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Abstract. A discrete group G is called rigidly symmetric if for every C∗-
algebra A the projective tensor product `1(G)⊗̂A is a symmetric Banach ∗-
algebra. For such a group we show that the twisted crossed product `1α,ω(G;A)
is also a symmetric Banach ∗-algebra, for every twisted action (α, ω) of G in
a C∗-algebra A . We extend this property to other types of decay, replacing
the `1-condition. We also make the connection with certain classes of twisted
kernels, used in a theory of integral operators involving group 2-cocycles. The
algebra of these kernels is studied, both in intrinsic and in represented version.

1. Introduction

A Banach ∗-algebra B is called symmetric if the spectrum of B∗B is positive
for every B ∈ B . This happens (cf. [28]) if and only if the spectrum of any
self-adjoint element is real. It is not known if the symmetry of B would imply the
symmetry of the projective tensor product B⊗̂A for every C∗-algebra A ; such a
property is called rigid symmetry.

All over this article G will be a discrete group with unit e . If the convolution
Banach ∗-algebra `1(G) is symmetric, G itself is called symmetric, while if it is
rigidly symmetric, G will also be called rigidly symmetric.

In [29] this terminology is applied to general locally compact groups. Various
counterexamples are known. Certain solvable (thus amenable) groups and certain
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connected polynomially growing groups are not symmetric [23]. Non-compact
semi-simple Lie groups are never symmetric.

On the other hand, many interesting classes of groups are shown to be symmet-
ric or even rigidly symmetric. If G is symmetric and K is compact, the semi-direct
product K o G is symmetric [23]. Compact [23, Th. 1] or nilpotent locally com-
pact groups [29, Cor. 6] are rigidly symmetric. It is still not known if symmetry
and rigid symmetry are equivalent for a locally compact group (see [29]).

Besides the component-wise algebraic structure on `1(G)⊗̂A ∼= `1(G;A) , one
can consider interesting and more complicated structures induced by twisted ac-
tions (α, ω) of G on the C∗-algebra A , resulting in what is called twisted crossed
products `1

α,ω(G;A) [22, 6, 25, 26]. One recovers `1(G;A) if the action α is trivial
(αx is the identity map on A) and the 2-cocycle ω is identically 1 . We recall the
basic constructions in Section 2.1, where we also replace the `1-decay condition
by others, described by admissible convolution algebras.

It is shown in [10] that a discrete group G is rigidly symmetric if and only
if `1

α(G;A) is symmetric for every usual (untwisted) action α (see also [3]). In
Section 2.2 we extend this equivalence to include twisted C∗-dynamical systems,
involving a 2-cocycle ω , as well as other types of decay than those expressed by
the `1-condition. We also treat inverse closedness (also called spectral invariance,
or Wiener property) of our twisted crossed products both inside enveloping C∗-
algebras and faithfully represented as operators in Hilbert spaces. An extension,
spectral invariance modulo a closed bi-sided ∗-ideal, is exposed in 2.3, motivated
by M. Lindner’s work [24] on Fredholm operators. The results are illustrated in
2.4 by a series of Corollaries and Examples. An attempt to treat arbitrary locally
compact groups failed, the obstacle being a non-trivial measurability issue; we
are grateful to Professor Detlev Poguntke for pointing this out to us [30].

In [20, Sect. 4] results are given about symmetry of `1-twisted crossed products;
the assumptions on the twisted C∗-dynamical system are quite strong. The nature
of our result is different, showing for any discrete group that the presence of the
twisted action is not relevant for symmetry issues. This would be particulary
convenient if rigid symmetry will ever be shown to be equivalent to symmetry.

In Sections 3.1 and 3.2 we describe the algebraic structure and the norm on a
family of twisted kernels, connected to the twisted crossed product setting. They
are useful in defining families of matrix operators whose composition involves
cohomological factors. Actually, as they are defined, they form a class which is
much larger than the one emerging from the theory of twisted crossed products,
which can be recovered up to isomorphism only under a supplementary covariance
condition (3.6). We believe that the twisted matrix calculus has an interest of
its own. When developed starting with the action of G on an Abelian C∗-algebra
A, it has interesting Hilbert-space representations that are studied in 3.3. As a
particular case, A could be a C∗-algebra of bounded complex functions on G (see
[3, 10]) and then a natural class of twisted kernels is already isomorphic to the
twisted crossed product. As a consequence of the results of the previous section,
certain subfamilies of twisted kernels form symmetric Banach ∗-algebra. Explicit
faithful representations turn them into inverse closed subalgebras of bounded
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operators (in usual or in Fredholm sense) and all these are treated in 3.4; one
gets an extension of the convolution dominated operators [11].

Besides the construction of the cohomological matrix calculus, most our results
concern symmetry and inverse closedness, so they are part of what could be called
noncommutative Wiener theory. The main purpose was to incorporate group 2-
cocycles in the presence of general types of decay. So we only cite references as
[1, 2, 3, 7, 9, 11, 13, 14, 15, 21] that have an immediate connection with our work.
In particular, we follow rather closely some developments from [10]. It is outside
the scope of this paper to outline the history or the rich implications of Wiener’s
theory in its classical or its modern form. Most of the recent papers on this topic
achieve this at least partly, while [12, 19] are excelent reviews exposing both the
state of art of the subject and its numerous applications.

2. Symmetric Banach ∗-algebras associated to discrete groups

2.1. L-type twisted crossed products. Let us fix a discrete group G . Recall
that `1(G) is a Banach ∗-algebra with the usual `1-norm, with the convolution
product

(k ? l)(x) :=
∑
y∈G

k(y)l(y−1x)

and with the involution

k?(x) := k(x−1) .

We also recall [4] that a Banach space L(G) of complex functions on G is called
a solid space of functions if for any k, l : G → C , if |k(x)| ≤ |l(x)| everywhere
and l ∈ L(G) then k ∈ L(G) and ‖ k ‖L≤‖ l ‖L . Clearly k and |k| belong
simultaneously to such a solid space of functions and their norms are the same.

Definition 2.1. We call admissible algebra a subspace L(G) of `1(G) having its
own norm ‖·‖L which is stronger than the `1-norm, such that

(1) L(G) is a solid space of functions,
(2)

(
L(G), ?,? , ‖·‖L

)
is a unital Banach ∗-algebra.

Of course, `1(G) itself is an admissible algebra. Another example is `∞,ϑ(G) :=
{k | ϑk ∈ `∞(G)} , where ϑ : G → [1,∞) is a subconvolutive weight, i.e. it
satisfies ϑ−1 ? ϑ−1 ≤ Cϑ−1 for some constant C . Plenty of admissible algebras
are contained in [8, 31].

One can generate new admissible algebras by using weights.

Definition 2.2. A submultiplicative, symmetric weight is a function ν : G →
[1,∞) satisfying everywhere

ν(xy) ≤ ν(x)ν(y) , ν(x−1) = ν(x) .

Lemma 2.3. Assume that L(G) is an admissible algebra and ν is a weight on G .
Then

Lν(G) := {k | νk ∈ L(G)} , ‖·‖Lν := ‖ν ·‖L
is an admissible algebra.
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Proof. Clearly ‖ · ‖Lν is a complete norm, which is stronger than ‖ · ‖L since
ν(·) ≥ 1 and L(G) is solid. Since L(G) is solid and ν is strictly positive, Lν(G) is
clearly also solid.

The weight ν being symmetric, one checks immediately that (νk)? = νk? and
this shows that Lν(G) is stable under involution and that the involution is iso-
metric.

By submultiplicativity of the weight one gets the inequality

|ν(k ? l)| ≤ ν(|k| ? |l|) ≤ |νk| ? |νl| .

From it, using solidity, it follows that Lν(G) is a subalgebra under convolution
and that the norm ‖·‖Lν is submultiplicative:

‖k ? l‖Lν = ‖ν(k ? l)‖L≤‖|νk| ? |νl|‖L
≤‖|νk|‖L ‖|νl|‖L = ‖νk‖L ‖νl‖L
= ‖k‖Lν‖ l‖Lν .

�

If A is a C∗-algebra, one denotes by Aut(A) the group of its ∗-automorphisms,
by M(A) its multiplier C∗-algebra (with the strict topology) and by UM(A) the
corresponding unitary group. Almost always A will be unital, so M(A) will be
identified with A .

Definition 2.4. Twisted C∗-dynamical systems (A, α, ω) are formed of a C∗-
algebra A , a map α : G → Aut(A) and a map ω : G × G → UM(A) satisfying
for every x, y, z ∈ G

αx ◦ αy = adω(x,y) ◦ αxy , (2.1)

ω(x, y)ω(xy, z) = αx[ω(y, z)]ω(x, yz) , (2.2)

ω(x, e) = 1 = ω(e, x) . (2.3)

If (A, α, ω) is a twisted C∗-dynamical system, we denote by `1
α,ω(G;A) the space

`1(G;A) of integrable A-valued functions on G endowed [6] with the composition
law

(f �α,ωg)(x) :=
∑
y∈G

f(y) αy

[
g(y−1x)

]
ω(y, y−1x)

and the involution

f �α,ω(x) := ω(x, x−1)∗αx

[
f(x−1)

]∗
.

It is a Banach ∗-algebra called the `1-twisted crossed product associated to
(A, α, ω). The enveloping C∗-algebra of `1

α,ω(G;A) [25, 26] is denoted by Aoω
αG

and called the twisted crossed product C∗-algebra.

Now we are also given an admissible algebra L(G) . We define

L(G;A) :=
{
f ∈ `1(G;A) | ‖f(·)‖A ∈ L(G)

}
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with norm ‖ f ‖L(G;A) :=
∥∥ ‖ f(·) ‖A

∥∥
L . It is easy to see that L(G;A) is a ∗-

subalgebra of `1
α,ω(G;A) ; when this structure is considered, we write Lα,ω(G;A) .

This follows from the obvious estimations

‖(f �α,ω g)(x)‖A≤
∑
y∈G

‖f(y)‖A ‖g(y−1x)‖A =
(
‖f(·)‖A ∗ ‖g(·)‖A

)
(x)

and

‖f �α,ω(x)‖A = ‖f(x−1)‖A = ‖f(·)‖∗A (x)

and from the admissibility of L(G) . It is also easy to check that Lα,ω(G;A) is a
Banach ∗-algebra with the (stronger) norm ‖f ‖L(G;A) .

If α is the trivial action αx(ϕ) = ϕ or if ω = 1 , they will disappear from the
notation. The case ω = 1 leads to the crossed product [32]. If in addition A = C
(with the trivial action) one recovers L(G) . We notice, for further use, that the
Banach space `1(G;A) can be identified [27, 1.10.11] with the projective tensor
product `1(G)⊗̂A . For L(G;A) , in general, there is no such a claim.

Definition 2.5. A covariant representation (H , r, U) of the twisted C∗-dynamical
system (A, α, ω) is composed [6, 25] of a Hilbert space H , a non-degenerate
∗-representation r : A → B(H ) and a unitary-valued map U : G → U(H )
satisfying for every x, y ∈ G and ϕ ∈ A

U(x)U(y) = r[ω(x, y)]U(xy) and U(x)r(ϕ)U(x)∗ = r[αx(ϕ)] . (2.4)

Given a covariant representation
(
H , r, U

)
, the integrated form [6, pag. 512]

(r o U)(f) :=
∑
x∈G

r[f(x)]U(x) (2.5)

provides a ∗-representation r oU : `1(G;A) → B(H ) that extends to the twisted
crossed product C∗-algebra Aoω

αG and restricts to any of the Banach ∗-algebras
Lα,ω(G;A) . The extension and the restrictions are all contractive.

Remark 2.6. It is known that covariant representations
(
H , r, U

)
with faithful r

exist. This will be used in Section 2.2, so we indicate a construction.
Let π : A → B(H) be a ∗-representation of the C∗-algebra A in a separable

Hilbert space H . We can inflate π to a ∗-representation of A in H := `2(G;H) ∼=
`2(G)⊗H by

[rπ(ϕ)v](x) := π
[
αx−1(ϕ)

]
v(x) . (2.6)

It is obvious that rπ is injective if π is injective. One also defines for every y ∈ G[
Lπ

ω(y)v
]
(x) := π

[
ω(x−1, y)

]
v(y−1x) . (2.7)

It is straightforward to show that
(
H , rπ, Lπ

ω

)
is a covariant representation; we

say that it is induced by π . A related version, involving right translations, can
be found in [6, pag. 517] and [25, Def. 3.10] for instance.
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2.2. Symmetry and inverse closedness of L-type twisted crossed prod-
ucts.

Definition 2.7. Let L(G) be an admissible algebra over the discrete group G .
Then G is called TCP-rigidly L-symmetric (rigidly symmetric in the sense of
twisted crossed products for L-type decay) if the Banach ∗-algebra Lα,ω(G;A) is
symmetric for every twisted C∗-dynamical system (A, α, ω) with group G .

If this is required only for the trivial case (α, ω) = (id, 1) , we speak of rigid
L-symmetry. We also drop L if L(G) = `1(G) , to reach standard terminology
[23, 29] .

Definition 2.8. The ∗-subalgebra B of the unital C∗-algebra C is called an
inverse closed (or spectral, or Wiener) subalgebra if for every f ∈ B that is
invertible in C one has f−1 ∈ B .

The following result, extending [10, Cor. 1], shows that for every admissible
algebra L(G) the discrete group G is TCP-rigidly L-symmetric if (and only if) it
is rigidly L-symmetric.

Theorem 2.9. Let (A, α, ω) be a twisted C∗-dynamical system with rigidly L-
symmetric discrete group G .

(1) Lα,ω(G;A) is a symmetric Banach ∗-algebra.
(2) Lα,ω(G;A) is an inverse closed subalgebra of its enveloping C∗-algebra. In

particular, if G is rigidly symmetric, `1
α,ω(G;A) is spectral in Aoω

αG .

(3) Let Π : Aoω
αG → B(H ) be a faithful ∗-representation; then Π

[
`1
α,ω(G;A)

]
is inverse-closed in B(H ) .

The next basic Lemma is inspired by [10, Prop. 2], to which it reduces if ω = 1 ,
A = `∞(G) and L(G) = `1(G) . We also refer to [3, Prop. 2.7]; some inaccuracies
contained in earlier preprinted versions have been corrected in the final form of
this article.

Lemma 2.10. Let (A, α, ω) be a twisted C∗-dynamical system with discrete group
G and L(G) an admissible algebra. There exists a C∗-algebra B and an isometric
∗-morphism

θ : Lα,ω(G;A) → Lid,1(G; B) ≡ L(G; B) .

Proof. We use a covariant representation (H , r, U) (cf. Definition 2.5) of the
twisted C∗-dynamical system (A, α, ω) with r faithful and choose B to be a
C∗-subalgebra of B(H ) containing r(A)U(G). Then we set

θ : Lα,ω(G;A) → L(G; B) , (θf)(x) := r[f(x)]U(x) .

Clearly θ is well-defined and isometric:

‖θf ‖L(G;B) =
∥∥‖(θf)(·)‖B

∥∥
L(G)

=
∥∥‖r[f(·)]U(·)‖B ‖L(G)

=
∥∥‖r[f(·)]‖B

∥∥
L(G)

= ‖f ‖L(G;A) ,
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since U(x) is unitary and r, being faithful, is isometric.
For two elements f, g of Lα,ω(G;A) one computes using (2.4) and the definitions

(θf ? θg)(x) =
∑
y∈G

(θf)(y)(θg)(y−1x)

=
∑
y∈G

r[f(y)] U(y) r
[
g(y−1x)

]
U(y−1x)

=
∑
y∈G

r[f(y)] U(y) r
[
g(y−1x)

]
U(y)∗U(y)U(y−1x)

=
∑
y∈G

r[f(y)] r
[
αy

(
g(y−1x)

)]
r[ω(y, y−1x)] U(x)

= r[(f �α,ωg)(x)] U(x)

= [θ(f �α,ωg)](x) .

Finally we treat the involution, using the identity U(x−1) = U(x)∗ r[ω(x, x−1)] :

(θf)?(x) = (θf)(x−1)∗

=
(
r
[
f(x−1)

]
U(x−1)

)∗
= U(x−1)∗ r

[
f(x−1)

]∗
= r

[
ω(x, x−1)∗

]
U(x) r

[
f(x−1)

]∗
U(x)∗U(x)

= r
[
ω(x, x−1)∗

]
r
(
αx

[
f(x−1)

]∗)
U(x)

= r[θ(f �α,ω)] U(x)

= [θ(f �α,ω)](x) .

�

Remark 2.11. Using the precise notation θ = θr,U , the integrated form (2.5) can
be written as roU = I ◦θr,U , in terms of the ∗-morphism I : `1(G; B) → B given
by I(F ) :=

∑
x∈G F (x) .

We are now in a position to prove Theorem 2.9.

Proof. 1. It is known [28, Th.11.4.2] that symmetry of a Banach ∗-algebra is
inherited by its closed ∗-algebras. This, Lemma 2.10 and the fact that L(G; B)
was assumed symmetric prove the result.

2. We recall [28] that a ∗-algebra is called reduced if its universal C∗-seminorm is
in fact a norm. It is known [28, 11.4] that a reduced Banach ∗-algebra is symmetric
if and only if it is a spectral subalgebra of its enveloping C∗-algebra. Thus, by
point 1, we only need to know that Lα,ω(G;A) is reduced. But a ∗-subalgebra of a
reduced ∗-algebra is also reduced [28, Prop. 9.7.4]. By Lemma 2.10 Lα,ω(G;A) is
isometrically isomorphic to a ∗-subalgebra of L(G; B) ⊂ `1(G; B) , so everything
follows from the fact that `1(G; B) is reduced.

3. Follows immediately from 2, from obvious properties of isomorphisms and
from the fact that any C∗-algebra is inverse closed in a larger C∗-algebra. �
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2.3. Inverse closedness modulo ideals. In a C∗-algebra we will call briefly
ideal a closed self-adjoint bi-sided ideal.

Definition 2.12. Let J be an ideal of the unital C∗-algebra C . The ∗-subalgebra
B of C is called J-inverse closed if for every f ∈ B such that there are elements
g ∈ C , h, k ∈ J with fg = 1C + h and gf = 1C + k one actually has g ∈ B .

One can rephrase: B is J-inverse closed in C if and only if B/J (shorthand
for B/(B ∩ J)) is inverse closed in C/J . If J = {0} the notion coincides with
that introduced in Definition 2.8.

Suppose now that (A, α, ω) is a twisted action of the discrete group G and
that J is an ideal of A that is α-invariant: αx(J ) ⊂ J for every x ∈ G . We
denote by the same letter α the action of G by automorphisms of J defined by
restrictions. On the other hand, the unital C∗-algebra A is naturally embedded
in the multiplier algebra M(J ) [32], so ω(x, y) can be seen as a multiplier of J
for every x, y ∈ G . Finally one gets the C∗-dynamical system (J , α, ω, G) . It is
known [26] that the twisted crossed product Joω

αG may be identified with an ideal
of Aoω

αG . Under this identification, `1
α,ω(G;J ) becomes an ideal of `1

α,ω(G;A) in

the natural way: the `1-function f : G → J is taken to be A-valued. Now we use
the exactness of the twisted crossed product construction to prove

Theorem 2.13. Assume that the discrete group G is rigidly symmetric. Then
the Banach ∗-algebra `1

α,ω(G;A) is J oω
α G-inverse closed in the twisted crossed

product Aoω
αG for every α-invariant ideal J of A .

Proof. Setting C := Aoω
αG , J := Joω

αG and B := `1
α,ω(G;A) , we must show that

B/J is inverse closed in C/J . Note that B ∩ J = `1(G;J ) . One has a natural
quotient twisted C∗-dynamical system

(
A/J , α̃, ω̃, G

)
given by

α̃x(ϕ + J ) := αx(ϕ) + J and ω̃(x, y) := ω(x, y) + J .

Then the quotient B/J ≡ B/(B ∩ J) = `1
α,ω

(
G;A

)
/`1

α,ω

(
G;J

)
is isomorphic to

`1
α̃,ω̃

(
G;A/J

)
, which is a symmetric Banach ∗-algebra, by our Theorem 2.9 and

the fact that G was assumed rigidly symmetric. Thus it is inverse closed in its
enveloping C∗-algebra, that can be identified [26] to the quotient C/J . �

Our main motivation for introducing Definition 2.12 and proving Theorem 2.13
comes from the article [24]. We recall that a bounded operator T in a Hilbert
space H is called Fredholm if it has a closed range, a finite-dimensional kernel and
its adjoint T ∗ also has a finite-dimensional kernel. Let us denote by q : B(H ) →
B(H )/K(H ) the canonical surjection. By Atkinson’s Theorem, T is Fredholm
if and only if its canonical image q(T ) in the Calkin algebra B(H )/K(H ) is
invertible. In other terms, there should exist S ∈ B(H ) and K, L ∈ K(H ) such
that

ST = 1 + K , TS = 1 + L . (2.8)

One would like to know if the information upon S can be automatically improved.

Definition 2.14. Let F be a ∗-algebra of bounded operators in H containing
K(H ) . We say that it is Fredholm inverse closed if for every Fredholm element
T ∈ F there exist S ∈ F and K, L ∈ K(H ) such that (2.8) holds.
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Clearly F is Fredholm inverse closed if and only if q(F) is a spectral ∗-subalgebra
of the Calkin algebra and this fits Definition 2.12.

Let (A, α, ω, G) be a twisted C∗-dynamical system with discrete rigidly sym-
metric group G and J an α-invariant (closed, self-adjoint bi-sided) ideal inA . Let
Π : Aoω

αG → B(H ) be a faithful ∗-representation such that Π
[
Joω

αG
]

= K(H )
(using consacrated terminology, J oω

αG is an elementary C∗-algebra). Applying
Theorem 2.13 one gets immediately

Corollary 2.15. The Banach ∗-algebra Π
[
`1
α,ω(G;A)

]
is Fredholm inverse-closed.

In Example 2.22 and Corollary 3.14 we are going to present concrete versions
of this result. In [24] the group G is Zn and there is no cohomological factor
ω . On the other hand many of the refinements of [24] are not available by the
methods of the present article.

2.4. Consequences and examples. We start with an abstract consequence of
Theorem 2.9.

Corollary 2.16. The quotient of a (TCP-)rigidly symmetric discrete group by a
normal subgroup is TCP-rigidly symmetric.

Proof. Suppose that N is a closed normal subgroup of G . Describing `1(G/N) is
not trivial, but it has been done in [27, Th. pag. 146]. Without giving all the
details, let us just say that a surjective ∗-morphism Φ : `1(G) → `1(G/N) exists,
which defines an isometric ∗-isomorphism `1(G/N) ∼= `1(G)/ker(Φ) . Thus

`1(G/N;B) ∼= `1(G/N)⊗̂B ∼=
[
`1(G)/ker(Φ)

]
⊗̂B

for every C∗-algebra B . Using [27, Prop 1.10.10] we see that
[
`1(G)/ker(Φ)

]
⊗̂B

can be identified to the quotient
[
`1(G)⊗̂B

]
/ ker

(
Φ⊗̂idB

)
. To conclude, one gets

the isometric isomorphism of Banach ∗-algebras

`1(G/N;B) ∼= `1(G;B) / ker
(
Φ⊗̂idB

)
.

It is also known [28, Th.11.4.2] that the quotient of a symmetric Banach ∗-algebra
by a closed bi-sided ∗-ideal is symmetric. Hence G/N is rigidly symmetric. Com-
bining this with Theorem 2.9 finishes the proof. �

Corollary 2.17. (1) Finite extensions of discrete nilpotent groups are TCP-
rigidly symmetric. In particular [16], discrete finitely-generated groups of
polynomial growth are TCP-rigidly symmetric.

(2) If Z is a central subgroup with G/Z rigidly symmetric, then G is TCP-
rigidly symmetric.

Proof. 1. For the first assertion, we use once again Theorem 2.9 and invoke [23,
Cor. 3] for rigid symmetry of finite extensions of discrete nilpotent groups.

2. The second assertion is a consequence of Theorem 2.9 and [23, Th. 7]. �

The next result follows directly from Lemma 2.10, so it relies only on a sym-
metry assumption.
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Proposition 2.18. If the discrete group G is symmetric and the twisted C∗-
dynamical system (A, α, ω) admits a covariant representation (H , r, U) with r
faithful and r(A)U(G) contained in a type I C∗-algebra B ⊂ B(H ) , then
`1
α,ω(G;A) is a symmetric Banach ∗-algebra.

Proof. The projective tensor product of a symmetric Banach ∗-algebra and a
type I C∗-algebra is a symmetric Banach ∗-algebra [20, Th. 1]. Thus `1(G; B) ∼=
`1(G)⊗̂B is symmetric if G is (only) symmetric and B is type I and then Lemma
2.10 finishes the proof. �

It is not easy to exploit this result in an explicit non-trivial way. If G is
amenable and the twisted crossed product Aoω

α G happens to be type I, it can
be used in Proposition 2.18. But criteria for such a property are difficult to give
even if ω is trivial; we refer to [32, 7.5] for a discussion.

To illustrate this Proposition with simple but non-trivial examples, let us take
A = C and (thus) αx = idC for every x ∈ G . Then the 2-cocycle (in this case
also called multiplier) ω is T-valued and `1

id,ω(G; C) =: `1
ω(G) is the ω-twisted

`1-algebra of the group G . The isometric ∗-morphism θ defined in (2.2) reads
now

θ : `1
ω(G) → `1(G; B) , (θf)(x) := f(x)U(x) ,

where U : G → U(H ) is an ω-projective representation, i.e. it satisfies

U(x)U(y) = ω(x, y)U(xy) , ∀x, y ∈ G

and we choose B (say) to be the C∗-subalgebra of B(H ) generated by U(G) .
Using now Proposition 2.18 one gets

Corollary 2.19. If the discrete group G is symmetric and admits an ω-projective
representation U generating a type I C∗-algebra, then `1

ω(G) is symmetric. In
particular, this happens when G is amenable and symmetric and the twisted group
C∗-algebra C∗

ω(G) is type I.

Conditions for a discrete group to have at least one type I ω-representation are
in [18, Th. 1], to which we send the interested reader; see also [17].

Lemma 2.3 tells us that the Beurling algebra `1,ν(G) is an admissible algebra
if ν is a submultiplicative symmetric weight.

Corollary 2.20. Let G be a rigidly symmetric amenable discrete group and ν a
submultiplicative symmetric weight. Assume that there exists a generating subset
V of G containing the unit e such that

(1) the following uGRS (uniform Gelfand–Raikov–Shilov) condition holds:

lim
n→∞

sup
x1,...,xn∈V

ν(x1 · · ·xn)1/n = 1 , (2.9)

(2) for some finite constant C one has for any n ∈ N
sup

x∈V n\V n−1

ν(x) ≤ C inf
x∈V n\V n−1

ν(x) . (2.10)

Then `1,ν
α,ω(G;A) is a symmetric Banach ∗-algebra for every twisted C∗-dynamical

system (A, α, ω) .
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Proof. From Theorem 2.9 we know that G is TCP-rigidly `1,ν-symmetric whenever
it is rigidly `1,ν-symmetric. The problem of the symmetry of `1,ν(G; B) for a
discrete group and an arbitrary C∗-algebra B has been discussed and solved in
[10, Sect. 5], relying on the assumptions 1 and 2. �

Example 2.21. Non-commutative tori [5, 15] are obtained setting G := Zn , L :=
`1 and A := C . Thus the two-cocycle ω : Zn×Zn → T is a multiplier, the action
α must be trivial, the twisted crossed product is the `1-twisted group algebra
`1
ω(Zn) with enveloping C∗-algebra C∗

ω(Zn) . Up to cohomology, the multipliers
of Zn are given by skew-symmetric matrices (θx,y)x,y∈Zn through

ωθ(x, y) = exp
(
2πiθx,y

)
, ∀x, y ∈ Zn .

If ω = 1 one deals with the (`1- and C∗-) group algebras of Zn, which are
commutative; one has C∗(Zn) ∼= C(Tn) by using the Fourier transform.

Unconventionally, for every admissible (convolution) algebra L(Zn) , the Ba-
nach ∗-algebra Lω(Zn) may be called the ω-noncommutative torus of L-decay. Our
results imply that it is symmetric and inverse-closed in its enveloping C∗-algebra
(and in its faithful representations) if Zn is rigidly L-symmetric. This holds if
L = `1 since Zn is Abelian. It also holds for L = `1,ν if ν is a GRS-weight.

Such results (and others) have been first obtained in [13, 14, 15]. As outlined
in [15], the symmetry of `1

ω(Zn) can be proved by embedding it isometrically into
the non-commutative convolution algebra L1(Gω) , where Gω is the central group
extension of the 1-dimensional torus T (the unitary group of C) by Zn associated
to the multiplier ω . Such a strategy is impossible in more complicated situations;
note for example that the unitary group of an infinite-dimensional C∗-algebra A
is not locally compact, so it does not posses a Haar measure.

One gets a faithful representation of C∗
ω(Zn) by starting as in Remark 2.6 with

the one-dimensional representation i of A = C in the Hilbert space C . One gets
the integrated form

io Li
ω : `1

ω(Zn) → B
[
`2(Zn)

]
, (io Li

ω)f =
∑
x∈Zn

f(x)Li
ω(x)

which has the form of a twisted convolution(
[(io Li

ω)f ]v
)
(z) =

∑
y∈Zn

ω(−z, z − y)f(z − y)v(y) .

One can state an inverse-closedness result in terms of this representation.

Example 2.22. We illustrate now Fredholm inverse closedness. One starts with
an amenable discrete rigidly symmetric group G and a closed unital ∗-subalgebra
A(G) of `∞(G) containing the ideal

c0(G) :=
{
ϕ : G → C

∣∣ ϕ(x) −→
x→∞

0
}

and stable under translations: if ϕ ∈ A(G) and x ∈ G then
[
αx(ϕ)

]
(·) :=

ϕ(x−1·) ∈ A(G) . Let also ω : G × G → A(G) be a 2-cocycle with respect to
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α . The formula

[Π(f)u](x) :=
∑
y∈G

f
(
xy−1; x

)
ω
(
x−1, xy−1; e

)
u(y)

defines a ∗-representations Π : `1
α,ω(G;A(G)) → B

[
`2(G)

]
that extends to a faithful

∗-representation of A(G)oω
αG (see Section 3.4). It is known that

Π
[
c0(G)oω

αG
]

= K
[
`2(G)

]
.

Hence we are in the framework of Section 2.3 and, by Corollary 2.15,
Π

[
`1(G;A(G))

]
is a Fredholm inverse closed Banach ∗-algebra of operators in

`2(G) . This can be applied to A(G) = `∞(G) . In Corollary 3.14 we will give an
interpretation in terms of twisted matrix operators.

3. The twisted kernel calculus

3.1. Algebras of twisted kernels. As before, we are given a twisted C∗-dyna
-mical system (A, α, ω) with discrete group G . When defining algebras of kernels,
for simplicity, we are going to assume that the 2-cocycle ω is center-valued; conse-
quently (2.1) will read simply αx ◦ αy = αxy for every x, y ∈ G . The general case
can be treated, but some formulae are more complicated. The 2-cocycle identity
(2.2) will be needed below in the form

αs−1

[
ω(m, n)

]
αs−1

[
ω(mn, r)

]
= αs−1m

[
ω(n, r)

]
αs−1

[
ω(m,nr)

]
. (3.1)

ForA-valued kernels on G , i.e. functions K : G×G → A , one defines (formally)
the composition

(K •α,ωL)(x, y) :=
∑
z∈G

K(x, z)L(z, y) αx−1

[
ω(xz−1, zy−1)] (3.2)

and the involution

K•α,ω(x, y) := αx−1

[
ω(xy−1, yx−1)∗

]
K(y, x)∗ . (3.3)

Definition 3.1. Let L(G) be an admissible algebra. We denote by K L
α,ω(G×G;A)

the set of all functions K : G× G → A for which ‖K ‖K L is finite; we set

‖K ‖K L := inf
{
‖k‖L | ‖K(x, y)‖A≤ |k(xy−1)| , ∀x, y ∈ G

}
. (3.4)

The elements of K L
α,ω(G × G;A) will be called A-valued convolution-dominated

kernels (or matrices) of type L .

The space L(G) describes the type of off-diagonal decay possessed by the ele-
ments of K L

α,ω(G×G;A) . If L(G) = `1,ν(G) we prefer the notation K ν
α,ω(G×G;A)

and if L(G) = `1(G) we skip the upper index. The lower index (α, ω) is only jus-
tified by the fact that on K L

α,ω(G × G;A) we are going to consider the algebraic
structure defined by (3.2) and (3.3). The starting point in defining Banach spaces
through norms of the form (3.4) seems to be [11], in which the group G is Zn ,
one has L = `1 and the 2-cocycle is absent.

Remark 3.2. Given an element K of the space K L
α,ω(G× G;A) , let us introduce

the notation κ(x) := supz∈G ‖K(z, x−1z) ‖A . It is easy to show that κ ∈ L(G)
and that ‖K ‖K L = ‖κ‖L .
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Proposition 3.3.
(
K L

α,ω(G× G;A), •α,ω,•α,ω , ‖·‖K L
)

is a Banach ∗-algebra.

Proof. Straightforwardly, if ‖K(x, y) ‖A≤ |k(xy−1)| and ‖L(x, y) ‖A≤ |l(xy−1)|
everywhere, then

‖(K •α,ω L)(x, y)‖A≤ (|k| ? |l|)(xy−1) , ∀x, y ∈ G .

This shows immediately that K L
α,ω(G× G;A) is stable under •α,ω and that

‖K •α,ω L‖K L ≤‖K ‖K L‖L‖K L , ∀K,L ∈ K L
α,ω(G× G;A) .

The map •α,ω is a well-defined isometry, since

‖K(y, x)‖A≤ |k(xy−1)| ⇐⇒ ‖K•α,ω(x, y)‖A≤ |k∗(xy−1)|
for all x, y ∈ G and the involution ∗ is ‖·‖L-isometric.

To show associativity, we rely on the identity

αx−1

[
ω(xb−1, ba−1)

]
αx−1

[
ω(xa−1, ay−1)

]
=

= αb−1

[
ω(ba−1, ay−1)

]
αx−1

[
ω(xb−1, by−1)

]
,

which follows from (3.1) setting m = xb−1 , n = ba−1, r = ay−1 and s = x .

The map •α,ω is involutive because of the identity

αx−1

[
ω(xy−1, yx−1)

]
= αy−1

[
ω(yx−1, xy−1)

]
,

which follows by setting in (3.1) m = xy−1, n = yx−1, r = xy−1, s = x and then
using (2.3).

The identity (K •α,ωL)•α,ω = L•α,ω •α,ωK•α,ω is equivalent with

αx−1

[
ω(xy−1, yx−1)

]
αy−1

[
ω(yz−1, zx−1)

]
αx−1

[
ω(xz−1, zy−1)

]
=

αx−1

[
ω(xz−1, zx−1)

]
αz−1

[
ω(zy−1, yz−1)

]
.

(3.5)

To prove (3.5) first notice that, by straightforward particularizations in (3.1), one
can write

αx−1

[
ω(xz−1, zy−1)

]
αx−1

[
ω(xy−1, yx−1)

]
=

= αz−1

[
ω(zy−1, yx−1)

]
αx−1

[
ω(xz−1, zx−1)

]
and this reduces (3.5) to

αy−1

[
ω(yz−1, zx−1)

]
αz−1

[
ω(zy−1, yx−1)

]
= αz−1

[
ω(zy−1, yz−1)

]
.

This one holds, taking in (3.1) m = zy−1 , n = yz−1 , r = zx−1 and s = z and
applying (2.3). �

Clearly, each K L
α,ω(G × G;A) can be seen as a ∗-subalgebra of the Banach ∗-

algebra Kα,ω(G × G;A) , the one corresponding to the maximal choice L(G) :=
`1(G) . The correspondence L(G) 7→ K L

α,ω(G×G;A) is increasing (obvious mean-
ing: smaller spaces also have stronger norms). One has relations as

K L1
α,ω(G× G;A) •α,ω K L2

α,ω(G× G;A) ⊂ K L1∗L2
α,ω (G× G;A) ;

thus if L1(G) is an ideal of L2(G) under convolution, then K L1
α,ω(G × G;A) is an

ideal of K L2
α,ω(G× G;A) under the composition •α,ω .
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We connect now the Banach ∗-algebras K L
α,ω(G×G;A) with the twisted crossed

products.

Proposition 3.4. Let us define (Γf)(x, y) := αx−1

[
f(xy−1)

]
.

(1) Then Γ : Lα,ω(G;A) → K L
α,ω(G× G;A) is an isometric ∗-morphism.

(2) The range of Γ is the space of covariant kernels

K L
α,ω(G× G;A)cov :={

K ∈ K L
α,ω(G× G;A) | K(xz, yz) = αz−1 [K(x, y)] , ∀x, y, z ∈ G

} (3.6)

and the inverse Γ−1 reads on K L
α,ω(G× G;A)cov(

Γ−1K
)
(x) := αx

[
K(x, e)

]
.

Proof. 1. The product: one has

[Γ(f �α,ωg)](x, y) = αx−1

[
(f �α,ωg)(xy−1)

]
=

∑
a∈G

αx−1

[
f(a)

]
αx−1a

[
g(a−1xy−1)

]
αx−1

[
ω(a, a−1xy−1)

]
=

∑
z∈G

αx−1

[
f(xz−1)

]
αz−1

[
g(zy−1)

]
αx−1

[
ω(xz−1, zy−1)

]
=

∑
z∈G

(Γf)(x, z) (Γg)(z, y) αx−1

[
ω(xz−1, zy−1)

]
= [(Γf) •α,ω (Γg)](x, y) .

The involution: one has

(Γf)•α,ω(x, y) = αx−1

[
ω(xy−1, yx−1)∗

]
(Γf)(y, x)∗

= αx−1

[
ω(xy−1, yx−1)∗

]
αy−1

[
f(yx−1)∗

]
= αx−1

[
f �α,ω(xy−1)

]
= [Γ(f �α,ω)](x, y) .

To prove that Γ is isometric one writes

‖Γ(f)‖KL = inf
{
‖k‖L(G) | ‖αx−1

[
f(xy−1)

]
‖A≤ |k(xy−1)| , ∀x, y ∈ G

}
= inf

{
‖k‖L(G) | ‖ |f(z)‖A≤ |k(z)| , ∀x, z ∈ G

}
=

∥∥ ‖f(·)‖A
∥∥
L(G)

= ‖f ‖L(G;A) .

2. is quite straightforward. �

Corollary 3.5. The Banach ∗-algebra K L
α,ω(G× G;A)cov is symmetric.

Proof. This follows from Theorem 2.9 and Proposition 3.4. �

3.2. Algebras of twisted operators. The main motivation for introducing the
Banach ∗-algebra K L

α,ω(G×G;A) consists in its connection with a twisted version
of matrix operators.

Let π : A → B(H) be a ∗-representation of the C∗-algebra A in a Hilbert
space H . One represents K L

α,ω(G×G;A) by twisted matrix operators in `2(G;H)
through [

Intπω(K)v
]
(x) :=

∑
y∈G

π
[
K(x, y)

]
π
[
ω(x−1, xy−1)

]
v(y) . (3.7)
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The label ”twisted” indicates the presence of the cohomological factor
π
[
ω(x−1, xy−1)

]
. If ω = 1 one recovers a natural notion of matrix operator with

vector-valued kernel π ◦K : G× G → B(H) .

Proposition 3.6. Intπω : K L
α,ω(G×G;A) → B[`2(G;H)] is a contractive ∗-represen-

tation.

Proof. Of course, it is enough to treat the case L(G) = `1(G) . In addition, it is
known that any ∗-representation of a Banach ∗-algebra is contractive.

Simple computations show that Intπω(K) Intπω(L) = Intπω(K•α,ωL) and Intπω(K)∗ =
Intπω(K•α,ω) . Let us sketch them. For the product one has[

Intλ(K) Intλ(L)u
]
(x)

=
∑
y∈G

∑
z∈G

π
[
K(x, z)

]
π
[
L(z, y)

]
π
[
ω(x−1, xz−1)

]
π
[
ω(z−1, zy−1)

]
u(y)

=
∑
y∈G

π

{∑
z∈G

K(x, z)L(z, y)αx−1

[
ω(xz−1, zy−1)

]}
π
[
ω(x−1; xy−1)

]
u(y)

=
∑
y∈G

π
[
(K •α,ωL)(x, y)

]
π
[
ω(x−1; xy−1)

]
u(y)

= [Intπω(K •α,ωL)u](x) .

The form of the adjoint is computed bellow:〈
Intπω(K)u, v

〉
`2(G;H)

=
∑
y∈G

〈[Intπω(K)u](y), v(y)〉H

=
∑
y∈G

〈∑
x∈G

π
[
K(y, x)

]
π
[
ω(y−1, yx−1)

]
u(x), v(y)

〉
H

=
∑
y∈G

∑
x∈G

〈
u(x), π

[
ω(y−1, yx−1)

]∗
π
[
K(y, x)

]∗
v(y)

〉
H

=
∑
x∈G

〈
u(x),

∑
y∈G

π
{
αx−1

[
ω(xy−1, yx−1)∗

]
K(y, x)∗

}
π
[
ω(x−1, xy−1)

]
v(y)

〉
H

=
∑
x∈G

〈
u(x),

[
Intπω(K•α,ω)v

]
(x)

〉
H

=
〈
u, Intπω(K•α,ω)v

〉
`2(G;H)

.

For the forth equality we used the 2-cocycle identity and the fact that ω is central-
valued. �

For the same π , the integrated form indπ
ω := rπ o Lπ

ω described in (2.5) and
corresponding to the covariant representation given in (2.6) and (2.7) reads on
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`1(G;A) [
indπ

ω(f)v
]
(x) =

∑
z∈G

π
{
αx−1 [f(z)]

}
π
[
ω(x−1, z)

]
v(z−1x)

=
∑
y∈G

π
{
αx−1 [f(xy−1)]

}
π
[
ω(x−1, xy−1)

]
v(y) .

Comparing this with (3.7) one concludes that

Intπω ◦ Γ = indπ
ω .

Remark 3.7. If z ∈ G , then π ◦ αz−1 =: πz is a new ∗-representation of A . Thus
we can construct all the representations rπz , Lπz

ω , indπz
ω and Intπz

ω . Defining

R : `2(G;H) → `2(G;H) , (Rv)(x) := π[ω(z−1, x−1)]v(xz)

one gets easily the relations rπz
R∼ rπ , Lπz

R∼ Lπ and (consequently) indπz R∼ indπ ,
in which the notation means unitary equivalence. For instance:[

R rπ(ϕ)v
]
(x) = π[ω(z−1, x−1)]π

[
α(xz)−1(ϕ)]

]
v(xz)

= π
{
αz−1

[
αx−1(ϕ)]

}
π[ω(z−1, x−1)]v(xz)

=
[
rπz(ϕ)Rv

]
(x)

and [
R Lπ(y)v

]
(x) = π[ω(z−1, x−1)]

[
Lπ(y)v

]
(xz)

= π
[
ω(z−1, x−1)

]
π[ω(z−1x−1, y)]v(y−1xz)

= π
{
αz−1 [ω(x−1, y)]

}
π[ω(z−1, x−1y)]v(y−1xz)

= πz

[
ω(x−1, y)

]
(Rv)(y−1x)

=
[
Lπz(y)Rv

]
(x) .

The unitary equivalence Intπz
ω

R∼ Intπω only holds when restricted to the subspace
K L

α,ω(G× G;A)cov .

3.3. Twisted actions on Abelian C∗-algebras. We assume now that the C∗-
algebra A (unital, for simplicity) is Abelian. By Gelfand theory, it is enough to
take it of the form C(Σ) := {ϕ : Σ → C | ϕ is continuous} for some Hausdorff
compact topological space Σ (homeomorphic to the Gelfand spectrum of A) .
Then the action α is derived from a continuous action of G by homeomorphisms
{σ 7→ x · σ | x ∈ G} of Σ by[

αx(ϕ)
]
(σ) := ϕ

(
x−1 · σ

)
.

If f ∈ `1
(
G; C(Σ)

)
, x ∈ G and σ ∈ Σ we are going to use the notation f(x; σ)

instead of [f(x)](σ) . In the same vein, the C(Σ)-valued kernels and the 2-cocycle
will be regarded as functions of three variables; for instance

ω : G× G× Σ → T := {ζ ∈ C | |ζ| = 1} , ω(x, y; σ) := [ω(x, y)](σ) .

The algebraic structure on L
(
G; C(Σ)

)
becomes

(f �α,ωg)(x; σ) :=
∑
y∈G

f(y; σ)g(y−1x; y−1 · σ) ω(y, y−1x; σ) ,
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f �α,ω(x; σ) := ω(x, x−1; σ) f(x−1; x−1 · σ)

and that on K L
α,ω

(
G× G; C(Σ)

)
reads

(K •α,ωL)(x, y; σ) :=
∑
z∈G

K(x, z; σ)L(z, y; σ) ω(xz−1, zy−1; x−1 · σ) ,

K•α,ω(x, y; σ) := ω(xy−1, yx−1; x−1 · σ) K(y, x; σ) .

We are going to indicate now two types of Hilbert space representations for
twisted crossed products or for algebras of kernels, using Remark 2.6 as a starting
point.

A. Let us fix some point σ0 of Σ with orbit Oσ0 := αG(σ0) and quasi-orbit
Qσ0 := Oσ0 . The map ασ0 : G → Σ given by ασ0(x) := αx(σ0) is continuous and
its range coincides with Oσ0 , so this range is dense in Qσ0 . Taking H := C , we
set

π ≡ δσ0 : C(Σ) → B(C) = C , δσ0(ϕ) := ϕ(σ0) .

This leads as in Remark 2.6 to the covariant representation
(
rσ0 , Lσ0

ω , `2(G; C) ≡
`2(G)

)
, where rσ0(ϕ) is the operator of multiplication by the function ϕ ◦ασ0 for

every ϕ ∈ C(Σ) and [
Lσ0

ω (y)v
]
(x) = ω(x−1, y; σ0)v(y−1x) .

Thus, for every admissible algebra L(G) , one gets ∗-representations

indσ0
ω : L

(
G; C(Σ)

)
→ B

[
`2(G)

]
,[

indσ0
ω (f)v

]
(x) =

∑
y∈G

f
(
xy−1; x · σ0

)
ω
(
x−1, xy−1; σ0

)
v(y)

and

Intσ0
ω : K L

α,ω

(
G× G; C(Σ)) → B

[
`2(G)

]
,

[
Intσ0

ω (K)v
]
(x) =

∑
y∈G

K(x, y; σ0) ω
(
x−1, xy−1; σ0

)
v(y) . (3.8)

Remark 3.8. The ∗-representation indσ0
ω above only depends on the orbit, up to

unitary equivalence. If σ0, σ1 are on the same orbit and z is an element of the
group for which αz(σ0) = σ1, then the unitary operator

R : `2(G) → `2(G) , (Rv)(x) := ω(z−1, x−1; σ0)v(xz)

implements the equivalence: one has R indσ0
ω (f) = indσ1

ω (f)R for every f ∈
L

(
G; C(Σ)

)
. It is also true that R Intσ0

ω (K) = Intσ1
ω (K)R if K is covariant, but

on general kernels the connection fails. All these statements follow from Remark
3.7.

B. Assume now that µ is a Borel measure on Σ , invariant under the action α .
Then one has a ∗-representation ξ of A in the Hilbert space K := L2(Σ; µ) given
by

[ξ(ϕ)w0](σ) := ϕ(σ)w0(σ) . (3.9)
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It admits an amplification rξ representing C(Σ) in `2(G;K) ∼= `2(G) ⊗ L2(Σ) ∼=
L2(G× Σ) by

[rξ(ϕ)w](x; σ) :=
(
ξ[αx−1(ϕ)]w(x)

)
(σ) = ϕ(x · σ) w(x; σ) .

One also sets

Lξ
ω : G → U

[
L2(G× Σ)

]
,

[
Lξ

ω(y)w
]
(x; σ) := ω

(
x−1, y; σ)w

(
y−1x; σ

)
.

Clearly, one has the direct integral decomposition

indξ
ω := rξ o Lξ

ω =

∫ ⊗

Σ

indσ
ω dµ(σ) Intξω =

∫ ⊗

Σ

Intσω dµ(σ)

where, for example, the ∗-representation Intξω : K L
α,ω

(
G×G; C(Σ)) → B

[
L2(G×Σ)

]
is given by([

Intξω(K)
]
w

)
(x; σ) =

∑
y∈G

K(x, y; σ) ω
(
x−1, xy−1; σ

)
w(y; σ) .

3.4. The standard case. For elements ϕ of the C∗-algebra `∞(G) one sets

[αx(ϕ)](y) := ϕ(x−1y) , ∀x, y ∈ G .

We consider a unital C∗-subalgebra A(G) of `∞(G) which is invariant under the
action α . If the α-2-cocycle ω satisfies ω(x, y; ·) ∈ A(G) for any elements x, y ,
then by restriction we form the twisted C∗-dynamical system (A(G), α, ω) and all
the framework above is available.

One can define on K L
α,ω(G× G;A(G)) the transformation Υ given by

K(x, y) ≡ (ΥK)(x, y) := K(x, y; e) .

Definition 3.9. The range of the map Υ will be denoted by KL,A
ω (G × G) ; it is

composed of all the two-variable scalar-valued kernels K ≡ ΥK : G×G → C such
that for some k ∈ L(G)

|K(x, y)| ≤ |k(xy−1)| , ∀x, y ∈ G

and the function z 7→ K(xz, yz) belongs to A(G) for all x, y ∈ G .

If L(G) = `1(G) , one uses the simplified notation KAω(G × G) . Note that the
condition imposed on z 7→ K(xz, yz) in the definition of KL,A

ω (G × G) becomes
vacuous if A(G) = `∞(G).

The linear surjection Υ is highly non-injective.
However, on K L

α,ω

(
G×G;A(G)

)
cov

, due to the covariance condition (3.6), it be-
comes injective and, together with Proposition 3.4, yields isometric isomorphisms
of Banach ∗-algebras

Lα,ω

(
G;A(G)

) Γ−→ K L
α,ω

(
G× G;A(G)

)
cov

Υ−→ KL,A
ω (G× G) . (3.10)

By composing one gets

[(Υ ◦ Γ)f ](x, y) = f(xy−1; x)

for every f ∈ Lα,ω

(
G;A(G)

)
(see also [3, Prop. 3.6] for a related result).
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The relevant algebraic structure on KL,A
ω (G× G) is(

K •ωL
)
(x, y) :=

∑
z∈G

K(x, z)L(z, y) ω(xz−1, zy−1; x−1) ,

K•ω(x, y) := ω(xy−1, yx−1; x−1) K(y, x)

and the norm reads, once again by the covariance condition,

‖K‖KL,A := inf
{
‖k‖L | |K(x, y)| ≤ |k(xy−1)| , ∀x, y ∈ G

}
.

Remark 3.10. For ω = 1 , L(G) = `1(G) and A(G) = `∞(G) , one essentially gets
the Banach ∗-algebra CD(G) of convolution-dominated matrices on the discrete
group G as defined in [10] (cf. also references therein).

Remark 3.11. Along the lines of Section 3.3, one defines Σ to be the Gelfand
spectrum ofA(G) . As a nice simple example, suppose thatA(G) consists of all the
almost periodic functions on the discrete group G . Then Σ is the Bohr compact
group βG associated to G and its Haar measure µ can be used to define the
(generally non-separable) Besicovich-type space L2(βG; µ) , the representation
(3.9) and the induced representations it defines.

Remark 3.12. To make the connection with Section 3.3 stronger, we could as-
sume that the space c0(G) of all the functions ϕ : G 7→ C converging to zero at
infinity (an α-invariant closed ideal of `∞(G)) is contained in A(G). Then Σ is
homeomorphic (and will be identified) to a compactification of the discrete group
G and α extends to an action of G by homeomorphisms of Σ . Thus G is a dense
orbit in the compact dynamical system (Σ, α, G) and, as mentioned in Remark
3.8, the covariant representations (rz, Lz

ω) defined by various points z ∈ G ⊂ Σ
are unitarily equivalent.

As a direct consequence of (3.10) and Corollary 3.5 one gets

Corollary 3.13. Let G be a rigidly L-symmetric discrete group for some admis-
sible algebra L(G) and A(G) a unital C∗-subalgebra of `∞(G) which is invariant
under translations. Then the Banach ∗-algebra KL,A

ω (G× G) of twisted kernels is
symmetric for every 2-cocycle ω : G× G → A(G) .

Some consequences and examples can be inferred from Section 2.4. In partic-
ular, Corollary 2.20 can be rephrased in terms of the symmetry of K`1,ν,A

ω (G× G)
for weights ν satisfying conditions (2.9) and (2.10) .

In this standard case, besides the two types of Hilbert space representations A
and B introduced in Section 3.3, there is an interesting third one that we now
present. It will be an ingredient of the proof of Corollary 3.14.

C. One starts with the representation

ρ : A(G) → B
[
`2(G)

]
, [ρ(ϕ)a0](y) := ϕ(y)a0(y) .

In spite of its similarity with (3.9), the representations ξ and ρ are different;
very often the Hilbert space L2(Σ; µ) is non-separable even if G is countable, as
indicated in Remark 3.11.
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We apply to ρ the inducing procedure described in Remark 2.6 (see also [10,
pag. 496-497] for another point of view in the convolution-dominated case).
Keeping in mind the identification `2(G) ⊗ `2(G) ∼= `2(G × G) , the asociated
covariant representation is given by

[rρ(ϕ)a](x; z) = ϕ(xz)a(x; z) ,
[
Lρ

ω(y)a
]
(x; z) = ω(x−1, y; z)a(y−1x; z) .

The integrated form

indρ
ω ≡ rρoLρ

ω : `1
α,ω(G;A(G)) → B

[
`2(G× G)

]
is a regular ∗-representation. In terms of the representations associated to the
points of the group z ∈ G and using the isomorphism `2(G × G) ∼=

⊕
z∈G `2(G) ,

one has the direct sum decompositions

indρ
ω
∼=

⊕
z∈G

indz
ω , Intρω

∼=
⊕
z∈G

Intzω . (3.11)

We return now to formula (3.8). In particular, taking σ0 = e and setting
λ(x, y) := ω

(
x−1, xy−1; e

)
we rephrase it as[

Intλ(K)v
]
(x) :=

[
Inteω(K)v

]
(x) =

∑
y∈G

K(x, y)λ(x, y)v(y) ,

which is seen as a ∗-representation of the Banach ∗-algebra KAω(G×G) by ”twisted
integral operators” in the Hilbert space `2(G) . Its range will be denoted by

IAλ (G) := Intλ
[
KAω (G× G)

]
= inde

ω[`1
α,ω(G;A(G))] .

Corollary 3.14. Let the group G be discrete, amenable and rigidly symmetric and
suppose that the 2-cocycle ω is A(G)-valued for some unital C∗-subalgebra A(G)
of `∞(G) that is invariant under translations. Then IAλ (G) forms a ∗-subalgebra
of B[`2(G)] that is inverse closed and Fredholm inverse closed.

Proof. Any ∗-representation of a Banach ∗-algebra extends to a ∗-representation
of its enveloping C∗-algebra. In particular we get representations (also denoted
by) indρ

ω : A(G)oω
αG → B

[
`2(G×G)

]
and indz

ω : A(G)oω
αG → B

[
`2(G)

]
; by (3.11)

they satisfy indρ
ω
∼=

⊕
z∈G indz

ω .

Recall that the representations
(
indz

ω

)
z∈G

are mutually unitarily equivalent (by

Remark 3.8, for instance). Thus indρ
ω and indz

ω are simultaneously faithful; this
does happen if the group G is amenable [25]. In particular both inde

ω and Intλ are
faithful at the level of the respective enveloping C∗-algebras.

Then our result follows from Theorem 2.9, Corollary 2.15 and Example 2.22.
�
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