an attempt to establish a link between the spectral theory of
random operators and the rich theory of random matrices; including various
notions of convergence. This study tries to develop a random version of the
truncation method, which is useful in approximating spectrum of bounded self-
adjoint operators. It is proved that the eigenvalue sequences of the truncations
converge in distribution to the eigenvalues of the random bounded self-adjoint
operator. The convergence of moments are also proved with some examples.
In addition, the article discusses some new methods to predict the existence of
spectral gaps between the bounds of essential spectrum. Some important open
problems are also stated at the end.

1. Introduction and preliminary results

Let A be a bounded self-adjoint operator defined on a complex separable Hilbert
space H. Consider the orthogonal projection Pn of H onto the finite dimensional
subspace spanned by the first n elements of the orthonormal basis {e1, e2, . . .}.
The truncation An = PnAPn of A can be treated as a finite matrix by restricting
the domain to the image of Pn. It is known that the eigenvalue sequence of An

are useful in approximating the spectrum σ(A) and the essential spectrum σe(A)
(see [1, 3] and references therein and [11, 14] for new perspectives).

Here, in the place of the single operator A, a one parameter family of operators
A(ω) is considered, where the parameter ω varies in some suitable probability
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space. Such operators arise naturally in many practical problems and the knowl-
edge of their spectrum is very important. Observe that the spectrum and the
essential spectrum of A(ω) depend on the parameter ω. Here we approximate
the set valued functions ω 7→ σ(A(ω)) and ω 7→ σe(A(ω)), using the sequence of
functions ω 7→ σ(A(ω)n).

The truncations A(ω)n are finite matrices and depending on the parameter ω.
The eigenvalue distribution of such random matrices, with the matrix entries fol-
lowing certain distributions has a rich theory (see [19, 20] and references therein).
Physicists have been interested in certain types of n × n random matrices as n
increases to infinity (see [5, 12] and references therein). Also, there are various
notions of convergence in this case such as convergence in distribution, conver-
gence in probability, etc. This article is an attempt to use this random matrix
theory in the spectral approximation problem of random operators. Also, the
various notions of convergence have to be analyzed to obtain information about
the spectrum of infinite dimensional operators.

The notion of a random operator is defined below.

Definition 1.1. Let (Ω, F, α) be a probability measure space and H be a complex
separable Hilbert space. A random operator is a mapping

A(., .) : Ω×H → H

such that A(ω, .) is a linear operator on H for almost all ω, and the functions
fx,y : Ω → C, defined by fx,y(ω) = 〈A(ω)x, y〉 are measurable for every x, y ∈ H.

In this article, a random operator is denoted by A(ω) and all the operators
considered are bounded.

1.1. The Main Results. As it is mentioned above, the aim of this article is
to use the eigenvalue distribution of the random matrices A(ω)n to obtain in-
formation about the spectrum and essential spectrum of the random operator
A(ω). It is well known that the approximation numbers of an infinite dimensional
bounded operator can be approximated by the approximation number sequence
of its truncations (Theorem 1.1 in [3], Lemma 2.4 in [14]). The following result
is proved in this article; if the approximation number sequences of truncations
converge with a uniform rate of convergence, then the expectations of eigenvalues
of truncations converge to the expectations of the discrete spectral values of the
operator at a uniform rate of convergence. It is also proved that the sequence of
random eigenvalues of truncations A(ω)n, converge in distribution to the discrete
eigenvalues of the bounded random self-adjoint operator A(ω). The convergence
of moments leads to an interesting question related to the classical moment prob-
lem and Carleman’s condition. This open problem is discussed in detail at the
end of the article.

This article also addresses the problem of predicting spectral gaps that may
exist between the bounds of the essential spectrum of a bounded self-adjoint
operator. The random version of these results can be one possible area of research
in future. Examples which indicate the instability of spectral gaps under a random
perturbation are given here.
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The following is a brief account of some results in the linear algebraic techniques
used in the spectral approximation problem.

1.2. Truncation method. Let A be a bounded self-adjoint operator defined on
a complex separable Hilbert space H. The spectrum of A is denoted by σ(A) with
m,M as its lower and upper bounds. Firstly, let’s recall the following notations
and definitions:

• |A| = (A∗A)
1
2

• The essential norm of A, ‖A‖ess = inf{‖A−K‖ ; K compact }.
• The kth approximation number of A,

sk(A) = inf{‖A− F‖ ; rank F ≤ k − 1}.
The following result, taken from [9], is useful in understanding the location of
discrete eigenvalues of a bounded self-adjoint operator (for the proof, see pp.
204, 212-214 of [9]).

Theorem 1.2. [9] The set σ(|A|) − [0, ‖A‖ess] is at most countable, ‖A‖ess is
the only possible accumulation point, and all the points in the set are eigenvalues
with finite multiplicity of |A|. Furthermore if

λ1(|A|) ≥ λ2(|A|) ≥ . . . (1.2)

are those eigenvalues in non increasing order and let N ∈ {1, 2, . . .}∪{∞} be the
number of terms in (1.2), then

sk (A) =

{
λk (|A|) , ifN = ∞ or 1 ≤ k ≤ N
‖A‖ess , ifN < ∞ and k ≥ N + 1

(1.3)

By considering the positive operators A − mI and MI − A, the above result
implies that there exist at most countably many discrete eigenvalues of A, outside
the bounds of essential spectrum of A. Also, the possible accumulation points are
the upper and lower bounds of the essential spectrum, σe(A). Let ν, µ be the lower
and upper bounds of σe(A) respectively. Also denote the discrete eigenvalues of
A lying above µ by

λ+
1 (A) ≥ λ+

2 (A) . . . ( total R terms )

and the discrete eigenvalues of A lying below ν by

λ−1 (A) ≤ λ−2 (A) ≤ . . . ( total S terms ),

where R,S ∈ {1, 2, . . .} ∪ {∞}.
Consider the finite dimensional truncations of A, that is An = PnAPn, where

Pn is the projection of H onto the span of first n elements {e1, e2, . . . , en} of the
basis. Denote the eigenvalues of An by λ1(An) ≥ λ2(An) ≥ . . . ≥ λn(An). The
following results are proved in [3], with the help of Theorem 1.2 (Corollary 2.2
and Theorem 3.1 of [3]).

Theorem 1.3. [3]

lim
n→∞

λk (|An|) = lim
n→∞

sk (An) = sk (A) =

{
λk (|A|) ifN = ∞ or 1 ≤ k ≤ N
‖A‖ess if N < ∞ and k ≥ N + 1
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Theorem 1.4. [3] For every fixed integer k,

lim
n→∞

λk(An) =

{
λ+

k (A) , ifR = ∞ or 1 ≤ k ≤ R,
µ, ifR < ∞ and k ≥ R + 1,

lim
n→∞

λn+1−k(An) =

{
λ−k (A) , ifS = ∞ or 1 ≤ k ≤ S,
ν, ifS < ∞ and k ≥ S + 1.

In particular, limk→∞ limn→∞ λk(An) = µ and limk→∞ limn→∞ λn+1−k(An) = ν.

Denote Λ = {λ ∈ R; λ = lim λn, λn ∈ σ(An)}. The subsequent theorem taken
from [3] denies the existence of spurious eigenvalues (points in Λ which are not
spectral values) if the essential spectrum is connected.

Theorem 1.5. If A is a bounded self-adjoint operator and if σe(A) is connected,
then σ(A) = Λ.

Hence the remaining task is to predict the existence of spectral gaps that may
occur in between the bounds of essential spectrum. Attempts have been done in
this direction using the truncation method (see [14]). This problem is addressed
in section 3.

The structure of this article is as follows. In the next section, results on the
random version of the spectral approximation are discussed. There it is proved
that the sequence of random eigenvalues of truncations converge in distribution
to the discrete eigenvalues of the bounded random self-adjoint operator. Some
examples of random operators and their spectral approximation are also given
there. In the third section, a new method is proposed to predict the spectral
gaps using eigenvalues of truncations. The article ends with a discussion on the
main results and the further possibilities.

2. Spectral Approximation - Random Case

Here onwards, we consider the case where A(ω) is a bounded self-adjoint op-
erator for almost all ω. Results on random version of spectral approximation,
in particular Theorem 1.4, are proved with respect to different modes of con-
vergence. That is the convergence of eigenvalue sequence of truncations A(ω)n

to the discrete eigenvalues and to the upper and lower bounds of essential spec-
trum of A(ω) are proved with respect to various notions of convergence such as
convergence in distribution, convergence in probability, etc.

Firstly, assume that the moments of all orders exist and are finite for the
random variable that maps ω 7→ ‖A(ω)‖. This assumption is too strong and one
can prove the results of this section with some weaker assumptions. However, this
assumption will help us to reduce many technical steps involved in the proofs of
some results. Recall the notations:

• ‖A(ω, .)‖ess = inf{‖A(ω)−K‖ ; K compact}.
• sk(ω) = inf{‖A(ω)− F‖ ; rank F < k}.

Since each sk(ω) are bounded by ‖A(ω)‖, for which the moments exist by our
assumption, the moments of all orders exist for sk(ω). Now by Theorem 1.3, sk(ω)
converges to ‖A(ω)‖ess almost everywhere as k tends to infinity. Also sk(ω) is
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a monotone decreasing sequence of nonnegative functions. Hence by Monotone
Convergence Theorem, the expectations E(sk)−E(‖A(., .)‖ess) = o(1). Similarly,
moments of all orders converge.

Next lemma is the random version of the approximation of approximation
numbers, proved in [3].

Lemma 2.1. If sk,n(ω) = inf{‖A(ω)n − F‖ ; rank F < k}, then the expectation
of sk,n converges to the expectation of sk for each positive integer k. That is
E(sk,n) → E(sk) as n →∞, for each k = 1, 2, 3 . . ..

Proof. Observe that, for each k, sk,n(.) converges to sk(.) almost everywhere as
n goes to ∞ by Theorem 1.3. From the interlacing theorem for singular values
(refer e.g [2]), for each k, {sk,n(.); n ∈ N} is a monotone decreasing sequence of
nonnegative functions. Hence by Monotone Convergence Theorem,

E(sk,n) → E(sk) as n goes to ∞, for each k.

The existence of the integral is a consequence of our assumption on the moments
of ‖A(ω)‖. Hence the proof is completed. �

Now let ν(ω), µ(ω) denote the lower and upper bounds of the essential spectrum
σe(A(ω)) respectively, and also let the numbers

λ+
1 (A(ω)) ≥ λ+

2 (A(ω)) ≥ . . . ( total R terms )

be the discrete eigenvalues of A(ω) lying above µ(ω), and

λ−1 (A(ω)) ≤ λ−2 (A(ω)) ≤ . . . ( total S terms )

be the eigenvalues lying below ν(ω). Here R and S can be infinite and they
depend on ω. The quantities λ1,n(ω) ≥ λ2,n(ω) ≥ . . . ≥ λn,n(ω) denote the
eigenvalues of A(ω)n in non increasing order. Also, it is possible that the above
inequalities may not hold in a set of measure zero.

The following couple of theorems are the main results in this section. In the
first one, uniform rate of convergence is assumed for sk(A(ω)n)−sk(A(ω)), which
leads to an estimate of the first moment sequence of eigenvalues of A(ω)n. Such an
estimate may be useful for some special class of operators. The second theorem
is of theoretical interest, where the convergence in distribution is obtained for
eigenvalues of truncations.

Theorem 2.2. If sk(A(ω)n)− sk(A(ω)) = O(θn), where θn goes to zero as n goes
to infinity, then

E(λk,n(.))− E((λ+
k )) = O(θn), if R = ∞ and

E(λn+1−k,n(.))− E((λ−k )) = O(θn), if S = ∞.

Proof. First we prove that if sk(An) − sk(A) = O(θn), where θn goes to 0 as n
tends to ∞, then

λk(An) =

{
λ+

k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R
µ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =

{
λ−k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S
ν + O(θn), if S < ∞ and k ≥ S + 1



RANDOM SPECTRAL APPROXIMATION 103

where R and S are defined as in Theorem 1.4.
For if N is the number of eigenvalues lying in σ(|A|)− [0, ‖A‖ess] , then from

identity (1.3), and the the fact that sk(An) = λk(|An|), we get the following.

sk(An)− sk(A) =

{
λk(|An|)− λk(|A|), if N = ∞ or 1 ≤ k ≤ N
λk(|An|)− ‖A‖ess , if N < ∞ and k ≥ N + 1

Since sk(An)− sk(A) = O(θn),

λk(|An|)− λk (|A|) = O(θn), if N = ∞ or 1 ≤ k ≤ N,

λk(|An|)− ‖A‖ess = O(θn), if N < ∞ and k ≥ N + 1.

Applying this to the positive operators A−mI, and MI −A, with the notations
used in Theorem 1.4, we get the following conclusions.

λk(An −mIn) =

{
λk (A−mI) + O(θn), if R = ∞ or 1 ≤ k ≤ R
‖A−mI‖ess + O(θn), if R < ∞ and k ≥ R + 1

and

λk(MIn − An) =

{
λk (MI − A) + O(θn), if S = ∞ or 1 ≤ k ≤ S
‖MI − A‖ess + O(θn), if S < ∞ and k ≥ S + 1

Also by spectral mapping theorem, the upper bound of the essential spectrum of
the positive operators A −mI and MI − A are µ −m and M − ν respectively.
Now the following identities are easy consequences of Theorem 1.2.

‖A−mI‖ess = µ−m, ‖MI − A‖ess = M − ν.

λk(An −mIn) = λk(An)−m, λk(MIn − An) = M − λn+1−k(An).

λk(A−mI) = λ+
k (A)−m, λk(MI − A) = M − λ−k (A).

Hence we get the desired conclusions

λk(An) =

{
λ+

k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R
µ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =

{
λ−k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S
ν + O(θn), if S < ∞ and k ≥ S + 1

Now by hypothesis, sk(A(ω)n)− sk(A(ω)) = O(θn). Therefore

λn,k(ω) = λ+
k (ω) + O(θn), if R = ∞,

λn,n+1−k(ω) = λ−k (ω) + O(θn), if S = ∞.

Now observe that the order θn is independent of ω. Consequently, we obtain

E(λk,n)− E(λ+
k ) = E(λk,n − λ+

k ) = O(θn), if R = ∞,

E(λn,n+1−k)− E(λ−k ) = E(λn,n+1−k − λ−k ) = O(θn), if S = ∞.

�

Before proving the next theorem, recall the notion of convergence in distribu-
tion. Let Ω be the set of all real numbers.
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Definition 2.3. A sequence of random variables Xn converges in distribution to
a random variable X if, for every bounded continuous function F : R → R with
compact support, one has

lim
n→∞

E(F (Xn)) = E(F (X))

Theorem 2.4. Let A(ω) be a random bounded self-adjoint operator with infinitely
many eigenvalues above and below the bounds of essential spectrum. Then for
each k, the sequence of kth eigenvalues λk,n of the truncations A(ω)n converges
in distribution to the kth eigenvalue λk

+ above the upper bound of the essential
spectrum of A(ω). Also for each k, the sequence of (n + 1− k)th eigenvalues
λn+1−k,n of the truncations A(ω)n converges in distribution to the kth eigenvalue
λk
− below the lower bound of the essential spectrum of A(ω).

Proof. First we claim that the Fourier transform Fλk,n
(t) = 1

2π

∫
R eit.λk,n(ω)dω con-

verges to Fλ+
k
(t) = 1

2π

∫
R eit.λ+

k (ω)dω pointwise. For this, note that λk,n(.) converges

to λ+
k (.) almost surely and the exponential function is continuous. Therefore,

eit.λk,n converges to eit.λ+
k almost surely.

Also,
∣∣eit.λk,n

∣∣ is dominated by the constant function 1. Hence by Lebesgue dom-
inated convergence theorem,

Fλk,n
(t) =

1

2π

∫
R

eit.λk,n(ω)dω converges to Fλ+
k
(t) =

1

2π

∫
R

eit.λ+
k (ω)dω pointwise.

From the Fourier inversion formula:

Φ(λk,n)(ω) =

∫
R

Φ̂(t)eit.λk,n(ω)dt,

for every Schwartz function Φ on R. Therefore,∫
R

Φ(λk,n(ω))dω =

∫
R

∫
R

Φ̂(t)eit.λk,n(ω)dtdω

By Fubini-Tonelli theorem, this gives∫
R

Φ(λk,n(ω))dω =

∫
R

Φ̂(t)Fλk,n
(t)dt

Now the integrand Φ̂(t)Fλk,n
(t) converges to Φ̂(t)Fλ+

k
(t) pointwise.

Also,
∣∣∣Φ̂(t)Fλk,n

(t)
∣∣∣ is dominated by the integrable function Φ̂(t). Again using the

Lebesgue dominated convergence theorem, we get∫
R

Φ̂(t)Fλk,n
(t)dt converges to

∫
R

Φ̂(t)Fλ+
k
(t)dt.

That is the integral
∫

R Φ(λk,n(ω))dω converges to
∫

R Φ(λ+
k (ω))dω for every Schwartz

function Φ on R.
Now by Stone-Weierstrass theorem, every continuous function with compact

support can be uniformly approximated by sequence of Schwartz functions. Since
uniform convergence will allow us to interchange the limit and the integral, we
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get the integral
∫

R f(λk,n(ω))dω converges to
∫

R f(λ+
k (ω))dω for every continuous

function f on R, with compact support. Hence the proof is completed. �

Remark 2.5. The motivation for the above proof technique is the proof of Levy
continuity theorem (see [18]).

Remark 2.6. It can be observed that the convergence of moments of eigenvalues of
truncations to the eigenvalue of the operator can be proved without the assump-
tion of uniform rate of convergence of approximation numbers. The arguments
are as follows:

Theorem 2.7. Let A(ω) be a bounded random self-adjoint operator with infin-
itely many discrete eigenvalues lying outside the bounds of essential spectrum for
almost all ω. Then

E(λk,n(.))− E(λ+
k (.)) = o(1), for each k,

E(λn+1−k,n(.))− E(λ−k (.)) = o(1), for each k,

Also,

lim
k→∞

lim
n→∞

E(λk,n(.)) = E(µ(.))

and

lim
k→∞

lim
n→∞

E(λn+1−k,n(.) = E(ν(.))

Proof. For almost every ω, by Theorem 1.4,

lim
n→∞

λk,n(ω) =

{
λ+

k (ω) , if R = ∞ or 1 ≤ k ≤ R,
µ(ω), if R < ∞ and k ≥ R + 1,

lim
n→∞

λn+1−k,n(ω) =

{
λ−k (x) , if S = ∞ or 1 ≤ k ≤ S,

ν(ω), if S < ∞ and k ≥ S + 1.

In particular,

lim
k→∞

lim
n→∞

λk,n(ω) = µ(ω) and lim
k→∞

lim
n→∞

λn+1−k,n(ω) = ν(ω) a.e.

Now observe that for each k and n,

|λk,n(ω)| ≤ ‖A(ω)‖ for almost every ω.

Since the moments of ‖A(ω)‖ exist and are finite, by Lebesgue dominated con-
vergence theorem, the proof is completed. �

Remark 2.8. Complex analytic techniques to compute integrals involving eigen-
values using matrix entries (see for eg. [13]), are useful in the computation of
moment sequences appearing in the above theorem.
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2.1. Examples. Now let’s discuss some examples of random bounded self-adjoint
operators and their spectral approximation.

Random Toeplitz operators:
Let fω be a family of continuous functions with ω varying in some probability

space. Consider the family of Toeplitz operators with the one parameter family
of continuous symbols fω. That is the operators Tfω acting on l2(N) defined
by the infinite matrices obtained from the Fourier coefficients of the continuous
functions fω. The (i, j)th entry in the infinite matrix is ai−j(ω), where ak(ω) is
the kth Fourier coefficient of fω.

The spectrum of Tfω is the essential range of fω. It is known that the spectrum
of such operators is completely determined by the limits of the eigenvalues of
their truncations (Theorem 4.1 and Example 4.3 of [3]). We shall consider some
concrete examples which are compact perturbations of random Toeplitz operators.

Example 2.9. Let fω(x) = sin(x + ω); x, ω ∈ [−π, π] . Here the spectrum is
independent of ω, and σ(Tfω) = σe(Tfω) = [−1, 1] . Now if A(ω) is a compact per-
turbation of the operator Tfω ; that is A(ω) = Tfω +A for some compact operator
A, then considering the truncations A(ω)n, we get uniform rate of convergence
for approximation numbers.

That is sk(A(ω)n) − sk(A(ω)) = O(θn), where θn goes to zero as n goes to
infinity and therefore the hypothesis of Theorem 2.2 is satisfied. Hence we have

E(λk,n(.))− E((λ+
k )) = O(θn), if R = ∞ and

E(λn+1−k,n(.))− E((λ−k )) = O(θn), if S = ∞.

Example 2.10. Let fω(x) = sin(ω)sin(x); x, ω ∈ [−π, π] . Here the spectrum
depends on ω for almost all ω and σ(Tfω) = σe(Tfω) = [−sin(ω), sin(ω)] . As
in the previous example, we shall consider the compact perturbations of this
operator; that is A(ω) = Tfω +A for some compact operator A. This will provide
some nontrivial examples of the truncation method for the spectral approximation
discussed in this section.

3. Gap prediction methods

In this section, a new method is proposed to predict the spectral gaps that may
occur between the bounds of the essential spectrum. We begin with two lemmas
which are the modified versions of the results in [17]. These results can be used
to compute one end point of a spectral gap if the other end point is known.

Lemma 3.1. Let A be a bounded self-adjoint operator with the essential spectrum,
σe(A) = [a, b]∪{c} where a < b < c. Assume that b is not an accumulation point
of the discrete spectra of A. Then a, b, c can be computed by truncation method.

Proof. The numbers a and c can be computed by truncation method, with the
help of Theorem 1.4, as they are the lower and upper bounds of essential spectrum.
Assume that A is positive so that a ≥ 0. Now consider the continuous function φ
defined as follows.

φ(t) =

{
t, t ∈ [a, b]
b(t−c)
b−c

, t ∈ [b, c]
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Then by spectral mapping theorem, we have

σe(φ(A)) = {0} ∪ [a, b].

Hence b can also be computed as the upper bound of σe(φ(A)). If A is not a
positive operator, then consider the positive operator A − mI and apply the
same technique to compute b. This completes the proof. �

Lemma 3.2. Let A be a bounded self-adjoint operator and σe(A) = [a,b] ∪ [c,d],
where a < b < c < d. Assume that b is known and not an accumulation point of
the discrete spectra of A. Then c can be computed by truncation method.

Proof. Here it requires to consider the function φ defined as

φ(t) =

{
0, t ∈ [a, b]
t− b t ∈ [c, d]

Then σe(φ(A)) = {0} ∪ [c− b, d− b]. Hence the numbers c− b and d− b can be
obtained by truncation method. Therefore since b is assumed to be known, c and
d are computable. Hence the proof. �

The concepts of second order relative spectra and quadratic projection method,
which are almost synonyms, were used in the spectral pollution problems and to
determine eigenvalues in the gaps (see [6, 7, 15, 16]). Analogous to this, here a
new method is proposed which can be used in the spectral gap prediction prob-
lems. In short, the spectral gap prediction problem is reduced to determining
nonzero values of a particular function. This particular function can be uni-
formly approximated by a sequence of functions, which are calculated using the
eigenvalues of truncations of the operator under concern.

The idea is to open the gap by translating and squaring the operator and
identifying each number in the interval (ν, µ) as the lower bound of essential
spectrum of a positive definite operator, which is computed using the truncation
method, in particular by Theorem 1.4.

Define the nonnegative valued function f on the real line R as follows.

f (λ) = νλ = inf σe((A− λI)2).

The first observation is that one can predict the existence of a gap inside the
essential spectrum by evaluating the function and checking whether it attains a
nonzero value. Each nonzero value of this function gives indication of a spectral
gap.

Theorem 3.3. The number λ in the interval (ν, µ) is in the gap if and only if

f (λ) > 0. Also one end point of the gap will be λ±
√

f (λ).

Proof. Using the spectral mapping theorem, observe that f (λ) is the square of
the distance of λ to the essential spectrum of A. The details are given below.

inf σe((A− λI)2) = d(0, σe((A− λI)2)) = d(0, σe(A− λI))2 = d(λ, σe(A))2

Hence λ is in the essential spectrum of A if and only if f (λ) = 0, since essential
spectrum is a closed set. Therefore the number λ in the interval (ν, µ) is in the
gap if and only if f (λ) > 0. Now if λ is in the gap, then one of the end points

will be at a distance
√

f(λ) from λ. Hence that end point will be λ±
√

f(λ). �
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The advantage of considering f(λ) is that, it is the lower bound of the essential
spectrum of the operator (A − λI)2, which can be computed using the finite
dimensional truncations with the help of Theorem 1.4. So the computation of
f(λ) is possible for each λ. This enables us to predict the gap using truncations.
Also in Theorem 3.3, it is possible to compute one end point of a gap. The other
end point can be computed as discussed in Lemma 3.2. Below, the function f(.) is
approximated by a double sequence of functions, which arise from the eigenvalues
of truncations of operators.

Theorem 3.4. Let fn,k be the sequence of functions defined by

fn,k (λ) = λn+1−k

(
Pn (A− λI)2 Pn

)
.

Then f(.) is the uniform limit of a subsequence of {fn,k (.)} on all compact subsets
of the real line.

Proof. By Theorem 1.4, for each λ,

f (λ) = lim
k→∞

lim
n→∞

fn,k (λ) , where fn,k (λ) = λn+1−k

(
Pn (A− λI)2 Pn

)
.

Now the quantity ∆ = |fn,k (λ)− fn,k (λ0)| can be estimated as follows.

∆ =
∣∣λn+1−k

(
Pn (A− λI)2 Pn

)
− λn+1−k

(
Pn (A− λ0I)2 Pn

)∣∣
≤

∥∥Pn (A− λI)2 Pn − Pn (A− λ0I)2 Pn

∥∥
≤

∥∥(A− λI)2 − (A− λ0I)2
∥∥ =

∥∥(λ2 − λ0
2)I − 2(λ− λ0)A

∥∥ ≤ M |λ− λ0| ,
where M = 2 (|µ|+ ‖A‖). For the first inequality, recall an important inequality
concerning the eigenvalues of self-adjoint matrices A, B (refer e.g. to [2])

|λk (A)− λk (B)| ≤ ‖A−B‖ . (3.3)

and the second one from the fact that ‖Pn‖ = 1. Hence,

|fn,k (λ)− fn,k (λ0)| ≤ M |λ− λ0| .
Since the constant M above is independent of n, k or λ, {fn,k (.)} forms an
equicontinuous family of functions, also it is pointwise bounded. Hence {fn,k (.)}
has a subsequence that converges uniformly on all compact subsets by Arzela-
Ascoli theorem. Hence the proof is completed. �

The following result makes the computation of f (λ) much easier for a particular
class of operators. The difficulty of squaring a bounded operator is reduced by first
truncating the operator and then squaring the truncation, rather truncating the
square of the operator. The computation needs only squaring the finite matrices.

Theorem 3.5. If ‖PnA− APn‖ → 0 as n →∞, then

lim
k→∞

lim
n→∞

λn+1−k

(
Pn (A− λI)2 Pn

)
= lim

k→∞
lim

n→∞
λn+1−k (Pn (A− λI) Pn)2 .

Proof. The notation Aλ is used for A− λI. Observe the following chain of equal-
ities;∥∥Pn (Aλ)

2 Pn − (Pn (Aλ) Pn)2
∥∥ = ‖Pn (Aλ) (Aλ) Pn − (Pn (Aλ) Pn) (Pn (Aλ) Pn)‖

= ‖Pn (Aλ) (Aλ) Pn− (Aλ) Pn (Aλ) Pn + (Aλ) PnPn (Aλ) Pn − Pn (Aλ) Pn (Aλ) Pn ‖
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using Pn
2 = Pn and adding and subtracting (Aλ) Pn (Aλ) Pn. And notice that the

latter is equal to

‖[Pn (Aλ)− (Aλ) Pn] (Aλ) Pn − [Pn (Aλ)− (Aλ) Pn] Pn (Aλ) Pn‖ =

‖[Pn (Aλ)− (Aλ) Pn] [(Aλ) Pn − Pn (Aλ) Pn]‖ ≤ 2 ‖Aλ‖ ‖Pn (Aλ)− (Aλ) Pn‖ =

2 ‖Aλ‖ ‖PnA− APn‖ → 0,

as the dimension n tends to infinity.
Applying (3.3) to the matrices

(
Pn (A− λI)2 Pn

)
and (Pn (A− λI) Pn)2, we

get∣∣λn+1−k

(
Pn (Aλ)

2 Pn

)
− λn+1−k (Pn (Aλ) Pn)2

∣∣ ≤ ∥∥(
Pn (Aλ)

2 Pn

)
− (Pn (Aλ) Pn)2

∥∥ .

Since the right hand side goes to zero as n tends to infinity, we get the desired
conclusion. �

Remark 3.6. By observing the proof of the last theorem, it can be noticed that
the last assertion is independent of k. That means a similar conclusion holds for
each kth eigenvalue of A. Hence for a large class of operators, instead of squaring
the operator and truncating, it is enough to square the truncation. The following
is an example.

Example 3.7. Let an be an enumeration of rational numbers in the set [0, 1
2
] ∪

[3
4
, 1]. Define the bounded self-adjoint operator A on l2(N) by

A(x1, x2, . . .) = (a1x1, a2x2, . . .)

It can be observed that the bounds of the essential spectrum are ν = 0 and µ = 1.
Now

σ((A− λI)2
n) = {(a1 − λ)2, (a2 − λ)2, . . . (an − λ)2}.

Also, it can be inferred that the sequence of lowest eigenvalues of ((A − λI)2
n)

goes to zero if and only if there exists a subsequence an,k of an that approaches
λ. This happens only when λ is in the set [0, 1

2
] ∪ [3

4
, 1]. Therefore for every λ in

the interval (1
2
, 3

4
), f(λ) is positive and hence it is a spectral gap.

The spectral gap issues of random bounded self-adjoint operators is an impor-
tant area for further research. Here we consider an example which indicates the
instability of spectral gaps of random bounded self-adjoint operators. We con-
sider the random block Toeplitz operator generated by a p × p random matrix
valued symbol.

Example 3.8. Define a two parameter family of matrix valued symbols as follows.

f(ω, θ) =



b1(ω) 1 e−iθ

1 b2(ω) 1
1 b3(ω) 1

1 b4(ω) 1
. . . . . . . . .

eiθ 1 bp(ω)
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where b1(.), b2(.) . . . bp(.) are real valued measurable functions on a domain con-
taining the interval [0, 1] and θ varying in the interval [0, 2π]. We consider the one
parameter family of block Toeplitz operators arising from these symbols. Thus we
get a random family of bounded self-adjoint operators A(ω). This corresponds to
the discretized version of Schrödinger operator with periodic random potential.

The essential spectrum of A(ω0) has no gaps if and only if b1(ω0) = b2(ω0) . . . =
bp(ω0) (See [10], Section 4). Therefore it is clear that the existence of spectral gaps
depend on the values of the random variables b′is. That means the randomness
in the prediction of spectral gaps is proportional to the randomness of b′is. Hence
the spectral gap prediction is highly instable in this example.

4. Discussion on the main results and further possibilities

In this section, we discuss some of the important features of the main results.
Also, further possibilities of the considered theory are discussed here. We state
some important open problems in this area.

4.1. Wigner operators and error estimate. The rate of convergence of the
approximation in Theorem 1.4 and its random versions, is not known in the
general case. Nevertheless one can expect a better rate of convergence in the
case of some special class of operators. Here we consider Wigner operators and
identify their truncations with the well known Wigner matrices. Unfortunately,
these operators are unbounded. So the theory developed here is not applicable to
this case. However this will be a source of many problems of practical interest.
We give the details below.

Definition 4.1. A random operator A(ω) is called a Wigner operator if the
following conditions are satisfied.

(1) For i ≤ j, fi,j(ω) = 〈A(ω)ej, ei〉 are independent with mean zero and
variance one, and fi,j = f̄j,i.

(2) For i < j, fi,j are identically distributed, with distribution η.
(3) fi,i are identically distributed, with distribution η̃.
(4) (Uniform exponential decay) There exists C, C ′ > 0 such that

P (|fi,j| ≥ tC) ≤ exp(−t), for every t ≥ C ′ and i, j.

The classical example of Wigner matrices [20], is the motivation for the above
definition. Wigner matrices are examples of random matrices for which the em-
pirical distribution of eigenvalues converges to the semicircle distribution in the
weak probability. If truncations A(ω)n of a Wigner operator are considered, then
resultant matrix is a Wigner matrix. The Wigner semi circular law asserts that
the empirical spectral distribution

µn =
1

n

n∑
1

δ 1√
n
λi,n

converges to the semicircular distribution ρsc (in weak probability), where

ρsc(x) =
1

π

√
4− x2.χ[−1,1]
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There were attempts to estimate the mean square difference of eigenvalues of
Wigner matrices and the classical location of them. The article due to Terence
Tao and Van Vu [19] is one among them. Under the assumption that the third
moment vanishes, the following estimation was proved by Tao and Vu in [19].

Theorem 4.2. [19] There is an absolute constant c > 0 such that the following
holds for any constant ε > 0. Let An be a Wigner matrix whose distribution η
has vanishing third moment E(η3) = 0. Then for all 1 ≤ i ≤ n,

E(
∣∣λi,n −

√
nγi

∣∣2) = O(min(n−cmin(i, n + 1− i)−2/3n2/3, n1/3+ε)),

where γi is the classical location of the ith eigenvalue of An, given by the formula
γi∫

−∞

ρsc (x) dx =
i

n
.

Remark 4.3. In the paper [8], a better bound
n∑

i=1

E(
∣∣λi,n − γi

√
n
∣∣2) = O(n1−c)

was established for some constant c > 0.

An interesting problem is to prove the operator theoretic version of these esti-
mates. That means we need to estimate the mean square difference of eigenvalues
of Wigner operator and the classical location of eigenvalues of Wigner matrices.
It can be observed that the unboundedness of Wigner operator makes this task
nontrivial. Otherwise these estimates are mere consequence of Theorem 1.4 and
2.2.

One can use the results in [19], to get good estimates of the spectrum and
spectral gaps for Wigner operators. For a Wigner operator, the truncations are
Wigner matrices. The following results for such matrices can be found in [19] and
the references therein.

• λi(An) − γi.
√

n = o(
√

n); 1 ≤ i ≤ n. Use this to get good estimates in
the spectral approximation of the Wigner operator.

• Let Fn(x) = 1
n
E(Nn [−2, x]), ∆ = Supx

∣∣Fn(x)−
∫ x

∞ ρsc(t)dt
∣∣ , then ∆ =

O(n
−1
2−c ), if the third moment is 0. Use these to get information regarding

essential points and integrated density of states.
• Four moment theorem in [19], can be used for the perturbation kind re-

sults.

4.2. Spectral gap prediction. The function f(.) that is considered in section 3,
is directly related to the distance from the essential spectrum, while the function
used in [6, 7] is related to the distance from the spectrum. Here the approximation
results in [3], especially Theorem 1.4 are used to approximate the function. But
it is still not known to us whether these results are useful in a computational
point of view. The methods in [6, 7] were applied in the case of some Schrödinger
operators with a particular kind of potentials in [15, 16]. Hopefully, a combined
use of both methods may give a better understanding of the spectrum.
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To determine the gaps in the essential spectrum of a particular operator, using
the method proposed in section 3, the following problems may arise. Checking
the conditions for each λ in (ν, µ) , is a difficult task in the computational point
of view. The uniform convergence established in Theorem 3.4, may be useful to
get around this difficulty.

Also taking truncations of the square of the operator may be difficult. Note that
(PnAPn)2 and PnA

2Pn are not equal, so that one has to do more computations
to handle the problem. Theorem 3.5 solves this problem for a special class of
operators, up to some extend.

4.3. Moment Problem. From the results proved in Section 2, the following
observations can be made easily.

For each h = 1, 2, 3, . . . , and fixed k,

lim
n→∞

(λk,n(ω))h = (λ+
k )h (ω) , if R = ∞,

for almost all ω. Thus, for each k, the hth moment of eigenvalues converges. That
is,

lim
n→∞

E(λk,n(.))h = E((λ+
k )h), if R = ∞.

Similarly,

lim
n→∞

E(λn+1−k,n(.))h = E((λ−k )h), if S = ∞.

Recall that if Yn is a sequence of real valued random variables and if there
exists some (nonrandom) sequence βh such that E(Y h

n ) → βh for every positive
integer h where βh satisfies Carleman’s condition,

∞∑
h=1

(β2h)
−1/2h = ∞,

then from [4], it is well-known that there exists a distribution function F, such
that for all h,

βh =

∫
xhdF (x)

and Yn converges to F in distribution. It is also known that this condition is not
necessary in general. The following can be treated as a converse of the moment
problem.

If βh is used to denote E((λ±k )h), does the sum
∑∞

h=1(β2h)
−1/2h diverges to ∞?

That is whether the Carleman’s condition is satisfied?
We hope that the above mentioned open problems pave way for establishing

a connection between the spectral theory of random operators and eigenvalue
distribution of random matrices.
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