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Abstract. We introduce q-frequently hypercyclic operators and derive a suf-
ficient criterion for a continuous operator to be q-frequently hypercyclic on
a locally convex space. Applications are given to obtain q-frequently hyper-
cyclic operators with respect to the norm-, F -norm- and weak*- topologies.
Finally, the frequent hypercyclicity of the non-convolution operator Tµ defined
by Tµ(f)(z) = f ′(µz), |µ| ≥ 1 on the space H(C) of entire functions equipped
with the compact-open topology is shown.

1. Introduction

The main theme in the dynamics of linear operators is the notion of hypercyclic-
ity which plays an important role in the study of the invariant subset problem in
Banach spaces. This notion was initiated by S. Rolewicz [22] in the setting of in-
finite dimensional Banach spaces in 1969, though the examples of translation and
differential operators on the space of entire functions equipped with the compact-
open topology were known to be hypercyclic in an earlier work of G. D. Birkhoff
[8] and G. R. MacLane [20]. Now a vast literature dealing with hypercyclicity of
operators as well as other related notions in linear dynamics is available in [5],
[14], and [15].

In 2006, F. Bayart and S. Grivaux [3] further strengthened this concept to
frequent hypercyclicity, which quantifies the frequency with which the iterates
of a given linear operator at a point visit each non-empty open set. After the
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appearance of this work, several results on frequently hypercyclic operators have
been established, for instance one may refer to [9], [10], [11], [13] and [24]. In this
paper we introduce q-frequent hypercyclicity which lies between hypercyclicity
and frequent hypercyclicity, where q is a fixed natural number. The case q =
1 coincides with frequent hypercyclicity. We prove a sufficient criterion for a
continuous linear operator to be q-frequently hypercyclic on a locally convex space
and give applications to obtain q-frequently hypercyclic operators with respect to
the norm on Banach spaces, the F -norm on F -spaces and the weak*-topology on
dual of Banach spaces. We also provide examples of hypercyclic operators that
are not q-frequently hypercyclic for any q ∈ N.

2. Preliminaries

Let X be a separable topological vector space, and L(X) denote the space of
all continuous linear operators on X. An operator T ∈ L(X) is said to be hyper-
cyclic if there exists a vector x ∈ X such that the orbit {T n(x) : n ≥ 0} is dense
in X. Such a vector x is called a hypercyclic vector for T . As mentioned in the
previous section, Birkhoff’s translation operator Ta(f)(z) = f(z +a), for nonzero
a ∈ C and MacLane’s differentiation operator D(f) = f ′ on the space H(C) are
hypercyclic. Also, Rolewicz proved the hypercyclicity of the operator λB on `p

or c0 for 1 ≤ p < ∞ and |λ| > 1, where B is the unweighted backward shift
defined by B(en) = en−1, n ≥ 1, with e0 = 0 and en = {0, 0, .., 1, 0..}, 1 being
placed at the nth coordinate. Generalizing this result, H.N. Salas [23] proved
that the weighted shift Bw associated to a weight sequence (wn) of positive re-
als, given by Bw(en) = wnen−1, n ≥ 1 is hypercyclic on `p or c0 if and only if
lim supn→∞(w1w2 · · ·wn) = ∞.

For testing the hypercyclicity of a linear operator, a sufficient criterion known
as the hypercyclicity criterion, initially obtained by Kitai [18], has appeared in
different forms and the one which is given below is due to H. Petterson [21]. This
is useful even for linear operators defined on non-metrizable topological vector
spaces. For the definition of F -norm, we refer to [11], p. 385.

Theorem 2.1 (Hypercyclicity criterion). Let (X, τ) be a separable topological
vector space. Suppose further that X carries an F -norm ||.|| with respect to
which it is complete and that ‖.‖-topology is stronger than τ . If T is an operator
continuous with respect to the F -norm, D ⊂ X a countable τ -dense set and
Sn : D → X maps such that, for all x ∈ D,

1. ||T n(x)|| → 0 and ||Sn(x)|| → 0 as n →∞; and
2. T nSn(x) = x, for each n ∈ N,

then the operator T is τ -hypercyclic.

An operator T ∈ L(X) is called frequently hypercyclic if there exists an x,
called a frequently hypercyclic vector for T such that for every nonempty open
set U in X, the set N(x, U) = {n ∈ N : T n(x) ∈ U} has positive lower density;
where the lower density of a subset A of N, the set of natural numbers, is defined
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as

dens(A) = lim inf
N→∞

card{n ∈ A : n ≤ N}
N

, (2.1)

the symbol card(B) being used to denote the cardinality of the set B.
Let us note that dens(B) ∈ [0, 1] for any subset B of N. Clearly, the lower

density of any finite set is zero and that of N is 1. If A is a strictly increasing
sequence (nk), the lower density of A is characterized as [11]

dens(nk) = lim inf
k→∞

k

nk

. (2.2)

Alternatively, an operator T ∈ L(X) is frequently hypercyclic if there is some
x ∈ X such that for every nonempty open subset U of X, there exist a strictly
increasing (nk) of natural numbers and a constant C > 0 such that

T nk(x) ∈ U and nk ≤ Ck, ∀ k ∈ N.

Analogous to the hypercyclicity criterion, we have the following criterion, proved
in [3] and [11].

Theorem 2.2 (Frequent hypercyclicity criterion). Let X be a separable F -space
and T ∈ L(X). If there exist a dense subset D ⊂ X and a map S : D → D such
that

1.
∑

T n(x) and
∑

Sn(x) are unconditionally convergent for each x ∈ D;
and

2. TS = I, the identity on D,

then the operator T is frequently hypercyclic.

The operators of Birkhoff and MacLane satisfy the above criterion, cf. [3] and
[5], and so they are frequently hypercyclic. In fact, any continuous operator,
except a scalar multiple of the identity, that commutes with all translations on
H(C), has been shown to be frequently hypercyclic [10]. We also recall the
hypercyclic comparison principle from [3] and [5], which says how to transfer the
hypercyclicity via a linear quasi-conjugacy.

Proposition 2.3 (Hypercyclic comparison principle). Let T and S be continuous
linear operators on two topological vector spaces X and Y respectively and A :
X → Y be a continuous linear map with dense range such that SA = AT . If T is
hypercyclic (or frequently hypercyclic) on X, then S is hypercyclic (or frequently
hypercyclic) on Y .

3. q-Frequently hypercyclic operators

We first introduce the q-lower density of a subset of natural numbers, for q ∈ N
and determine a useful characterization.

Definition 3.1. Let A ⊂ N and q ∈ N. The q-lower density of A is defined as

q-dens(A) = lim inf
N→∞

card{n ∈ A : n ≤ N q}
N

.
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Let us note that the lower density of a set is always finite and lies in the interval
[0, 1], but the q-lower density can vary in [0,∞] for q ≥ 2. As in the case of the
lower density, we have the following.

Proposition 3.2. Let (nk) be a strictly increasing sequence of natural numbers.
Then

(1) q-dens(nk) = lim inf
k→∞

k

nk
1/q

.

(2) q-dens(nk) > 0 if and only if there exists a constant C > 0 such that
nk ≤ Ckq for all k ∈ N.

Proof. Fix a number k ∈ N. For any N ∈ N with nk ≤ N q < nk+1, we have that

pN =
card{k ∈ N : nk ≤ N q}

N
= k/N .

Thus the inequality

k

nk+1
1/q

< pN ≤ k

nk
1/q

implies the first part in the theorem.
Part (2) follows immediately from the fact that lim inf ak > 0 if and only if

1
ak
≤ C for some C > 0, where (ak) is a sequence of positive numbers. �

We now define the notion of q-frequent hypercyclicity of linear operators on
topological vector spaces.

Definition 3.3. Let q ∈ N. A continuous linear operator T on a separable
topological vector space X is said to be q-frequently hypercyclic if there exists an
x ∈ X such that for any nonempty open subset U of X, the set N(x, U) = {n ∈
N : T n(x) ∈ U} has positive q-lower density. Such a vector is called a q-frequently
hypercyclic vector for T .

Alternatively, a continuous linear operator T on a separable topological vector
space X is q-frequently hypercyclic if there exists an x ∈ X such that for any
nonempty open subset U of X, we can find a strictly increasing sequence (nk) of
natural numbers and a constant C > 0 such that

T nk(x) ∈ U and nk ≤ Ckq, for all k ∈ N.

Such a vector is called a q-frequently hypercyclic vector for T .
Obviously, every frequently hypercyclic operator is q-frequently hypercyclic for

any natural number q, and the two notions are the same for the case q = 1. Also
this new property of linear operators is stronger than hypercyclicity; however,
none of the converse implications is true, e.g. consider

Example 3.4. Here we show that there exists a hypercyclic operator on `1 that
is not 2-frequently hypercyclic with respect to the weak topology of `1. Indeed,

the weighted backward shift Bw with weights wn =
√

n+1
n

is hypercyclic by the

result of Salas, but was shown to be non-frequently hypercyclic on `2 in [3]. For
showing the non-2-frequent hypercyclicity of Bw, choose the weakly open set
U = {(yn) ∈ `1 : |y1| > 1}. Let x = (xn) be a 2-frequently hypercyclic vector for
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Bw. Enumerate the set N(x, U) = {n ∈ N : Bn
w(x) ∈ U} as (nk). Thus we have

a constant c > 0 such that nk ≤ ck2, and hence∑
k≥1

1
√

nk

= ∞.

On the other hand, Bnk
w (x) ∈ U implies that
√

nk + 1 |xnk+1| > 1, for all k ≥ 1

As (xn) ∈ `1, we get ∑
k≥1

1√
nk+1

< ∞,

which is a contradiction. Hence Bw is not 2-frequently hypercyclic on `1 for the
norm topology.

Example 3.5. We show the existence of a hypercyclic operator that is not q-
frequently hypercyclic with respect to the weak topology, for any q ∈ N. Let

us consider the unilateral shift Bw on `1 with weights wk =
ln(k + 2)

ln(k + 1)
, k ∈ N.

By the result of H.N.Salas, Bw is hypercyclic since w1w2 · · ·wk = ln(k+2)
ln 2

→ ∞
as k → ∞. Let x = (xn) be a q-frequently hypercyclic vector for Bw for some
q ∈ N. Enumerate the set N(x, U) = {n ∈ N : Bn

w(x) ∈ U} as (nk), where
U = {(yn) ∈ `1 : |y1| > 1}. Thus we have a constant c > 0 such that nk ≤ ckq.
This implies that ln(nk) ≤ C ln k, for some constant C > 0 and for all k ∈ N.
Hence ∑

k≥1

1

ln nk

= ∞.

On the other hand, Bnk
w (x) ∈ U implies that

ln(nk + 2)

ln 2
|xnk+1| > 1.

Consequently, ∑
k≥1

1

ln (nk + 2)
< ∞,

which is a contradiction. Hence Bw is not q-frequently hypercyclic in the norm
topology, for any q ∈ N.

We now prove a criterion, similar to the frequent hypercyclicity criterion, which
works even for operators defined on certain non-metrizable locally convex spaces.
Using this, we obtain a 2-frequently hypercyclic operator that is not frequently
hypercyclic. Before stating the result, let us recall that a series

∑
xn in a topolog-

ical vector space is unconditionally convergent if
∑

xσ(n) is convergent for every
permutation σ of N. In any topological vector space, this mode of convergence is
equivalent to the unordered convergence of

∑
xn, cf. [16], p.154. Thus a series∑

xn is unconditionally convergent if and only if for every non-empty open set
U of 0, there corresponds an N ∈ N such that

∑
n∈F xn ∈ U for every finite set

F ⊂ [N,∞). Also, for the proof of our criterion we need the following lemma
from [5].
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Lemma 3.6. Let (Nk) be a strictly increasing sequence of natural numbers. Then
there exists a pairwise disjoint sequence (Jk) of subsets of N such that

(1) dens(Jk) > 0 for each k ≥ 1
(2) |n−m| ≥ Nk + Np for n 6= m and (n, m) ∈ Jk × Jp.
(3) n ≥ Nk, for each n ∈ Jk and k ≥ 1.

We now state and prove the main result of the paper.

Theorem 3.7 (q-frequent hypercyclicity criterion). Let (X, τ) be a separable
locally convex space and q ∈ N. Suppose that X is equipped with an F -norm ‖.‖
such that the F-norm topology is stronger than τ and (X, ‖.‖) is complete. If T is
an operator continuous with respect to the F -norm, D is a subset of X containing
a countable τ -dense set and S : D → D is a map such that

(1)
∑

T nq
(x) and

∑
Snq

(x) are unconditionally convergent with respect to the
F -norm, for each x ∈ D; and

(2) TS = I, the identity on D,

then the operator T is q-frequently hypercyclic with respect to τ .

Proof. Our proof is inspired by that of the frequent hypercyclicity criterion given
in [5]. However, we outline the proof for the sake of completeness. Let Y =
{x1, x2, · · · } ⊂ D be a countable τ -dense set. Consider a summable sequence
(εk) of positive real numbers, which are to be chosen later. By the hypothesis,
corresponding to εk, we can find Nk ∈ N such that∥∥∥∥∥∑

n∈F

T nq

(xi)

∥∥∥∥∥ +

∥∥∥∥∥∑
n∈F

Snq

(xi)

∥∥∥∥∥ < εk, 1 ≤ i ≤ k, (3.1)

for any finite set F ⊂ [Nk,∞) of natural numbers. We may now assume that
(Nk) is strictly increasing so that by Lemma 3.6, we get a sequence (Jk) of subsets
of N with the properties mentioned therein. We now set

x =
∑
k≥1

∑
n∈Jk

Snq

(xk).

Since unconditional convergence implies subseries convergence [16] p.154, the
series

∑
n∈Jk

Snq
(xk) converges for each natural number k. It follows by (3.1)

that

∞∑
k=1

∥∥∥∥∥∑
n∈Jk

Snq

(xk)

∥∥∥∥∥ ≤ ∑
k≥1

εk < ∞

Thus x ∈ X.
Let us now fix k ∈ N and m ∈ Jk. Then

Tmq

(x) =
∑
l≥1

∑
n∈Jl

Tmq

Snq

(xl).
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and so∥∥Tmq

(x)− xk

∥∥ ≤ ∑
l≥1

∥∥∥∥∥ ∑
n∈Jl,m>n

Tmq−nq

(xl)

∥∥∥∥∥ +
∑
l≥1

∥∥∥∥∥ ∑
n∈Jl,m<n

Snq−mq

(xl)

∥∥∥∥∥ . (3.2)

Let us now consider the first sum on the right hand side of (3.2). Indeed,
writing the first term as

k∑
l=1

∥∥∥∥∥ ∑
n∈Jl,m>n

Tmq−nq

(xl)

∥∥∥∥∥ +
∑

l≥k+1

∥∥∥∥∥ ∑
n∈Jl,m>n

Tmq−nq

(xl)

∥∥∥∥∥ ,

we have ∑
l≥1

∥∥∥∥∥ ∑
n∈Jl,m>n

Tmq−nq

(xl)

∥∥∥∥∥ ≤ kεk +
∑

j≥k+1

εj.

The last inequality arrives because whenever m ∈ Jk, we have mq−nq >max(Nk, Nl)
for any n ∈ Jl with m > n. Similarly, we evaluate the second term to get

∑
l≥1

∥∥∥∥∥ ∑
n∈Jl,m<n

Snq−mq

(xl)

∥∥∥∥∥ ≤ kεk +
∑

j≥k+1

εj.

Set αk = kεk +
∑

j≥k+1 εj. So we arrive at the inequality,∥∥Tmq

(x)− xk

∥∥ ≤ 2αk < 3αk,∀m ∈ Jk, k ≥ 1. (3.3)

Choose εk such that αk → 0. We now show that x is a q-frequently hypercyclic
vector for the operator T with respect to the topology τ . Let G be a nonempty
τ -open set and y + U ⊂ G for some τ -neighborhood U of the origin. Then we
find a balanced neighborhood V of the origin such that V + V ⊂ U . Since Y is
τ -dense in X, we find an increasing sequence of natural numbers (nk) such that
xnk

− y ∈ V for all k ≥ 1. Since the ||.||-topology is finer than τ , it follows from
(3.3) that, for some N ∈ N, Tmq

(x)− xk ∈ V for every m ∈ Jk and k ≥ N . Thus
from the facts that xnN

− y ∈ V and Tmq
(x) − xnN

∈ V , we obtain that for all
m ∈ JnN

, Tmq
(x)−y ∈ V +V ⊂ U . Our conclusion now follows since Tmq

(x) ∈ G
for all m ∈ JnN

, which has positive lower density. �

Remark 3.8. It is evident from the proof of Theorem 3.7 that the sequence (T nq
)

is frequently hypercyclic and thus T is q-frequently hypercyclic. It would be
interesting to know whether the converse is true or not, i.e., is (T nq

) frequently
hypercyclic whenever T is q-frequently hypercyclic?

Remark 3.9. Let us also note that in the above theorem, the countability as-
sumption on a subset of D may be waived in case the topology τ is generated
by an F -norm. Indeed, if (xn) is a τ -dense sequence in X, choose a countable
set {yn,m : n, m ≥ 1} where yn,m ∈ D ∩ B(xn,

1
m

), B(xn,
1
m

) being the open ball

of radius 1
m

centered at xn. It is now easy to verify that {yn,m : n, m ≥ 1} is a
τ -dense set in X.
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4. Applications

In this section, we consider some applications of the q-frequent hypercyclicity
criterion for obtaining q-frequently hypercyclic operators on spaces equipped with
linear topologies which are not necessarily metrizable. Besides, we prove the
frequent hypercyclicity of a non-convolution operator on H(C), at the end of
the section. Let us begin with the results on sequence spaces with metrizable
topologies.

Proposition 4.1. Let λ be a sequence space equipped with an F -norm and let
{en} be an unconditional basis in λ. If for some q ∈ N,∑

n∈N

1

w1w2 · · ·wnq+j

enq+j

converges unconditionally for each j ∈ N, then the backward shift Bw associated
to the weight sequence (wn), is q-frequently hypercyclic.

Proof. Since λ is an F -space, in view of Remark 3.9 choose D to be the dense
set spanned by {en : n ≥ 1}. Define Sw on D by Sw(en) = 1

wn+1
en+1. To apply

our criterion, we are only required to prove the unconditional convergence of∑
Snq

w (x) for each x ∈ D. Indeed, for a given k ∈ N, we have

Sn
w(ek) =

1

wk+1 · · ·wk+n

ek+n.

Thus, by the hypothesis, the series∑
n≥1

Snq

w (ek) = w1w2 · · ·wk

∑
n∈N

1

w1 · · ·wk+nq

ek+nq .

converges unconditionally in λ. Hence Bw is q-frequently hypercyclic.
�

As a consequence of the above result, we obtain a q-frequently hypercyclic
operator that is not frequently hypercyclic. This is the Bergman shift, considered
in [3].

Corollary 4.2. Let Bw be the unilateral shift on `2 given by the weights wn =√
n+1

n
, n ≥ 1. Then Bw is 2-frequently hypercyclic and is not frequently hyper-

cyclic; a fortiori, Bw is q-frequently hypercyclic for any q ≥ 2.

Proof. Since w1w2 · · ·wn2+j =
√

n2 + j + 1, the result follows. �

Remark 4.3. One may apply Proposition 4.1 to obtain the q-frequent hypercyclic-
ity of shift operators defined on Fréchet spaces, for example the space H(C) of
entire functions equipped with the compact-open topology, the space of all se-
quences with the topology of co-ordinate convergence and the classical `p spaces.

Before we move on to another application, let us see an example.

Example 4.4. Let p ∈ N. Then there exists an operator which is not p-frequently
hypercyclic, but it is q-frequently hypercyclic for all q ≥ p + 1. We consider the
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unilateral shift Bw on `2 with weights wk =

(
k + 2

k + 1

)1/2p

, k ∈ N. Then the proof

similar to that of Example 3.5 shows that Bw is not p-frequently hypercyclic on
`2. We can also conclude that Bw is (p + 1)-frequently hypercyclic by applying
Proposition 4.1 to the dense set of finite sequences.

Our next application of Theorem 3.7 is for the bilateral backward shift oper-
ators. Let X be an F -sequence space over the set Z of integers such that the
unit sequences (en)n∈Z form an unconditional basis in X. For w = (wn) ∈ `∞(Z),
the operator Tw(en) = wnen−1 is the bilateral backward shift. The content of the
following proposition is the q-frequent hypercyclicity of Tw.

Proposition 4.5. Let (en)n∈Z form a unconditional basis in an F -sequence space
X and let q ∈ N. If∑

n∈N

1

w1w2 · · ·wnq+j

enq+j and
∑
n∈N

wjwj−1 · · ·w−nq+j+1e−nq+j

converge unconditionally for each j ∈ N, then Tw is q-frequently hypercyclic on
X.

Proof. Let D be the set spanned by the sequence (en)n∈Z. Consider the map
Sw(ek) = 1

wk+1
ek+1 on the dense set D of X, so that TwSw is the identity operator

on D. Then,

T nq

w (ej) = wjwj−1..wj−nq+1ej−nq

and

Snq

w (ej) = 1
wj+1wj+2···wj+nq

ej+nq

for each j ∈ Z. From the hypothesis, we obtain that the series
∑

T nq

w (ej) and∑
Snq

w (ej) converge unconditionally in X. The desired result now follows since
Tw and Sw are linear and D is the span of (en)n∈Z. �

A particular case of Proposition 4.5 is when Tw is the bilateral backward shift
defined on the sequence space `p(Z) or c0(Z) for 1 ≤ p < ∞. Recall that hyper-
cyclicity of Tw was characterized by H. N. Salas in [23]. Also a series

∑
n∈Z anen

converges unconditionally in `p(Z) if and only if the sequence (an) ∈ `p(Z). Thus
we derive the following result from Proposition 4.5.

Corollary 4.6. Let q ∈ N and 1 ≤ p < ∞. Assume that for each j ∈ Z,∑
n∈N

1
(w1w2···wnq+j)p < ∞ and

∑
n∈N

(wjwj−1 · · ·w−nq+j+1)
p < ∞.

Then Tw is q-frequently hypercyclic on `p(Z). If limn→∞(w1w2 · · ·wnq+j) = ∞
and limn→∞(wjwj−1 · · ·w−nq+j+1) = 0 for each j ∈ Z, then Tw is q-frequently
hypercyclic on c0(Z).

We have yet another application of Theorem 3.7. Let X be a Banach space
having a Schauder basis {xn, fn}. Then the dual X∗ is weak*-separable and
the weak*-topology is not metrizable, when X is infinite dimensional. We as-
sume that {xn, fn} is a symmetric Schauder basis for X, which means that
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n≥1 fµ(n)(x)xσ(n) converges for each x ∈ X and every pair (µ, σ) of permu-

tations of N. A symmetric base in a Banach space is regular (inf ||xn|| > 0)
and bounded (sup ||xn|| < ∞), see for example [17], p. 133. Corresponding to a
weight sequence (wn) and a symmetric Schauder basis {xn, fn} (where the index
starts from 1), we define the backward shift Bw by Bw(fn) = wnfn−1, n ≥ 1
with f0 = 0. This operator is continuous with respect to the norm as well as the
weak*-topology of X∗, cf. [21, p. 1434]. We now prove:

Theorem 4.7. Let X be a Banach space with a symmetric Schauder basis {xn, fn}.
Then for q ∈ N, the backward shift operator on X∗ is q-frequently hypercyclic with

respect to the weak*-topology of X∗ if
∑
n∈N

1

w1 · · ·wj+nq

converges for each j ∈ N.

In particular, if
∑
n∈N

1

w1w2 · · ·wn

converges, then Bw is weak*-frequently hyper-

cyclic on X∗.

Proof. In order to apply Theorem 3.7, consider D to be the span of {fn : n ≥ 1}.
Then D contains a countable weak∗-dense subset. The forward shift Sw(fn) =

1
wn+1

fn+1, n ≥ 1 maps D to itself. Thus

Sn
w(fk) =

1

wk+1 · · ·wk+n

fk+n

and ∑
n∈N

Snq

w (fk) = w1w2 · · ·wk

∑
n∈N

1

w1 · · ·wk+nq

fk+nq .

Since a symmetric Schauder basis is regular, we have that ||fn|| < K for some
constant K > 0 and for all n ∈ N, cf. [17], p. 261 and [25], p. 25. Hence by
our hypothesis, the series

∑
n∈N Snq

w (fk) is absolutely convergent and so uncondi-
tionally convergent. Consequently, the shift Bw is q-frequently hypercyclic with
respect to the weak*-topology on X∗ by Theorem 3.7. �

As a consequence of the above result, we derive:

Corollary 4.8. The backward shift Bw is weak*-q-frequently hypercyclic on `∞

if
∑
n∈N

1

w1 · · ·wj+nq

converges for each j ∈ N.

Proof. Immediate since {en : n ≥ 1} is a symmetric Schauder basis for `1. �

Thus if
∑
n∈N

1

w1w2 · · ·wn

converges, Bw is weak*-frequently hypercyclic on `∞.

In fact, the following stronger result holds.

Proposition 4.9. (1)If lim
n→∞

(w1w2 · · ·wn) = ∞, then the unilateral backward

shift Bw is weak*-frequently hypercyclic on `∞.
(2)If lim

n→∞
(w1w2 · · ·wn) = ∞ and lim

n→∞
(w−1w−2 · · ·w−n) = 0, then the bilateral

backward shift Tw is weak*-frequently hypercyclic on `∞(Z).
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Proof. Since lim
n→∞

(w1w2 · · ·wn) = ∞, the weighted shift Bw is frequently hyper-

cyclic on c0, cf. [3] or [5]. Also, it is easy to see that the identity operator
from c0 to `∞ is norm to weak* continuous and has weak∗-dense range. Hence
Bw is weak*-frequently hypercyclic on `∞, by Proposition 2.3. Similarly, the
identity map takes c0(Z) into `∞(Z) continuously and densely. Thus Tw is weak*-
frequently hypercyclic on `∞(Z).

�

Remark 4.10. We would like to mention here that hypercyclicity on `∞ which
is weak∗-separable, was studied in [7] and [21]. It was proved that a backward
shift Bw is weak∗-hypercyclic on `∞ if and only if lim supn→∞(w1w2 · · ·wn) = ∞.
However, the condition limn→∞(w1w2..wn) = ∞ is not necessary for Bw to be
weak∗-frequently hypercyclic on `∞. Indeed, there exists a frequently hypercyclic
Bw on c0 (and thus weak∗-frequently hypercyclic on `∞) such that w1w2..wn 9 ∞.
cf. [4], p. 205.

Remark 4.11. In view of Theorem 3.7, a weakly q-frequently hypercyclic operator
on a separable Banach space, which satisfies the q-frequent hypercyclicity criterion
with respect to a weakly dense set is necessarily norm-q-frequently hypercyclic;
for the closed convex sets are the same in the weak and norm topologies .

Finally, we consider the frequent hypercyclicity of a non-convolution operator.
It is known that any convolution operator on H(C) (a continuous linear operator
that commutes with all translations) that is not a multiple of the identity operator
is frequently hypercyclic [10]. The operator Tµ(f)(z) = f ′(µz) on the space H(C)
is a non-convolution for µ 6= 1 and was shown to be hypercyclic for |µ| ≥ 1, cf.
[12] and [2]. In fact, this operator is a weighted backward shift with weights
wn = nµn−1. So, our result can be derived using the Proposition 4.1. We rather
prove this in the following way.

Proposition 4.12. Let H(C) be equipped with the compact-open topology. Then
the operator Tµ is frequently hypercyclic on H(C) for |µ| ≥ 1.

Proof. Let D be the set of all polynomials. Define the map Sµ by,

Sµ(f)(z) = µ

∫ 1
µ

z

0

f(u) du.

It is easy to see that
∑

T n
µ (f) is absolutely convergent in H(C) and that

TµSµ = I, the identity on the set D. We fix a k ≥ 0 and consider the function
zk. Then

Sn
µ(zk) =

k!zk+n

(k + n)!µnk+n(n−1)/2
.

Since |µ| ≥ 1, the series
∑

Sn
µ(f) is absolutely convergent for any polynomial f

and we conclude that Tµ is frequently hypercyclic by Theorem 2.2. �

We ask the following question. Can one say that the operators Tµ,b(f)(z) =
f ′(µz + b) on H(C) for |µ| ≥ 1 and b ∈ C, b 6= 0, are frequently hypercyclic?
These have been shown to be hypercyclic in [2] and [12].
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5. Rotation and Powers

We now remark that rotations and powers of a q-frequently hypercyclic operator
on an arbitrary separable topological vector space remain q-frequently hypercyclic
for any q ∈ N. They also share the same set of q-frequently hypercyclic vectors.
These results have been proved for the case q = 1 in [5]. The hypercyclicity
of powers and rotations have been considered by S. I. Ansari [1] and F. Leon-
Saavedra and V. Müller [19] respectively. For establishing the following theorem
on powers and rotations of q-frequently hypercyclic operators, we need a lemma
stated as

Lemma 5.1. Let A ⊂ N have positive q-lower density and
k⋃

j=1

Ij = N. If

n1, · · · , nk are finitely many natural numbers, then

k⋃
j=1

(nj + A ∩ Ij)

has positive q-lower density.

Proof. Omitted as it follows on the same lines as given in [5], p. 148. �

Let us denote by qFHC(T ), the set of all q-frequently hypercyclic vectors for
T and S1, the unit circle in the complex plane. Then we have

Theorem 5.2. Let T be a q-frequently hypercyclic operator on a complex topolog-
ical vector space X. Then λT and T p are q-frequently hypercyclic for each λ ∈ S1

and p ∈ N. Also qFHC(T ) = qFHC(λT ) = qFHC(T p).

Proof. To get this result, we proceed on similar lines as in the case of frequent
hypercyclicity, [5], p. 148. �

Finally, we would like to mention that the notion of q-frequent hypercyclicity
is a particular case of (mk)-hypercyclicity studied in [6]. Indeed, for a strictly
increasing sequence (mk) of natural numbers, an element x ∈ X is called (mk)-
hypercyclic for an operator T on X if for every non-empty open set U ⊂ X, there
exists a strictly increasing (nk) = O(mk) such that T nk(x) ∈ U for all k. Thus
the case mk = kq, for all k coincides with the notion of q-frequent hypercyclicity;
however, the results in our paper have no overlap with the results of [6] except
that the q-frequent hypercyclicity (q ≥ 2) of the Bergman shift has been proved
in [6] using the notion of a hypercyclicity set; see Example 5.3, [6].
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