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ON THE DIFFERENCE PROPERTY OF HIGHER ORDERS
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Abstract. In this paper, inspired by some results concerning the double dif-
ference property, we show that the class Cp(R, R) of p-times continuously dif-
ferentiable functions has the difference property of p-th order, i.e. if a function
f : R → R is such that ∆p

hf ∈ Cp(R × R, R), where ∆p
hf is the p-th iter-

ate of the well-known difference operator ∆hf(x) := f(x + h) − f(x), then
there exists a polynomial function Γp−1 : R → R of (p − 1)-th order such that
f − Γp−1 ∈ Cp(R, R). Moreover, some new equalities connected with the dif-
ference operator are also presented.

1. Introduction

Throughout this paper, N0, N and R will always denote the sets of all non-negative
integers, positive integers and real numbers, respectively. Moreover, let F , F2 be
classes of real valued functions defined on R and R2, respectively.

The notion of the so-called difference property for various classes of real func-
tions was investigated by de Bruijn in [3]. He considered the following problem:

Let f : R → R be a function. Assume that for each h ∈ R the function
∆hf : R → R defined by

∆hf(x) := f(x + h)− f(x), x ∈ R,

belongs to a given class F ⊂ RR. What can be said about the function f?
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In [3] and [4] it was shown that for a great number of important classes F (e.g.
the classes of continuous, differentiable, analytic, absolute continuous, Riemann-
integrable functions) the function f may be written in the form of

f = g + A, (1.1)

where g ∈ F and A : R → R is an additive function, i.e. it satisfies the Cauchy
functional equation

A(x + y) = A(x) + A(y), x, y ∈ R.

Thus we can formulate the following definition: the class F is said to have the
difference property if any function f : R → R with all differences ∆hf belonging
to F admits a decomposition (1.1).

The results of de Bruijn have been extended and generalized in various direc-
tions (cf., e.g., [5], [6], [7], [8], [11], [13]). However, the class of all measurable
functions fails to have this property. This class has the so-called weak difference
property (see [8] and [15]). An extensive source of information on the difference
property is Laczkovich’s survey paper [16].

For a given function f : R → R and an h ∈ R we define inductively the differ-
ence operator ∆p

h with increment h as follows:

∆p
hf(x) = ∆h

(
∆p−1

h f(x)
)
, x ∈ R, p ∈ N.

Additionally, we put ∆0
hf(x) = f(x). In particular, we have ∆1

hf(x) = ∆hf(x).
A function f : R → R is said to be a polynomial function of p-th order if and

only if

∆p+1
h f(x) = 0

for all x, h ∈ R (see [14] for more details).
It is well known (cf. [9]) that f : R → R is a polynomial function of p-th order

if and only if it has a unique representation

f = f0 + f1 + . . . + fp,

where f0 is a constant, and fk : R → R for k = 1, 2, . . . , p are diagonalizations of
k-additive symmetric functions Fk : Rk → R, i.e.,

fk(x) := Fk(x, . . . , x︸ ︷︷ ︸
k

), x ∈ R, k = 1, 2, . . . , p.

Moreover (see [14], for example), for any p ∈ N the following equality holds true:

∆p
hf(x) =

p∑
i=0

(−1)p−i

(
p

i

)
f(x + ih), x, h ∈ R. (1.2)

Following J. H. B. Kamperman [12] we say that a class F ⊂ RR have the
difference property of p-th order (p ∈ N) if and only if any function f : R → R
such that ∆p

hf ∈ F for each h ∈ R admits a decomposition f = g + Γ, where
g ∈ F and Γ: R → R is a polynomial function of p-th order.

Difference properties of higher orders for various classes of functions (e.g. the
classes of all continuous functions on a locally compact Abelian group and all
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Riemann integrable functions on a compact second countable Abelian group)
have been proved by Z. Gajda (see [10]).

M. Laczkovich in [15] considered the so-called double difference property. He
proved, in particular, that for any function f : R → R if the Cauchy difference
Cf(x, y) := f(x+y)−f(x)−f(y) is Lebesgue measurable, then f can be expressed
as a sum of a Lebesgue measurable function and an additive function. Formally,
a pair of classes

(
F ,F2

)
is said to have the double difference property if every

function f : R → R such that Cf ∈ F2 is of the form f = g + A, where g ∈ F
and A is an additive function. For the sake of brevity we shall use the improper
version in which the class F has the double difference property.

In [18] J. Tabor and J. Tabor proved, in particular, that the class Cn(X, Y ) of
n-times continuously differentiable functions defined on a real normed space X
and taking values in a real Banach space Y has the double difference property.
Their result was applied to prove that the Cauchy and Jensen functional equa-
tions are stable in Ulam–Hyers sense with respect to large class of seminorms
defined by means of derivatives. A similar problem concerning the so-called dou-
ble quadratic difference property in connectedness with the Ulam–Hyers stability
of the quadratic functional equation was considered in [1] and [2].

The purpose of this paper is to show how the difference property of higher
orders for the class p-times continuously differentiable functions may be proved
by means of other tools. More precisely, we give an alternative proof of this result
using the technique associated with the notion of the double difference property
[18].

2. Preliminaries

Let f : R → R be p-times differentiable function. By Dpf , p ∈ N, we de note
p-th derivative of f and D0f stands for f . The space of all functions f : R → R
that are p-times differentiable on R will be denoted by Dp(R, R). By C∞(R, R)
we denote the space of infinitely many times continuously differentiable functions.
By ∂p

kf , k = 1, 2, we denote, as usual, the p-th partial derivative of f : R×R → R
with respect to the k-th variable.

In the sequel we will adopt the following notation:

∆pf(x, h) := ∆p
hf(x), x, h ∈ R, p ∈ N.

To avoid distinguishing some cases and to shorten some considerations we will

also use the following convention. If m, n ∈ N0, m > n, then by
n∑

i=m

ai we mean

zero. Moreover, let 00 := 1.
In the present section we prove some lemmas concerning the difference operator

∆pf (p ∈ N) which will be useful in the proof of the main theorem of this paper.
Let k ∈ N0 and n ∈ N. In the sequel we will use the following equality (see,

e.g., [17], Lemma 1)

n∑
i=0

(−1)i

(
n

i

)
ik =

{
(−1)n · n!, k = n,
0, 0 ≤ k ≤ n− 1.

(2.1)
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From these equalities we easily deduce that
n∑

i=0

(−1)n−i

(
n

i

)
in = n!. (2.2)

Lemma 2.1. Let (X, +) be a commutative semigroup and let (Y, +) be a com-
mutative group. Let p ∈ N be fixed and let f : X → Y be a given function. Then
the difference operator ∆pf satisfies the following functional equation

p∑
i=0

(−1)i

(
p

i

)
∆pf(x + is, y + it) =

p∑
i=0

(−1)i

(
p

i

)
∆pf(x + iy, s + it) (2.3)

for all x, y, s, t ∈ X.

Proof. We have by (1.2)

p∑
i=0

(−1)i

(
p

i

)
∆pf(x + is, y + it)

=

p∑
i=0

(−1)i

(
p

i

) p∑
k=0

(−1)p−k

(
p

k

)
f
(
x + is + k(y + it)

)
=

p∑
k=0

(−1)k

(
p

k

) p∑
i=0

(−1)p−i

(
p

i

)
f
(
x + ks + i(y + kt)

)
=

p∑
i=0

(−1)i

(
p

i

) p∑
k=0

(−1)p−k

(
p

k

)
f
(
x + iy + k(s + it)

)
=

p∑
i=0

(−1)i

(
p

i

)
∆pf(x + iy, s + it),

due to the equality (−1)k = (−1)−k, k ∈ N0. �

Lemma 2.2. Let (X, +) be a commutative semigroup and let (Y, +) be a com-
mutative group. Let p ∈ N be fixed and let f : X → Y be a given function. Then
the difference operator ∆pf satisfies the following functional equation

∆pf(x, 2y) =

p∑
i=0

(
p

i

)
∆pf(x + iy, y) (2.4)

for all x, y ∈ X.

Proof. For p = 1 formula (2.4) becomes

∆f(x, 2y) =
1∑

i=0

(
1

i

)
∆f(x + iy, y) = ∆f(x, y) + ∆f(x + y, y)

=
[
f(x + y)− f(x)

]
+

[
f(x + 2y)− f(x + y)

]
= f(x + 2y)− f(x),

which is obviously true. Now assume that (2.4) holds for some p ∈ N. Then we
have by (1.2), the recurrence ∆p+1f(x, y) = ∆pf(x + y, y) − ∆pf(x, y), p ∈ N0,
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and induction hypothesis

∆p+1f(x, 2y)−
p+1∑
i=0

(
p + 1

i

)
∆p+1f(x + iy, y)

= ∆pf(x + 2y, 2y)−∆pf(x, 2y)

−
p+1∑
i=0

(
p + 1

i

)
∆pf

(
x + (i + 1)y, y

)
+

p+1∑
i=0

(
p + 1

i

)
∆pf(x + iy, y)

=

p∑
i=0

(
p

i

)
∆pf

(
x + (i + 2)y, y

)
−

p∑
i=0

(
p

i

)
∆pf(x + iy, y)

−
p+1∑
i=0

(
p + 1

i

)
∆pf

(
x + (i + 1)y, y

)
+

p+1∑
i=0

(
p + 1

i

)
∆pf(x + iy, y)

=

p+1∑
i=1

(
p

i− 1

)
∆pf

(
x + (i + 1)y, y

)
−

p+1∑
i=0

(
p + 1

i

)
∆pf

(
x + (i + 1)y, y

)
+

p+1∑
i=0

(
p + 1

i

)
∆pf(x + iy, y)−

p∑
i=0

(
p

i

)
∆pf(x + iy, y)

=

p+1∑
i=1

[(
p

i− 1

)
−

(
p + 1

i

)]
∆pf

(
x + (i + 1)y, y

)
−∆pf(x + y, y)

+

p∑
i=1

[(
p + 1

i

)
−

(
p

i

)]
∆pf(x + iy, y) + ∆pf

(
x + (p + 1)y, y

)
=

p∑
i=1

(
p

i− 1

)
∆pf(x + iy, y)−

p∑
i=1

(
p

i

)
∆pf

(
x + (i + 1)y, y

)
+ ∆pf

(
x + (p + 1)y, y

)
−∆pf(x + y, y)

=

p∑
i=1

(
p

i− 1

)
∆pf(x + iy, y)−

p+1∑
i=2

(
p

i− 1

)
∆pf

(
x + iy, y

)
+ ∆pf

(
x + (p + 1)y, y

)
−∆pf(x + y, y) = 0,

due to the equality
(

p+1
i

)
=

(
p

i−1

)
+

(
p
i

)
. So we obtain formula (2.4) for p + 1.

Induction completes the proof. �

Lemma 2.3. Let p ∈ N be fixed and let f : R → R be a function such that
∆pf ∈ Dp(R× R, R). Then we have

∂p−k
1 ∂k

2 (∆pf)(x, y) =
1

p!

p∑
i=0

(−1)p−i

(
p

i

)
ik∂p

2(∆
pf)(x + iy, 0), x, y ∈ R, (2.5)

where k ∈ N0 and k ≤ p.

Proof. Let p ∈ N and x, y ∈ R be fixed. Differentiating both sides of the equality
(2.3) (p − k)-times with respect to s and k-times with respect to t at the point
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s = t = 0, we obtain

p∑
i=0

(−1)i

(
p

i

)
ip∂p−k

1 ∂k
2 (∆pf)(x, y) =

p∑
i=0

(−1)i

(
p

i

)
ik∂p

2(∆
pf)(x+iy, 0), x, y ∈ R.

The cases where k = p and k = 0 mean that the equality (2.3) is not differentiated
with respect to s and t, respectively. Applying (2.1) to the left-hand side of the
above equality, we have

(−1)pp!∂p−k
1 ∂k

2 (∆pf)(x, y) =

p∑
i=0

(−1)i

(
p

i

)
ik∂p

2(∆
pf)(x + iy, 0), x, y ∈ R.

Dividing both sides by (−1)pp! and observing that (−1)i−p = (−1)p−i for p ∈ N
and i ∈ N0, we obtain (2.5), which completes the proof. �

Lemma 2.4. Let p ∈ N, p ≥ 2 be fixed and let f : R → R be a function such that
∆pf ∈ Dp(R× R, R). Then we have

∂m−k
1 ∂k

2 (∆pf)(x, 0) = 0, x ∈ R, (2.6)

where 1 ≤ m ≤ p− 1 and 0 ≤ k ≤ m.

Proof. Let p ≥ 2 and y ∈ R be fixed. Differentiating both sides of the equality
(2.4) m-times with respect to x, where 1 ≤ m ≤ p− 1, we obtain

∂m
1 (∆pf)(x, 2y) =

p∑
i=0

(
p

i

)
∂m

1 (∆pf)(x + iy, y), x, y ∈ R.

Setting y = 0 we get

∂m
1 (∆pf)(x, 0) =

p∑
i=0

(
p

i

)
∂m

1 (∆pf)(x, 0), x ∈ R,

hence [
p∑

i=0

(
p

i

)
− 1

]
∂m

1 (∆pf)(x, 0) = 0, x ∈ R,

i.e.

(2p − 1)∂m
1 (∆pf)(x, 0) = 0, x ∈ R.

Therefore

∂m
1 (∆pf)(x, 0) = 0, x ∈ R. (2.7)

Thus we have proved (2.6) for 1 ≤ m ≤ p− 1 and k = 0.
Differentiating both sides of the equality (2.3) (m− k)-times with respect to x

and k-times with respect to y, where 1 ≤ m ≤ p− 1 and 1 ≤ k ≤ m, we have

2k∂m−k
1 ∂k

2 (∆pf)(x, 2y)

=

p∑
i=0

(
p

i

) [
ik∂m

1 (∆pf)(x + iy, y) + ∂m−k
1 ∂k

2 (∆pf)(x + iy, y)
]
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for all x, y ∈ R. Taking y = 0 in the above equality we get

2k∂m−k
1 ∂k

2 (∆pf)(x, 0) =

p∑
i=0

(
p

i

) [
ik∂m

1 (∆pf)(x, 0) + ∂m−k
1 ∂k

2 (∆pf)(x, 0)
]
, x ∈ R.

From (2.7) it follows that[
p∑

i=0

(
p

i

)
− 2k

]
∂m−k

1 ∂k
2 (∆pf)(x, 0) = 0, x ∈ R,

i.e.

(2p − 2k)∂m−k
1 ∂k

2 (∆pf)(x, 0) = 0, x ∈ R.

Therefore

∂m−k
1 ∂k

2 (∆pf)(x, 0) = 0, x ∈ R
for 1 ≤ m ≤ p − 1 and 1 ≤ k ≤ m, which together with (2.7) completes the
proof. �

3. Main results

In this section we are going to formulate and prove the main result of this
paper. It is worth mentioning that we are able to give an explicit expression
for the polynomial function Γp−1 occuring in the statement of the main theorem.

In the case where p = 1 by
1∫
0

t1∫
0

t2∫
0

. . .
tp−1∫
0

f(u)dudtp−1 . . . dt1 we mean the integral

1∫
0

f(u)du.

Theorem 3.1. Let p ∈ N be fixed and let f : R → R be a function such that
∆pf ∈ Cp(R × R, R). Then there exists a polynomial function Γp−1 : R → R of
(p− 1)-th order given by the formula

Γp−1(x) = f(x)− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

∂p
2(∆

pf)(ux, 0)(xp)dudtp−1 . . . dt1, x ∈ R

such that f − Γp−1 ∈ Cp(R, R).

Proof. Let p ∈ N be fixed. Since by (1.2)

∆pf(x, y) =

p∑
i=0

(−1)p−i

(
p

i

)
f(x + iy), x, y ∈ R,

then from (2.1) we easily get

∆pf(0, 0) =

p∑
i=0

(−1)p−i

(
p

i

)
f(0) = 0.

Let us fix arbitrarily x, y ∈ R and define the function ϕp : R → R by the formula

ϕp(t) := ∆pf(tx, ty), t ∈ R.
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Obviously ϕp(0) = 0, ϕp(1) = ∆pf(x, y) and ϕp ∈ Cp(R, R). Differentiating
p-times the function ϕp we have

Dpϕp(t) =

p∑
k=0

(
p

k

)
∂p−k

1 ∂k
2 (∆pf)(tx, ty)

(
xp−kyk

)
. (3.1)

It follows from (2.6) that

Dmϕp(0) =
m∑

k=0

(
m

k

)
∂m−k

1 ∂k
2 (∆pf)(0, 0)

(
xm−kyk

)
= 0 (3.2)

for 1 ≤ m ≤ p− 1. Then for fixed p ∈ N we obtain

∆pf(x, y) = ϕp(1)− ϕp(0) =

1∫
0

Dϕp(t)dt =

1∫
0

t1∫
0

D2ϕp(u)dudt1 + Dϕp(0)

=

1∫
0

t1∫
0

t2∫
0

D3ϕp(u)dudt2dt1 + Dϕp(0) +
1

2
D2ϕp(0)

= . . . =

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

Dpϕp(u)dudtp−1 . . . dt1 +

p−1∑
i=1

1

i!
Diϕp(0)

=

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

Dpϕp(u)dudtp−1 . . . dt1,

since from (3.2) we have
p−1∑
i=1

1
i!
Diϕp(0) = 0. Finally, making use of (3.1) we obtain

∆pf(x, y) =

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

p∑
k=0

(
p

k

)
∂p−k

1 ∂k
2 (∆pf)(ux, uy)

(
xp−kyk

)
dudtp−1 . . . dt1.

(3.3)
We define the function Γp−1 : R → R by the formula

Γp−1(x) := f(x)− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

∂p
2(∆

pf)(ux, 0)(xp)dudtp−1 . . . dt1, x ∈ R.
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We show that Γp−1 is a polynomial function of (p− 1)-th order. In virtue of (1.2)
and (3.3) we obtain for fixed x, y ∈ R

∆pΓp−1(x, y) = ∆pf(x, y)

− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

p∑
i=0

(−1)p−i

(
p

i

)
∂p

2(∆
pf)

(
u(x + iy), 0

)
(x + iy)pdudtp−1 . . . dt1

=

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

p∑
k=0

(
p

k

)
∂p−k

1 ∂k
2 (∆pf)(ux, uy)

(
xp−kyk

)
dudtp−1 . . . dt1

− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

p∑
i=0

(−1)p−i

(
p

i

)
∂p

2(∆
pf)

(
u(x + iy), 0

)
(x + iy)pdudtp−1 . . . dt1

=

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

[
p∑

k=0

(
p

k

)
∂p−k

1 ∂k
2 (∆pf)(ux, uy)

(
xp−kyk

)
− 1

p!

p∑
k=0

(
p

k

) p∑
i=0

(−1)p−i

(
p

i

)
ik∂p

2(∆
pf)

(
u(x + iy), 0

) (
xp−kyk

) ]
dudtp−1 . . . dt1

=

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

p∑
k=0

(
p

k

)[(
∂p−k

1 ∂k
2 (∆pf)(ux, uy)

− 1

p!

p∑
i=0

(−1)p−i

(
p

i

)
ik∂p

2(∆
pf)

(
u(x + iy), 0

))] (
xp−kyk

)
dudtp−1 . . . dt1 = 0,

since on account of (2.5) all the integrands above are equal to zero.
Now we prove that the function f −Γp−1 is differentiable. Fix arbitrarily p ∈ N

and x, h ∈ R, h 6= 0. Then we have

1

h

[
f(x + h)− Γp−1(x + h)−

(
f(x)− Γp−1(x)

)]

=
1

h

[
1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

∂p
2(∆

pf)
(
u(x + h), 0

)
(x + h)pdudtp−1 . . . dt1

− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

∂p
2(∆

pf)(ux, 0)(xp)dudtp−1 . . . dt1

]

=
1

h · p!

[ 1∫
0

t1∫
0

t2∫
0

. . .

tp−1(x+h)∫
0

∂p
2(∆

pf)(s, 0)(x + h)p−1dsdtp−1 . . . dt1
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−
1∫

0

t1∫
0

t2∫
0

. . .

tp−1x∫
0

∂p
2(∆

pf)(s, 0)
(
xp−1

)
dsdtp−1 . . . dt1

]

=
1

h · p!

[ 1∫
0

t1∫
0

t2∫
0

. . .

vp−2(x+h)∫
0

vp−1∫
0

∂p
2(∆

pf)(s, 0)(x + h)p−2dsdvp−1 . . . dt1

−
1∫

0

t1∫
0

t2∫
0

. . .

vp−2x∫
0

vp−1∫
0

∂p
2(∆

pf)(s, 0)
(
xp−2

)
dsdvp−1 . . . dt1

]

= . . . =
1

h · p!

[ 1∫
0

t1(x+h)∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)(x + h)dsdvp−1 . . . dt1

−
1∫

0

t1x∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)(x)dsdvp−1 . . . dt1

]

=
1

h · p!

[ x+h∫
0

v1∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv1

−
x∫

0

v1∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv1

]

=
1

h · p!

x+h∫
x

v1∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv1

=
1

h · p!

1∫
0

x+th∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)(h)dsdvp−1 . . . dv2dt

=
1

p!

1∫
0

x+th∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv2dt

−→ 1

p!

1∫
0

x∫
0

v2∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv2dt

=
1

p!

x∫
0

v2∫
0

v3∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv2
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for h → 0. Hence the function f −Γp−1 is differentiable at every point x ∈ R and

D(f − Γp−1)(x) =
1

p!

x∫
0

v2∫
0

v3∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv2, x ∈ R.

Similarly as above we can show that

D2(f − Γp−1)(x) =
1

p!

x∫
0

v3∫
0

v4∫
0

. . .

vp−1∫
0

∂p
2(∆

pf)(s, 0)dsdvp−1 . . . dv3, x ∈ R.

Proceeding step by step (p− 3)-times we obtain

Dp−1(f − Γp−1)(x) =
1

p!

x∫
0

∂p
2(∆

pf)(s, 0)ds, x ∈ R,

and consequently

Dp(f − Γp−1)(x) =
1

p!
∂p

2(∆
pf)(x, 0), x ∈ R.

Since ∂p
2(∆

pf) ∈ C0(R × R, R), then ∂p
2(∆

pf)(x, 0) ∈ C0(R, R) for all x ∈ R.
Therefore Dp(f − Γp−1) ∈ C0(R, R), i.e. f − Γp−1 ∈ Cp(R, R). Moreover, it is
easily seen that we have

Di(f − Γp−1)(0) = 0, 0 ≤ i ≤ p− 1.

The proof is completed. �

Theorem 3.1 states, in particular, that the class of infinitely many times dif-
ferentiable functions has the difference property of higher orders. We show that
the class of analytic functions also has this property.

Theorem 3.2. Let p ∈ N be fixed and let f : R → R be a function such that ∆pf
is analytic. Then there exists a polynomial function Γp−1 : R → R of (p − 1)-th
order such that f − Γp−1 is analytic.

Proof. By Theorem 3.1 there exists a polynomial function Γp−1 : R → R of (p−1)-
th order such that g := f − Γp−1 ∈ C∞(R, R). Then obviously ∆pg = ∆pf and
hence ∆pg is analytic. Making use of the equality

1

p!
∂p

2(∆
pg)(x, 0) = Dpg(x), x ∈ R,

we obtain that Dpg is analytic, and consequently that g is analytic. �

4. Concluding remarks

Remark 4.1. In connection with Theorem 3.1 there arises a natural question:
whether the polynomial function Γp−1 is unique?



96 M. ADAM

Remark 4.2. Let p ∈ N be fixed and let

F (x, y) = ∆pf(x, y). (4.1)

We can rewrite equations (2.3) and (2.4) in the following forms
p∑

i=0

(−1)i

(
p

i

)
F (x + is, y + it) =

p∑
i=0

(−1)i

(
p

i

)
F (x + iy, s + it), (4.2)

F (x, 2y) =

p∑
i=0

(
p

i

)
F (x + iy, y), (4.3)

respectively, where F is an unknown function. Obviously, if a function F is equal
to the difference operator ∆pf , then it satisfies (4.2) and (4.3). Conversely, it
seems to be interesting to give some sets of conditions (under some reasonable
assumptions on function F ) which would be both necessary and sufficient for F
to have the representation (4.1).

Similarly, equation (2.5) can be rewritten in the following form

Gk(x, y) =
1

p!

p∑
i=0

(−1)p−i

(
p

i

)
ikH(x + iy), k ∈ N0,

where Gk and H are unknown functions. In this case we may also try to find the
general solution of the above functional equation.

Remark 4.3. One can check that if a function f is p-times continuously differen-
tiable then the polynomial function Γp−1 is given by the following formula

Γp−1(x) = a0 + a1x + a2x
2 + . . . + ap−1x

p−1,

where the coefficients of the above polynomial are given by

ai =
1

i!
Dif(0), i = 0, 1, . . . , p− 1.

Indeed, differentiating both sides of the equality (1.2) p-times with respect to y
we obtain

∂p
2(∆

pf)(x, y) =

p∑
i=0

(−1)p−i

(
p

i

)
ipDpf(x + iy) = p!Dpf(x + iy), x, y ∈ R,

due to the equality (2.2). Putting y = 0 we have

∂p
2(∆

pf)(x, 0) = p!Dpf(x), x ∈ R.

Now, applied this equality to the definition of the polynomial function Γp−1 we
are able to obtain the desired formula.

Remark 4.4. A possible application of Theorem 3.1 is towards the study of the
Ulam–Hyers stability problem of the Fréchet functional equation in the class of
differentiable functions (cf. [18]).

Acknowledgement. The author is grateful to the referee for valuable com-
ments and suggestions which improve the previous version of the paper.
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9. D.Z. Djoković, A representation theorem for (X1−1)(X2−1) . . . (Xn−1) and its applications,
Ann. Polon. Math. 22 (1969), 189–198.

10. Z. Gajda, Difference properties of higher orders for continuity and Riemann integrability,
Colloq. Math. 53 (1987), 275–288.

11. J.H.B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957),
28–56.

12. J.H.B. Kemperman, On a generalized difference property, Aequationes Math. 4 (1970), 231.
13. F.S. Koehl, Difference properties for Banach-valued functions, Math. Ann. 181 (1969),

288–296.
14. M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy’s

equation and Jensen’s inequality, Second edition (edited by A. Gilányi), Birkhäuser Verlag,
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