

Banach J. Math. Anal. 9 (2015), no. 3, 14–23 http://doi.org/10.15352/bjma/09-3-2 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

ON POSITIVE DEFINITE DISTRIBUTIONS WITH COMPACT SUPPORT

SAULIUS NORVIDAS

Communicated by J. A. Ball

ABSTRACT. We propose necessary and sufficient conditions for a distribution (generalized function) f of several variables to be positive definite. For this purpose, certain analytic extensions of f to tubular domains in complex space \mathbb{C}^n are studied. The main result is given in terms of completely monotonic functions on convex cones in \mathbb{R}^n .

1. INTRODUCTION

Let \mathbb{R}^n be the real *n*-dimensional Euclidean space imbedded in \mathbb{C}^n so that $\mathbb{C}^n = \mathbb{R}^n + i\mathbb{R}^n$. For $u \in \mathbb{R}^n$, we set $|u| = |u_1| + \cdots + |u_n|$. Let $|x|_2$ denote the standard Euclidean norm on \mathbb{R}^n . If, in addition, the entries of u are nonnegative integers, then we call u, throughout the following, a multi-index.

The space of test functions $\mathcal{E}(\mathbb{R}^n)$ is the set of $\varphi : \mathbb{R}^n \to \mathbb{C}$ such that $D_x^u \varphi$ is continuous for all multi-indices u. Here $D_x^u = D_{x_1}^{u_1} \cdots D_{x_n}^{u_n}$ and $D_{x_k} = \partial/\partial x_k$. Let $D(\mathbb{R}^n)$ denote the subspace of $\mathcal{E}(\mathbb{R}^n)$ consisting of functions with compact support. We assume that the topologies on $\mathcal{E}(\mathbb{R}^n)$ and on $D(\mathbb{R}^n)$ are introduced as usual (see, e.g., [7] or [16]). The elements of the conjugate spaces $\mathcal{E}'(\mathbb{R}^n)$ and $D'(\mathbb{R}^n)$ are called distributions or generalized functions. Since $D(\mathbb{R}^n)$ is continuously imbedded in $\mathcal{E}(\mathbb{R}^n)$, it follows that each $f \in D'(\mathbb{R}^n)$ gives an element of $\mathcal{E}'(\mathbb{R}^n)$ by restriction. Moreover, $\mathcal{E}'(\mathbb{R}^n)$ coincides with a subspace of compactly supported distributions of $D'(\mathbb{R}^n)$.

Date: Received: May 14, 2014; Accepted: Sep. 16, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 46F20; Secondary 42B10.

Key words and phrases. Positive definite distributions, analytic representations of distributions, Cauchy transform, completely monotonic functions, convex cones.

If $f \in D'(\mathbb{R}^n)$, then the action of f on $\omega \in D(\mathbb{R}^n)$ is written as (f, ω) . A distribution $f \in D'(\mathbb{R}^n)$ is said to be positive definite if for all $\varphi \in D(\mathbb{R}^n)$,

$$(f, \varphi * \widetilde{\varphi}) \ge 0, \tag{1.1}$$

were $\tilde{\varphi}(x) := \overline{\varphi(-x)}$, and * denotes the usual convolution operator. The Bochner-Schwartz theorem gives a representation of a positive definite distribution in terms of the Fourier transform. Let us recall some notion.

The Schwartz class $S(\mathbb{R}^n)$ can be defined as the set of $\omega \in \mathcal{E}(\mathbb{R}^n)$ satisfying

$$\|\omega\|_{m} := \sup_{x \in \mathbb{R}^{n}, \ |u| \le m} \left| (1 + |x|_{2})^{m} D_{x}^{u} \omega(x) \right| < \infty$$
(1.2)

for all nonnegative integers m. Semi-norms (1.2) turns $S(\mathbb{R}^n)$ into a Fréchet space. The elements of $S'(\mathbb{R}^n)$ are called tempered distributions. For $\varphi \in S(\mathbb{R}^n)$, we define the Fourier transform as

$$\widehat{\varphi}(x) = \int_{\mathbb{R}^n} e^{i(x,t)} \varphi(t) \, dt, \qquad x \in \mathbb{R}^n,$$

where $(x,t) = x_1t_1 + \cdots + x_nt_n$. If $f \in S'(\mathbb{R}^n)$, then the Fourier transform $\mathcal{F}[f]$ can be defined by

$$\left(\mathcal{F}[f],\varphi\right) = (f,\widehat{\varphi}), \qquad \varphi \in S(\mathbb{R}^n).$$
 (1.3)

The Bochner-Schwartz theorem states (see, e.g., [16, p. 125]) that $f \in D'(\mathbb{R}^n)$ is positive definite if and only if there exists nonnegative tempered measure $\eta \in$ $S'(\mathbb{R}^n)$ such that $f = \mathcal{F}[\eta]$. We recall that a nonnegative measure η is said to be tempered if there exists $\alpha \geq 0$ such that

$$\int_{\mathbb{R}^n} \left(1 + |x|_2\right)^{-\alpha} d\eta < \infty.$$

Note that this theorem implies that any positive definite distribution belongs to $S'(\mathbb{R}^n)$.

There are many other than the Bochner-Schwartz theorem characterizations of positive definite functions (see, e.g., [8, p.p. 70-83]). As far as we known, it is perhaps surprising that there are almost no such results for distributions. We mention only [13], where attention has been paid to positive definite distributions of order zero on \mathbb{R} , with applications to a Volterra equation. See also survey article [11]. Note also that in [4] the Bochner-Schwartz theorem was generalized for the spaces of Fourier hyperfunctions and hyperfunctions.

In this paper, we wish to explore the idea of how to describe positive definite $f \in S'(\mathbb{R}^n)$ by means of its analytic representations in \mathbb{C}^n . Let us start with the case of one variable.

For $f \in D'(\mathbb{R})$, Tillman [15] has proved that there exists a pair of functions $f^{(+)}$ and $f^{(-)}$, analytic in the open upper $\mathbb{C}^{(+)}$ and in the open lower half-plane $\mathbb{C}^{(-)}$, respectively, such that

$$\lim_{\varepsilon \to +0} \int_{-\infty}^{\infty} \left(f^{(+)}(t+i\varepsilon) - f^{(-)}(t-i\varepsilon) \right) \varphi(t) \, dt = (f,\varphi) \tag{1.4}$$

for all $\varphi \in D(\mathbb{R})$. This pair $(f^{(+)}, f^{(-)})$ (or sectionally analytic function on $\mathbb{C}^{(+)} \cup \mathbb{C}^{(-)} = \mathbb{C} \setminus \mathbb{R}$) is called an analytic representation of f.

If a distribution f has a compact support, then an analytic representation of f can be obtained using an explicit construction. Indeed, if $f \in \mathcal{E}'(\mathbb{R})$, then

$$K(f)(z) = \frac{1}{2\pi i} \Big(f(\cdot), \, (\cdot - z)^{-1} \Big) = \frac{1}{2\pi i} \Big(f_t, \, (t - z)^{-1} \Big) \tag{1.5}$$

is well defined for all $z \in \mathbb{C} \setminus \mathbb{R}$. The function K(f) is called the Cauchy transform of f. If we take $(f^{(+)}, f^{(-)}) = K(f)$, then we obtain an analytic representation of f (see, e.g., [1, p. 155]). Note that analytic representations of the same distribution differ by at most an entire function [1].

For any fixed $z \in \mathbb{C} \setminus \mathbb{R}$, the Cauchy kernel $k(t) = (t-z)^{-1}$ belongs to $\mathcal{E}(\mathbb{R})$ but not to $S(\mathbb{R})$. Hence, for all $f \in S'(\mathbb{R})$, the analytic representation (1.5), in general, does not exists (see details in [1, p. 156]). On the other hand, if $f \in S'(\mathbb{R})$, then there exists a nonnegative integer m_0 such that f is continuous in the semi-norm $\|\cdot\|_{m_0}$ defined in (1.2), i.e., there exist A > 0 such that $|(f,\varphi)| \leq A \|\varphi\|_{m_0}$ for all $\varphi \in S(\mathbb{R})$ (see [16, p. 74]). We call the smallest m_0 that satisfies the above inequality the S-order of $f \in S'(\mathbb{R})$. Let us write $\rho_S(f)$ for this order. Note that $\rho_S(f)$ is different from the usual order $\rho_D(f)$ of f as distribution in $D'(\mathbb{R})$. Let us define the generalized Cauchy kernel $\widetilde{k}_m(t)$ to be $(t-z)^{-(m+1)}$. Now, if $f \in S'(\mathbb{R})$ and m is a nonnegative integer such that $m \ge \rho_S(f)$, then $\left(f_t, \tilde{k}_m(t)\right)$ is well defined. We derived in [9] necessary and sufficient conditions for $f \in S'(\mathbb{R})$ to be a positive definite distribution in terms of this transform. Let us recall that a function $\theta: (a,b) \to \mathbb{R}, -\infty \leq a < b \leq \infty$, is said to be completely monotonic if it is infinitely differentiable and $(-1)^n \theta^{(n)}(y) > 0$ for each $y \in (a, b)$ and all $n = 0, 1, 2, \ldots$ Further, $\theta(y)$ is said to be absolutely monotonic on (a, b) if a $\theta(-y)$ is completely monotonic on (-b, -a).

Theorem 1.1. ([9], Theorem 1.3) Let $f \in S'(\mathbb{R})$ and let n be an integer such that $2n \ge \varrho_f$. Suppose that $a_1, a_2 \in \mathbb{R}$, $a_1 \ne a_2$. Let

$$\widetilde{K}(f,j)(z) = (-1)^n \frac{i}{\pi} \left(e^{ia_j t} f_t, (z-t)^{-(2n+1)} \right)$$

 $z \in \mathbb{C} \setminus \mathbb{R}, j = 1, 2$. Then f is positive definite if and only if:

(i) $y \to \widetilde{K}(f,j)(iy), j = 1,2$ are completely monotonic functions for $y \in (0,\infty)$;

(i, i) $y \to -\widetilde{K}(f, j(iy), j = 1, 2 \text{ are absolutely monotonic functions for } y \in (-\infty, 0).$

It is quite possible that similar results are also valid for $f \in S'(\mathbb{R}^n)$. Of course, for n > 1, it is natural to use the Cauchy kernel K_{Γ} with respect to a cone Γ in \mathbb{R}^n (see its definition (1.6)). Then the Cauchy transform $K_{\Gamma}(f)$ of f is defined as the convolution of K_{Γ} with f. Note that the case of several variables is much more difficult than the one-dimensional case. At first, we do not fully understand how to define the generalized Cauchy kernel \widetilde{K}_{Γ} to get well defined transform $f * \widetilde{K}_{\Gamma}$ on $S'(\mathbb{R}^n)$. Second, the process of taking boundary values as in (1.4) are investigated only for some proper subclasses of $S'(\mathbb{R}^n)$ (see, e.g., [3]). Finally, we note that the main purpose of this paper is to provide a criterion for a distribution to be positive definite. Therefore, to simplify the technical details, we obtain here a criterion only for compactly supported distributions.

A set $\Gamma \subset \mathbb{R}^n$ is said to be a cone if $x \in \Gamma$ implies $\alpha x \in \Gamma$ for all $\alpha > 0$. The dual cone of Γ is defined by

$$\Gamma^* = \{ t \in \mathbb{R}^n : (x, t) \ge 0 \text{ for all } x \in \Gamma \}.$$

The cone Γ^* is always closed convex, and $(\Gamma^*)^* = \overline{\operatorname{ch} \Gamma}$, where $\operatorname{ch} \Gamma$ denotes the convex hull of Γ . Next, Γ is called salient (acute) if $\overline{\operatorname{ch} \Gamma}$ does not contain any straight line in \mathbb{R}^n . This is equivalent to $\operatorname{int}(\Gamma^*) \neq \emptyset$. A cone Γ is said to be regular if Γ is an open convex salient cone.

Let $\{\Lambda_j\}_1^m$ be a family of regular cones. We say that $\{\Lambda_j\}_1^m$ covers exactly \mathbb{R}^n if

$$\overline{\bigcup_{k=1}^m \Lambda_j} = \mathbb{R}^n$$

and the Lebesgue measure of $\overline{\Lambda_i} \cap \overline{\Lambda_j}$ is equal to zero whenever $i \neq j$. Any $\omega = (\omega_1, \ldots, \omega_n)$ whose entries ω_k are -1 or 1 defines the cone $Q_{\omega} = \{x \in \mathbb{R}^n : x_k \omega_k > 0 \text{ for } k = 1, \ldots, n\}$. The cone Q_{ω} is called a quadrant. The collection of all 2^n regular cones $\{Q_{\omega}\}_{\omega}$ covers exactly \mathbb{R}^n .

Let Γ be an open cone in \mathbb{R}^n . Then $T_{\Gamma} = \mathbb{R}^n + i\Gamma = \{z = x + iy : x \in \mathbb{R}^n, y \in \Gamma\}$ is called a tube domain in \mathbb{C}^n . If Γ is regular, then the Cauchy kernel of Γ (or with respect to Γ) is defined as

$$K_{\Gamma}(z) = \int_{\Gamma^*} e^{i(z, t)} dt, \qquad z \in T_{\Gamma}.$$
(1.6)

The kernel K_{Γ} is an analytic function on T_{Γ} [16, p. 143]. If f is a distribution on \mathbb{R}^n , then

$$K_{\Gamma}(f)(z) = \frac{1}{(2\pi)^n} \Big(f(\cdot), K_{\Gamma}(z-\cdot) \Big) = \frac{1}{(2\pi)^n} \Big(f_t, K_{\Gamma}(z-t) \Big)$$
(1.7)

is called the Cauchy transform of f. For example, in \mathbb{R} there are only two regular cones $(-\infty, 0)$ and $(0, \infty)$. If $\Gamma = (0, \infty)$, then we see that (1.7) coincides with (1.5).

Suppose that Γ is a regular cone in \mathbb{R}^n . The directional derivation of a function $\theta : \Gamma \to \mathbb{C}$ along $a = (a_1, \ldots, a_n) \in \Gamma$ is defined as usual: $D_a \theta(y) = (a_1 D_{y_1} + \cdots + a_n D_{y_n}) \theta(y)$. Then θ is called completely monotonic if

$$(-1)^k D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} \theta(y) \ge 0, \qquad k = 0, 1, \dots,$$

for all $y \in \Gamma$ and all $\gamma_1, \ldots, \gamma_k \in \Gamma$ (see [6, p. 172]).

Now we are able to describe positive definite distributions in $\mathcal{E}'(\mathbb{R}^n)$.

Theorem 1.2. Assume that $\{\Gamma_k\}_{k=1}^m$ is a set of regular cones such that $\{\Gamma_k\}_1^m$ covers exactly \mathbb{R}^n . A distribution $f \in \mathcal{E}'(\mathbb{R}^n)$ is positive definite if and only if $y \to K_{\Gamma_k}(f)(iy), y \in \Gamma_k$, is a completely monotonic function for each k = 1, 2, ..., m.

S. NORVIDAS

2. Preliminaries and proofs

We define the inverse Fourier transform of a bounded measure μ on \mathbb{R}^n as

$$\check{\mu}(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i(\xi,t)} d\mu(t).$$

In the case if μ has a density $\varphi \in L^1(\mathbb{R}^n)$, then the inverse transform of φ is defined similarly. In addition, the following inversion formula $(\tilde{\varphi}) = \varphi$ holds for suitable functions φ .

Suppose that Λ is a convex salient cone in \mathbb{R}^n , and let $S'(\Lambda)$ be the set of all $F \in S'(\mathbb{R}^n)$ supported on Λ . For any fixed $y \in \mathbb{R}^n$, the Laplace transform of $F \in S'(\Lambda)$ is defined by

$$L_y(F)(x) = \mathcal{F}\Big[F(\cdot)e^{-(y,\cdot)}\Big](x) = \mathcal{F}_{\xi}\Big[F(\xi)e^{-(y,\xi)}\Big](x), \qquad x \in \mathbb{R}^n, \qquad (2.1)$$

where $\mathcal{F}: S'(\mathbb{R}^n) \to S'(\mathbb{R}^n)$ is the Fourier transform defined in (1.3). If $y \in \operatorname{int} \Lambda^*$, then $F(\cdot)e^{-(y,\cdot)}$ belongs to $S'(\mathbb{R}^n)$ (see, e.g., [16, p. 127]). Hence, $L_y(F)(x)$ is well defined for all $x \in \mathbb{R}^n$. Further, $L_y(F)(x)$ is analytic on $T_{\operatorname{int} \Lambda^*}$ as a function of z = x + iy, and

$$\frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} L_y(F)(x) = i^{|u|} \mathcal{F}_{\xi} \Big[(\xi_1^{u_1} \dots \xi_n^{u_n}) F(\xi) e^{-(y,\xi)} \Big](x)$$
(2.2)

for each multi-index $u = (u_1, ..., u_n)$ [16, p. 128].

Let χ_A denote the indicator function of $A \subset \mathbb{R}^n$. If we compare (1.6) and (2.1), then we have that

$$K_{\Gamma}(z) = \int_{\Gamma^*} e^{i(z,\xi)} d\xi = \int_{\mathbb{R}^n} \chi_{\Gamma^*}(\xi) e^{i(x,\xi)} e^{-(y,\xi)} d\xi = \mathcal{F}_{\xi} \Big[\chi_{\Gamma^*}(\xi) e^{-(y,\xi)} \Big](x)$$
$$= L_y \Big(\chi_{\Gamma^*} \Big)(x)$$

for all $z = x + iy \in T_{\Gamma}$. This together with (1.7) and (2.2) implies the following lemma, where we collect certain facts about the Cauchy transform, which we need in this section. For a proof of this lemma we refer to [16, p.p. 144-145].

Lemma 2.1. Let Γ be a regular cone in \mathbb{R}^n . The Cauchy kernel $K_{\Gamma}(z)$ is an analytic function for $z \in T_{\Gamma} = \mathbb{R}^n + i\Gamma$. If $f \in \mathcal{E}'(\mathbb{R}^n)$, then the Cauchy transform (1.7) is well defined on T_{Γ} . Moreover, $K_{\Gamma}(f)$ is analytic on T_{Γ} and

$$\frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} K_{\Gamma}(f)(z) = \frac{1}{(2\pi)^n} \Big(f_t, \frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} K_{\Gamma}(z-t) \Big)$$
(2.3)

for all multi-index $u \in \mathbb{R}^n$.

Recall that a complex-valued function u on \mathbb{R}^n is said to be positive definite if

$$\sum_{k=1}^{n} u(x_j - x_k)c_j\overline{c}_k \ge 0 \tag{2.4}$$

for any finite sets $x_1, \ldots, x_n \in \mathbb{R}^n$ and for any $c_1, \ldots, c_n \in \mathbb{C}$. The Bochner theorem (see, e.g., [2, p. 58], [5, p. 293] and [12, p.p. 41-47]) states that a continuous function $u : \mathbb{R}^n \to \mathbb{C}$ is positive definite if and only if it is the Fourier transform of a positive finite measure μ on \mathbb{R}^n . Note that if u is continuous on \mathbb{R}^n , then the definition (2.4) is equivalent to

$$\int_{\mathbb{R}^n} u(x) \big(\varphi * \widetilde{\varphi}\big)(x) \, dx \ge 0, \tag{2.5}$$

where φ ranges over $L^1(\mathbb{R}^n)$ (or over all continuous functions on \mathbb{R}^n with compact support). As usual, we identify a locally integrable function u on \mathbb{R}^n with a regular distribution by the formula

$$(u,\varphi) = \int_{\mathbb{R}^n} u(x)\varphi(x) \, dx \tag{2.6}$$

for suitable test functions. Of course, for regular distributions, both definitions (1.1) and (2.5) coincide. Note that any locally bounded measure μ on \mathbb{R}^n also defines in a similar way as in (2.6) an integrable distribution.

We need a few simple facts about positive definite functions. The next lemmas are not new, but their proofs are added here for completeness.

Lemma 2.2. A distribution $f \in S'(\mathbb{R}^n)$ is positive definite if and only if

$$(f,\omega) \ge 0 \tag{2.7}$$

for all positive definite $\omega \in D(\mathbb{R}^n)$.

Proof. Assume that both $f \in S'(\mathbb{R}^n)$ and $\omega \in D(\mathbb{R}^n)$ are positive definite. Using the Bochner theorem in $S(\mathbb{R}^n)$ for ω , and the Bochner-Schwartz theorem in $S'(\mathbb{R}^n)$ for f, we have that $\check{\omega}$ is a nonnegative function in $S(\mathbb{R}^n)$ and $\mathcal{F}[f]$ is a nonnegative tempered measure on \mathbb{R}^n . Then $(\mathcal{F}[f], \check{\omega})$ may be derived as the usual integral

$$(\mathcal{F}[f],\check{\omega}) = \int_{\mathbb{R}^n} \check{\omega}(x) \, d\big(\mathcal{F}[f](x)\big).$$

Moreover, $(\mathcal{F}[f], \check{\omega}) \ge 0$. Therefore, (1.3) implies that $(f, \omega) = (\mathcal{F}[f], \check{\omega}) \ge 0$.

Let $f \in S'(\mathbb{R}^n)$ and let $\varphi \in D(\mathbb{R}^n)$. The Fourier transform of $\varphi * \widetilde{\varphi}$ is equal to $\hat{\varphi}\overline{\hat{\varphi}} = |\widehat{\varphi}|^2 \ge 0$. Hence, $\varphi * \widetilde{\varphi}$ is positive definite on \mathbb{R}^n . If f satisfies (2.7) for all positive definite $\omega \in D(\mathbb{R}^n)$, then we can take $\omega = \varphi * \widetilde{\varphi}$. Thus, (1.1) holds.

Lemma 2.3. Suppose that $\varphi \in \mathcal{E}(\mathbb{R}^n)$ is positive definite. Then there exists a sequence (ψ_k) of positive definite $\psi_k \in D(\mathbb{R}^n)$, $k = 1, 2, \ldots$, such that $\lim_{k\to\infty} \psi_k = \varphi$ in the topology of $\mathcal{E}(\mathbb{R}^n)$.

Proof. Take any $\sigma_1 \in D(\mathbb{R}^n)$ such that $\|\sigma_1\|_{L^2(\mathbb{R}^n)} = 1$. Set $\sigma = \sigma_1 * \widetilde{\sigma_1}$. Then σ is positive definite. Hence,

$$|\sigma(x)| \le \sigma(0) = \|\sigma_1\|_{L^2(\mathbb{R}^n)} = 1, \quad x \in \mathbb{R}^n.$$
(2.8)

Now we define the function $\psi_k(x)$ to be $\sigma(x/k)\varphi$ for $k = 1, 2, \ldots$ Of course, $\psi_k(x) \in D(\mathbb{R}^n)$ and $\psi_k(x)$ is positive definite as a product of two positive definite functions. We recall that a sequence $\{\theta_j\}_j \in \mathcal{E}(\mathbb{R}^n)$ converges in $\mathcal{E}(\mathbb{R}^n)$ to $\theta \in \mathcal{E}(\mathbb{R}^n)$ if and only if for every multi-index $u \in \mathbb{R}^n$, the sequence $\{D_x^u \theta_j\}_j$ converges uniformly to $D_x^u \theta$ on every compact subset of \mathbb{R}^n . By (2.8), it is easy to see that for any fixed multi-index $u \in \mathbb{R}^n$, the sequence $D_x^u [\sigma(x/k) - 1], k = 1, 2, \ldots$, converges to the zero function as $k \to \infty$ uniformly on compact subsets of \mathbb{R}^n . Finally, since

$$\varphi(x) - \psi_k(x) = \varphi(x) \big[\sigma(x/k) - 1 \big],$$

we finish the proof.

We are now in a position to prove the necessity of Theorem 1.2.

Proof of Theorem 1.2 (Necessity).

Suppose that Γ is a regular cone in \mathbb{R}^n and let $y \in \Gamma$. If $t \in \mathbb{R}^n$, then using (2.1) and (2.2), we see that

$$D_y^u K_{\Gamma}(iy-t) = \frac{\partial^{|u|}}{\partial y_1^{u_1} \dots \partial y_n^{u_n}} K_{\Gamma}(iy-t) = (-1)^{|u|} \int_{\Gamma^*} (\xi_1^{u_1} \dots \xi_n^{u_n}) e^{-(y, \xi)} e^{-i(t,\xi)} d\xi$$

for each multi-index $u \in \mathbb{R}^n$. In particular, if $\gamma = (\gamma_1, \ldots, \gamma_n) \in \Gamma$, then for the directional derivative D_{γ} of K_{Γ} , we have

$$D_{\gamma}K_{\Gamma}(iy-t) = (\gamma, D_{y})K_{\Gamma}(iy-t) = \sum_{s=1}^{n} \gamma_{s} \frac{\partial}{\partial y_{s}}K_{\Gamma}(iy-t)$$
$$= -\int_{\Gamma^{*}} \left(\sum_{s=1}^{n} \gamma_{s}\xi_{s}\right)e^{-(y,\xi)}e^{-i(t,\xi)}\,d\xi = -\int_{\Gamma^{*}} (\gamma,\xi)e^{-(y,\xi)}e^{-i(t,\xi)}\,d\xi.$$
(2.9)

Iterating (2.9), we obtain, for an arbitrary set $\gamma^{(1)}, \ldots, \gamma^{(k)} \in \Gamma$, that

$$D_{\gamma^{(1)}} D_{\gamma^{(2)}} \dots D_{\gamma^{(k)}} K_{\Gamma}(iy-t) = (-1)^k \int_{\Gamma^*} \prod_{j=1}^k (\gamma^{(j)}, \xi) e^{-(y,\xi)} e^{-i(t,\xi)} d\xi$$
$$= (-1)^k \int_{\mathbb{R}^n} \left(\prod_{j=1}^k (\gamma^{(j)}, \xi) e^{-(y,\xi)} \chi_{\Gamma^*}(\xi) \right) e^{-i(t,\xi)} d\xi. \quad (2.10)$$

For fixed $y \in \Gamma$ and for $\theta \in \Gamma$, we define the function E_{θ} by

$$E_{\theta}(\xi) = (\theta, \xi)e^{-(y,\xi)}\chi_{\Gamma^*}(\xi), \qquad \xi \in \mathbb{R}^n.$$

Since Γ is an open cone, it is easy to see that there exists $\delta = \delta(y) > 0$ such that

$$(y,\xi) \ge \delta |\xi|_2$$
 for all $\xi \in \Gamma^*$

(see, e.g., [14, p. 104]). Hence, E_{θ} is a nonnegative bounded and integrable function on \mathbb{R}^n . Note that the function

$$\xi \to \prod_{j=1}^{k} (\gamma^{(j)}, \xi) e^{-(y,\xi)} \chi_{\Gamma^*}(\xi), \qquad \xi \in \mathbb{R}^n,$$
 (2.11)

which we used in (2.10), is equal to

$$\prod_{j=1}^k E_{\gamma^{(j)}}(\xi).$$

Hence, the function (2.11) is also nonnegative bounded and integrable on \mathbb{R}^n . Thus, applying the Bochner theorem to the right side of (2.10), we see that, for any fixed $y \in \Gamma$ and for any choice of $\gamma^{(1)}, \ldots, \gamma^{(k)} \in \Gamma$, the function

$$(-1)^k D_{\gamma^{(1)}} D_{\gamma^{(2)}} \dots D_{\gamma^{(k)}} K_{\Gamma}(iy-t)$$
(2.12)

is continuous positive definite as a function of $t \in \mathbb{R}^n$. Moreover, by Lemma 2.1, the function $K_{\Gamma}(z)$ and its derivative (2.12) are analytic on T_{Γ} . Hence, (2.12) belongs to $\mathcal{E}(\mathbb{R}^n)$ as a function of t.

Suppose now that $f \in \mathcal{E}'(\mathbb{R}^n)$ and that f is positive definite. Using Lemma 2.3, we see that, for any fixed choice of $y \in \Gamma$, $\gamma^{(1)}, \ldots, \gamma^{(k)} \in \Gamma$, there exists a sequence (ψ_m) of positive definite functions $\psi_m \in D(\mathbb{R}^n)$, $m = 1, 2, \ldots$, such that

$$\lim_{m \to \infty} \psi_m(t) = (-1)^k D_{\gamma^{(1)}} D_{\gamma^{(2)}} \dots D_{\gamma^{(k)}} K_{\Gamma}(iy-t)$$

in the topology of $\mathcal{E}(\mathbb{R}^n)$. Then by Lemma 2.2, we get

$$(-1)^k \Big(f_t, \ D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} K_{\Gamma}(iy-t)) \Big) = \lim_{m \to \infty} (f_t, \psi_m(t)) \ge 0.$$

Combining this with (1.7) and (2.3), we see that

 $(-1)^k D_{\gamma^{(1)}} D_{\gamma^{(2)}} \dots D_{\gamma^{(k)}} K_{\Gamma}(f)(iy) \ge 0.$

This shows that $y \to K_{\Gamma}(f)(iy)$ is a completely monotonic function on Γ . Necessity of Theorem 1.2 is proved.

We will use the following lemma (see, e.g., [3, p. 211]), which gives an analytic Cauchy representation for any distribution with compact support.

Lemma 2.4. Suppose that $\{\Gamma_k\}_1^m$ is a family of regular cones such that $\{\Gamma_k\}_1^m$ covers exactly \mathbb{R}^n . Let $y^{(k)} \in \Gamma_k$, k = 1, ..., m. If $f \in \mathcal{E}'(\mathbb{R}^n)$, then

$$\lim_{\max \|y^{(k)}\|_{2} \to 0} \sum_{k=1}^{m} \int_{\mathbb{R}^{n}} K_{\Gamma_{k}}(f)(x+iy^{(k)})\omega(x) \, dx = (f,\omega)$$

for all $\omega \in D(\mathbb{R}^n)$.

Proof of Theorem 1.2. (Sufficiency). Let Λ be a regular cone in \mathbb{R}^n . Let $g \in \mathcal{E}'(\mathbb{R}^n)$ and suppose that the function $y \to K_{\Lambda}(g)(iy)$ is completely monotonic on Λ . We claim that for any fixed $y \in \Gamma$, the function

$$x \to K_{\Lambda}(g)(x+iy)$$

is continuous and positive definite on \mathbb{R}^n . Since Λ is convex, it follows that Λ is an additive semigroup. Fix a point $\delta \in \Lambda$. Because Λ is open, it is easy to see that

$$\delta + \overline{\Lambda} \subset \Lambda. \tag{2.13}$$

Define the function

$$G(y) = K_{\Lambda}(g) \Big(i(\delta + y) \Big).$$
(2.14)

By (2.13), this function is well defined for all $y \in \overline{\Lambda}$. Of course, it is completely monotonic on Λ . Moreover, using (2.13), we see that G is continuous on $\overline{\Lambda}$. Then (see [6, p. 172]) there exists a nonnegative measure $\mu_{\delta,\Lambda}$ on Λ^* such that

$$G(y) = \int_{\Lambda^*} e^{-(y,\zeta)} d\mu_{\delta,\Lambda}(\zeta)$$
(2.15)

for all $y \in \overline{\Lambda}$. Since $0 \in \overline{\Lambda}$ and G is continuous on $\overline{\Lambda}$, then

$$G(0) = \int_{\Lambda^*} d\mu_{\delta,\Lambda}(\zeta).$$

Hence, $\mu_{\gamma,\Lambda}$ is a finite measure. Therefore, the function G can be extended analytically on T_{Λ} as the Laplace transform of $\mu_{\gamma,\Lambda}$, i.e., for $z = x + iy \in T_{\Gamma}$, we can set

$$G(z) = \int_{\Lambda^*} e^{i(z,\zeta)} d\mu_{\gamma,\Lambda}(\zeta).$$

Note that this integral converges absolutely.

By (2.14), the function G(z) coincides with $K_{\Lambda}(g)(i\delta + z)$ for $z = iy, y \in \overline{\Lambda}$. We will show that this is true also for all $z \in T_{\Lambda}$. To this end, we use the following identity theorem (see e.g., [10, p.16-17]): if H is an analytic function on an open connected domain D in \mathbb{C}^n , $a \in D$, and H(a + x) = 0 for all x in a neighborhood of 0 in \mathbb{R}^n , then $H \equiv 0$ on D. Of course, a similar statement is valid also in the case if we replace a real neighborhood of a by any imaginary neighborhood, i.e., if we have H(a + iy) = 0 for all y in a neighborhood of 0 in \mathbb{R}^n , then also $H \equiv 0$ on D. Now fix any $z_0 = iy_0 \in i\Lambda \subset T_{\Lambda}$. Then using (2.13) and (2.14), we see that G(z) and $K_{\Lambda}(g)(i\gamma + z)$ coincide for all z in an imaginary neighborhood $I_{z_0} = \{z = x + iy \in \mathbb{C}^n : |y - y_0| < r, x = x_0\}$ of z_0 such that $I_{z_0} \subset T_{\Lambda}$. Hence, $G(z) = K_{\Lambda}(g)(i\delta + z)$ for all $z \in T_{\Lambda}$. Moreover, by (2.14) and (2.15), we have that

$$K_{\Lambda}(g)(i\delta + z) = G(z) = \int_{\Lambda^*} e^{i(z,\zeta)} d\mu_{\gamma,\Lambda}(\zeta) = \int_{\Lambda^*} e^{i(x,\zeta)} e^{-(y,\zeta)} d\mu_{\gamma,\Lambda}(\zeta) \quad (2.16)$$

for all $z = x + iy \in T_{\Lambda}$. Using (2.16) and having the Bochner theorem for continuous positive definite functions on \mathbb{R}^n , we obtain that for any fixed $y \in \Gamma$, the functions

$$x \to G(x+iy)$$
 and $x \to K_{\Lambda}(g)(x+i(\delta+y))$

are continuous and positive definite on \mathbb{R}^n . Thus, since Λ is open and δ is an arbitrary point of Λ , we obtain that the function $x \to K_{\Lambda}(g)(x + iy)$ also is continuous and positive definite on \mathbb{R}^n . This proves our claim.

Let ${\Gamma_k}_{k=1}^m$ be as in the Theorem 1.2 and suppose that for $f \in \mathcal{E}'(\mathbb{R}^n)$, the functions $y \to K_{\Gamma_k}(f)(iy), y \in \Gamma_k, k = 1, 2, \ldots, m$ are completely monotonic. Fix $y^{(1)} \in \Gamma_1, \ldots, y^{(m)} \in \Gamma_m$, and define

$$F(x) = \sum_{k=1}^{m} K_{\Gamma_k}(f)(x + iy^{(k)})$$
(2.17)

for $x \in \mathbb{R}^n$. We just proved that each $x \to K_{\Gamma_k}(f)(x+iy^{(k)})$, $k = 1, \ldots, m$, is a continuous and positive definite function on \mathbb{R}^n . Hence, the same is still true for (2.17). If $\omega \in D(\mathbb{R}^n)$, then $F \cdot \omega$ is integrable on \mathbb{R}^n , and by Lemma 2.2, we have that

$$\sum_{k=1}^{m} \int_{\mathbb{R}^{n}} K_{\Gamma_{k}}(f)(x+iy^{(k)})\omega(x) \, dx = \int_{\mathbb{R}^{n}} F(x)\omega(x) \, dx \ge 0.$$
(2.18)

Letting now max $||y^{(k)}||_2 \to 0$. Then (2.18) this, together with Lemma 2.4, proves that $(f, \omega) \ge 0$ for all $\omega \in D(\mathbb{R}^n)$. Thus, f is a positive definite distribution.

Acknowledgement. The author thanks the referee for pointing out several mistakes and making a few other remarks which improved the exposition. This research was funded by a grant (No. MIP-053/2012) from the Research Council of Lithuania.

References

- P. Blanchard and E. Brüning, Mathematical Methods in Physics. Distributions, Hilbert space Operators and Variational Methods. Progress in Mathematical Physics, Birkhäuser, Boston-Basel-Berlin, 2003.
- S. Bochner, Harmonic analysis and the theory of probability, Dover Publications, New York, 2005.
- R.D. Carmichael and D. Mitrovič, *Distributions and analytic functions*, Pitman Research Notes in Mathematics Series, vol. 206, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.
- J. Chung, S.-Y. Chung and D. Kim D, Positive definite hyperfunctions, Nagoya Math. J. 140 (1995), 139-149.
- E. Hewitt and K.A. Ross, *Abstract Harmonic Analysis*, vol. 2, Springer, Berlin-Heidelberg, 1997.
- F. Hirsch, Familles résolvantes, générateurs, cogénérateurs, potentiels, Ann. Inst. Fourier 22 (1972), no. 1, 89–210.
- A.W. Knapp, Advanced real analysis. Along with a companion volume Basic real analysis. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2005.
- 8. E. Lukacs, Characteristic Functions. 2nd ed., Hafner Publishing Co., New York, 1970.
- S. Norvidas, A note on positive definite distributions, Indag. Math. 24 (2013), no. 3, 505-517.
- R.M. Range, Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics, 108. Springer-Verlag, New York, 1986.
- H.-J. Rossberg, Positive definite probability densities and probability distributios, J. Math. Sci. 76, (1995) no. 1, 2181–2197.
- 12. Z. Sasvári, Multivariate Characteristic and Correlation Functions, De Gruyter, Berlin, 2013.
- O.J. Staffans, Positive definite measures with applications to a Volterra equation, Trans. Amer. Soc. 218 (1976), 219–237.
- E.M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
- H.G Tillmann, Distributionen als Randvertailungen analytischer Funktionen. II., Math. Z. 76 (1961), 5–21.
- V.S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Francis, London, 2002.

VILNIUS UNIVERSITY INSTITUTE OF MATHEMATICS AND INFORMATICS, AKADEMIJOS 4, LT-08663 VILNIUS, LITHUANIA;

MYKOLAS ROMERIS UNIVERSITY, ATEITIES 20, LT-08303 VILNIUS, LITHUANIA. *E-mail address:* norvidas@gmail.com