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Abstract. In this paper we define non-archimedean measures and integral
operators taking values in a locally convex space. We show the relation be-
tween these two concept. We define what we called integral function respect
to an integral operator. We give necessary and sufficient condition in order to
know when a function is integrable with respect to an integral operator. In
the second part, we define a kind of absolutely continuous relation between
measures in this context. After that, we formulate a type of Radon–Nikodym
Theorem between vector measures and a scalar measures which are absolutely
continuous.

1. Introduction and Notation

In the second half of the 20th century, A. F. Monna and T. A. Springer [4]
built the foundations of the Non-Archimedean Integration Theory. Both authors
study certain functions defined on locally compact zero-dimensional topological
spaces taking values on a non-archimedean valued field. Afterwards, in 1969, W.
H. Schikhof and A. C. M. van Rooij devote their efforts to extend the theory to
a larger class of topological spaces, so called zero-dimensional topological spaces.
In 2001, J. N. Aguayo and a T. E. Gilsdorf, generalize this theory, consider-
ing vector measures and integrals with values in normed spaces [1].On the other
hand, in 1971, Schikhof shows an analogue of the Radon–Nikodym’s theorem in
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the non-archimedean context. [6]. Later on, in 2001, Aguayo and Moraga extend
the Schikhof work in the context of Banach spaces. [5].

The main goal of this paper, is to expand this theory for measures whose values
are taken in locally convex spaces. Also, a Radon–Nikodym theorem is treated
in this context.

Throughout this paper K will be a field with a non-trivial non-archimedean
valuation |·| for which the metric space K is complete under the metric derived
from this valuation, E is a locally convex space over K whose topology is generated
by a family of continuous seminorms denoted by Γ.

2. Vector Measures and Integral operators

Let X be a non-empty set and Ω be a ring that cover X. As we know, Ω is a
base for a topology τ on X such that every element of Ω is clopen (closed and
open) in τ ; hence τ is a zero-dimensional topology.

Definition 2.1. A finitely additive set function m : Ω → E is said to be a vector
measure on Ω, or simply a measure, if:

[B] {m(U) : U ∈ Ω} is bounded on E.
[M] for any net (Uα)α∈I of subsets in Ω such that Uα ↓ ∅ and any Vα ∈ Ω

such that Vα ⊂ Uα, then

lim
α
m(Vα) = 0.

Let m be a vector measure on a ring Ω and p ∈ Γ. For an open subset W of
X and for x ∈ X, we define

||W ||m,p = sup{p(m(U)) : U ∈ Ω;U ⊂ W}
Nm,p(x) = inf{||W ||m,p : x ∈ W,W ∈ τ}.

Most of the proofs of the properties for vector measures are similar to those
proofs given by van Rooij and Schikhof [8], therefore those proofs will be omit-
ted unless those proofs require a special treatment because the locally convex
condition.

Lemma 2.2. If m : Ω → E is a measure, A and B are open subsets in X, x ∈ X
and p ∈ Γ, then

(1) If A ⊂ B, then ||A||m,p ≤ ||B||m,p.
(2) ||A||m,p = sup{||U ||m,p : U ∈ Ω, U ⊂ A}.
(3) ||A ∪B||m,p ≤ max{||A||m,p, ||B||m,p}.
(4) Nm,p(x) = inf{||U ||m,p : U ∈ Ω;x ∈ U}.
(5) Nm,p : X → R is upper semicontinuous.

Theorem 2.3. Let m : Ω → E a finitely additive set function such that {m(V ) :
V ∈ Ω} is a bounded set of E. Then, m is a measure if, and only if, for each
p ∈ Γ and for any net (Uα)α∈I in Ω with Uα ↓ ∅,

lim
α
||Uα||m,p = 0
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Proof. (⇐=) It is obvious since

p(m(V )) ≤ ||U ||m,p ; for any V ⊂ U, V ∈ Ω.

(=⇒) Suppose that m is a measure. Let p ∈ Γ and (Uα)α∈I a net in Ω such
that Uα ↓ ∅. We claim

lim
α
||Uα||m,p = 0.

In fact, if ||Uα0||m,p = 0 for some α0 ∈ I, there is nothing to prove. Suppose
||Uα||m,p > 0 for all α ∈ I and choose Vα ⊂ Uα, Vα ∈ Ω, such that

1

2
||Uα||m,p ≤ p(m(Vα)).

Since lim
α

p(m(Vα)) = 0, it follows that

lim
α
||Uα||m,p = 0.

�

Theorem 2.4. For all open subset W of X

||W ||m,p = sup{Nm,p(x) : x ∈ W}.
Theorem 2.5. If U ∈ Ω and if δ > 0, then

Uδ,p := {x ∈ U : Nm,p(x) ≥ δ}
is compact.

Theorem 2.6. Let m1,m2 : Ω → E two vector measures. Then, m1 + m2 and
m1 −m2 are vector measures on Ω. Furthermore, for all p ∈ Γ, we have

(1)
Nm1+m2,p ≤ max{Nm1,p,Nm2,p}

(2)
|Nm1,p −Nm2,p| ≤ Nm1−m2,p

Now, for a linear space F of K-valued functions, the collection

Ω(F) = {U ⊂ X : fXU ∈ F for all f ∈ F}
is a ring of sets that covers X and X ∈ Ω. As before, Ω is a base of zero-
dimensional topology τ(F). We call F a Wolfheze Space if every f ∈ F is
τ(F)-continuous and if for every a ∈ X there exists f ∈ F with f(a) 6= 0. Under
this conditions, τ(F) is the weakest topology for which every f ∈ F is continuous.

From now on, F will denote a Wolfheze space of K-valued functions.

Definition 2.7. A lineal operator I : F → E is said to be an Vector Integral
Operator on F , or simply, integral, if

[I] For any net (fα)α∈Λ on F with fα ↓ 0 and for each gα ∈ F such that
|gα| ≤ |fα|, it must have

lim
α
I(gα) = θ

in E, that is, for every p ∈ Γ,

lim
α
p (I(gα)) = 0
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An equivalent formulation of [I] is:

[I’] Let (fα)α∈Λ be a net in F such that fα ↓ 0. If p ∈ Γ and if δ > 0, then there
exists α = α (p, δ) ∈ Λ such that p(I(g)) < δ for all g ∈ F , |g| ≤ |fα|.

Let I be an integral operator on F . For f ∈ F we defined

mf : Ω(F) → E, mf (U) = I(fXU).

This set function mf is well-defined, is finitely additive and is a vector measure.
For the last statement, if (Uα)α∈Λ is an arbitrary net on Ω(F) with Uα ↓ ∅, then
fα = fXUα ↓ 0. We choose Vα ⊂ Uα, Vα ∈ Ω(F) and put gα = fXVα . Clearly,
gα ∈ F and |gα| ≤ |fα|. Since I is an operator, then

lim
α
mf (Vα) = lim

α
I(gα) = θ.

On the other hand, if we suppose that

sup{p(mf (U)) : U ∈ Ω(F)} = +∞
for some p ∈ Γ, then for a given π ∈ K with |π| > 1,there exists a sequence
U(1), U(2), · · · in Ω(F) such that p(mf (U(i))) = p(I(fXU(i))) ≥ |π|i for all i ∈ N.
But π−if ↓ 0 and |π−ifXU(i)| ≤ |π−if |, which implies lim I(π−ifXU(i)) = 0. Thus,
we have a contradiction.
Consequently, mf is a vector measure on Ω(F) since it satisfies [M ] and [B].

In order to simplify the notation, we will write Nf,p instead of Nmf ,p.

Lemma 2.8. If p ∈ Γ, f, g ∈ F and a ∈ X, then

|f(a)|Ng,p(a) = |g(a)|Nf,p(a).

Proof. The collection Λ = {U ∈ Ω(F) : a ∈ U} is a directed set with the backward
order inclusion. If h = f(a)g − g(a)f, then hXU ↓ 0; hence, lim I(hXU) = 0, in
other words, for a given δ > 0, there exists U0 ∈ Λ such that p(I(gXV )) < δ for
all V ∈ Ω, V ⊂ U0. By τ(F)-upper semicontinuity of Nf,p we may assume that

∀x ∈ U0 : Nf,p(x) < Nf,p(a) + δ.

So, for V ∈ Ω, V ⊂ U0, we have

p(f(a)mg(V )− g(a)mf (V )) = p(I(hXV )) < δ

and
p(mf (V )) ≤ ||V ||mf ,p = sup{Nf,p(x) : x ∈ V } ≤ Nf,p(a) + δ.

Thus,

p(f(a)mg(V )) ≤ max{p(f(a)mg(V )− g(a)mf (V )), p(g(a)mf (V ))}
≤ max{δ, |g(a)|[Nf,p(a) + δ]}

and, in consequence,

|f(a)|Ng,p(a) ≤ |f(a)|||U0||mg ,p ≤ max{δ, |g(a)|[Nf,p(a) + δ]}.
As δ was arbitrary, we obtain

|f(a)|Ng,p(a) ≤ |g(a)|Nf,p(a).
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By interchanging the roles of f and g and repeating the same argument, the
lemma follows �

Theorem 2.9. For every p ∈ Γ, there exists a unique function NI,p : X → [0,∞[
such that for all f ∈ F

|f |NI,p = Nf,p.

Furthermore, NI,p is τ(F)-upper semicontinuous.

Corollary 2.10. For f ∈ F , we define

||f ||I,p = ||X||mf ,p.

Then,

‖f‖I,p = sup
x∈X

|f(x)|NI,p(x) = sup{p(I(g)) : g ∈ F , |g| ≤ |f |}.

Moreover, for any δ > 0, {x ∈ X : |f(x)|NI,p(x) ≥ δ} is τ(F)-compact.

Proof. The first equality is directed from

||X||mf ,p = sup
x∈X

Nf,p(x)

and the previous theorem.
On the other hand, since p(I(g)) ≤ ||g||I,p, we have

‖f‖I,p = sup{p(m(U)) : U ∈ Ω} = sup{p(I(fXU)) : U ∈ Ω}
≤ sup{p(I(g)) : g ∈ F , |g| ≤ |f |} ≤ sup{‖g‖I,p : g ∈ F , |g| ≤ |f |}
≤ ‖f‖I,p .

which establishes the formula. The last assertion follows from the facts: X ∈
Ω(F), |f |NI,p = Nf,p and Theorem 2.5. �

Corollary 2.11. For all a ∈ X, there exists U ∈ Ω(F) such that a ∈ U and
{x ∈ U : NI,p(x) ≥ δ} is τ(F)-compact for all δ > 0.

Summarizing, we have prove that if I is an integral operator, then NI,p is τ(F)-
upper semicontinuous and for all f ∈ F , δ > 0, the set {x ∈ X : |f(x)|NI,p(x) ≥
δ} is τ(F)-compact. By Φ(F) we denote the collection of all functions φ : X →
[0,∞[ which are τ(F)-upper semicontinuous and satisfy

(∀f ∈ F)(∀δ > 0)({x ∈ X : |f(x)|φ(x) ≥ δ}is τ(F )-compact).

Φ(F) 6= ∅, since NI,p ∈ Φ(F) for all p ∈ Γ. Also, we can prove that Φ(F)
is closed under supremum and infimum of finite collection of elements of Φ(F).
Now, for φ ∈ Φ(F) we denote

||f ||φ = sup
x∈X

|f(x)|φ(x).

It is a routine to see that || · ||φ is a non-archimedean seminorm on F and the
collection {|| · ||φ : φ ∈ Φ(F)} generates a locally convex topology on F known as
strict topology.

Theorem 2.12. Let I : F → E a linear operator. The following conditions are
equivalent:
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1. I is an integral operator.
2. I is strictly continuous.
3. Let f ∈ F and let (fα) be a net in F such that |fα| ≤ |f | and fα → 0

uniformly on τ -compacts. Then, limα I(fα) = 0.
Proof.

1.) ⇒ 2.) Follows from the fact that for any p ∈ Γ, NI,p ∈ Φ(F) and for a given
f ∈ F ,

p(I(f)) = p(I(fXX)) = p(mf (X)) ≤ ||X||mf ,p = ||f ||NI,p
.

2.) ⇒ 3.) Let p ∈ Γ and ε > 0. If I is strictly continuous, there exists φ ∈ Φ(F)
and δ > 0 such that

||f ||φ ≤ δ =⇒ p(I(f)) ≤ ε.

Take f ∈ F and (fα)α∈Λ as in the assumptions. Set Q = {x ∈ X :
|f(x)|φ(x) ≥ δ}. Since ||φ||Q = sup

x∈Q
φ(x) <∞, there exists α0 such that

α ≥ α0 =⇒ |fα(x)| ≤
δ

||φ||P
uniformly on Q,

or equivalently,

α ≥ α0 =⇒ |fα(x)|φ(x) ≤ δ for all x ∈ Q.
On the other hand, if x /∈ Q, then

|fα(x)|φ(x) ≤ |f(x)|φ(x) < δ.

Therefore, for x ∈ X and α ≥ α0 we have

||fα||φ = sup
x∈X

|fα(x)|φ(x) ≤ δ

which implies p(I(fα)) ≤ ε.
3) ⇒ 1) Follows from the Dini’s Theorem.

�

Example 2.13. Let X be a non-empty set and Ω a ring of subset of X with
X ∈ Ω. Let G be the linear space generated by {XU : U ∈ Ω}. Note that
Ω = Ω(G) and G is a Wolfheze space.

Let m : Ω → E a finitely additive set function. Then, there exists a unique
linear operator I defined on G such that

I(XU) = m(U) for any U ∈ Ω.

Moreover, I is an integral operator if, and only if, m is a measure. In fact, if
I is an integral, then we already know that for any f ∈ G, mf is a measure, in
particular, for f ≡ XX ∈ G. Clearly, mf = m.

On the other hand, if m is a measure and p ∈ Γ, then Nm,p ∈ Φ(G). For every
U ∈ Ω, we have

p(I(XU)) = p(m(U)) ≤ ||U ||m,p = ||XU ||m,p = sup
x∈U

Nm,p(x).
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If g ∈ G, then g =
∑n

i=1 αiXUi
, for some α1, · · ·αn ∈ K and some U1, · · · , Un ∈ Ω,

with Ui ∩ Uj = ∅, i 6= j. Thus,

p(I(g)) = p

(
I

(
n∑
i=1

αiXUi

))
= p

(
n∑
i=1

αim(Ui)

)

≤ max{|αi|p(m(Ui))} ≤ max

{
sup
x∈Ui

|αi|Nm,p

}
= sup

x∈X
|g(x)|Nm,p(x) = ||f ||Nm,p .

Therefore, I is an integral operator.

Definition 2.14. Let I : F → E be an integral operator. We say that f : X → K
is I-integrable if for every ε > 0 and p ∈ Γ, there exists h = hε,p ∈ F such that

||f − h||I,p ≤ ε.

We denote by L(I) the family of all I-integrable functions.

The next lemma may call an extension lemma.

Lemma 2.15. Let Y be a non-empty subset of X and let Q ⊂ Y a τ -compact.
Then, for every τ -continuous f : Y → K and δ > 0, there exists g ∈ F such that
||g||X ≤ ‖f‖Q, |g| ≤ |f | on Y and ‖g − f‖Q < δ.

Proof. See [8] for more details. �

Theorem 2.16. Let f : X → K be a function. Then, f is I-integrable if, and
only if, satisfies the following two conditions:

1) f is τ(F)-continuous on each Xt,p, t > 0, p ∈ Γ.
2) For every δ > 0, p ∈ Γ, there exists a τ(F)-compact Qδ,p, contained is

some Xt,p, such that |f |NI,p ≤ δ on X \Q.

Proof. Let p ∈ Γ. Then, there exists (gn)n∈N in F such that

lim
n→∞

||f − gn||I,p = 0.

Since lim gn = f uniformly on Xt,p we get that f is τ(F)-continuous on Xt,p.
For a δ > 0, we choose g ∈ F such that ||f − g||I,p ≤ δ. As we know,

Q′ = {x ∈ X : |g(x)|NI,p(x) ≥ δ}
is τ(F)-compact. Take t > 0 such that t||g||Q′ < δ and Q = Q′ ∩Xt,p. Q τ(F)-
compact. Then, if x /∈ Q′, then |g(x)|NI,p(x) < δ; if x ∈ Q′ \ Q, then x /∈ Xt,p,
which implies NI,p(x) < t. Thus, if x ∈ X \Q,

|f(x)|NI,p(x) ≤ max{|f(x)− g(x)|NI,p(x), |g(x)|NI,p(x)} ≤ max{δ, t||g|Q′} < δ.

Conversely, let f be that satisfies 1) and 2). Let δ > 0 and p ∈ Γ. Our
purpose is to find g ∈ F with ||f − g||I,p ≤ δ. Take Q and t > 0 as in 2). f
and NI are bounded on Q. Take M > 0 such that M ≥ ||f ||Q, M ≥ ||NI,p||Q
and consider s = min {t, δM−1} . Note that Q ⊂ Xt,p ⊂ Xs,p and f : Xs,p → K
is τ(F)-continuous. By Lemma 2.15, there exists g ∈ F such that ||g|| ≤ ||f ||Q,
|g| ≤ |f | in Xs,p and ||g − f ||Q ≤ s.
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Now, if x ∈ Q, then

|f(x)− g(x)|NI,p(x) ≤ sM ≤ δ,

if x ∈ Xs,p \Q, then

|f(x)− g(x)|NI,p(x) ≤ |f(x)|NI,p(x) ≤ δ

and if x /∈ Xs,p, then

|f(x)− g(x)|NI,p(x) ≤ max{|f(x)|NI,p(x), |g(x)|NI,p(x)}
≤ max {δ, ||f ||Qs} = δ.

Therefore,

||f − g||I,p ≤ δ.

�

Corollary 2.17. If f : X → K is bounded and τ(F)-continuous, then f is I-
integrable.

Proof. It is enough to consider f 6= 0. Clearly, f satisfies condition (1) in previous
theorem. Let δ > 0 and p ∈ Γ. By Theorem 2.10,

Q = {x ∈ X : |f(x)|NI,p(x) ≥ δ}

is τ(F)-compact. Moreover, taking s =
δ

||f ||
, then

Q ⊂
{
x ∈ X : NI,p(x) ≥

δ

||f ||

}
= Xs,p.

Thus, f is I-integrable. �

It is clear that L(I) is a K-linear space. The corresponding covering ring
Ω(L(I)) of X generates a zero-dimensional topology τ(L(I)) on X. If L(I) is
endowed with the locally convex topology generated by {|| · ||I,p}p∈Γ, then F is
dense on L(I). In consequence, there is a unique linear extension I∗ of I to L(I)
such that

p(I∗(f)) ≤ ||f ||I,p for any p ∈ Γ and f ∈ L(I).

Let us denote by

Ω∗ = {V ⊂ X : V ∩Xt,p is a τ(F )-clopen on Xt,p, for all t > 0 and p ∈ Γ}
Ω∗ is a covering ring of X with X ∈ Ω∗. We denote by τ ∗ the zero-dimensional
topology generate by Ω∗ on X. It follows from Theorem 2.16, that Ω∗ ⊂ Ω(L(I)).
Obviously, τ ∗ is finer than τ(F) and τ(L(I)) is finer than τ ∗.

Lemma 2.18. f : X → K is τ ∗-continuous if, and only if, it is τ(F)−continuous
on every Xt,p.

Proof. It follows from the fact that every τ ∗−open set is the union of a collection
of elements of Ω∗. �

Theorem 2.19. L(I) is a Wolfheze space and I∗ is an integral operator on L(I).
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Proof. Let f ∈ L(I). By Theorem 2.16 and Lemma 2.18, f is τ ∗-continuous and
then
τ(L(I))-continuous. From the fact that F ⊂ L(I), it follows that L(I) is a
Wolfheze space. It remains to prove that I∗ is an integral. Since Ω(F) ⊂ Ω(L(I)),
NI,p is τ(L(I))-upper semicontinuous. On the other hand, τ(L(I)) is the weakest
topology that makes continuous every f ∈ L(I), which implies τ ∗ = τ(L(I)).
Since τ ∗ and τ(F) induce the same topology on Xt,p we see that NI,p ∈ Φ(L(I)).
Therefore, I∗ is strictly continuous, and the theorem follows. �

Corollary 2.20. NI∗,p = NI,p for every p ∈ Γ, L(I∗) = L(I) and I∗∗ = I∗.

Proof. Let us denote by Ψ the set of all functions ψ : X → R+ ∪ {0} such that

• ψ is τ(L(I))-upper semicontinuous,
• ∀p ∈ Γ, p(I∗(f)) ≤ ||f ||ψ, f ∈ L(I).

Ψ 6= ∅, since NI,p ∈ Ψ. Let ψ ∈ Ψ, a ∈ X and ε > 0. Choose U ∈ Ω(L(I))
such that a ∈ U and ψ(x) ≤ ψ(a) + ε for any x ∈ U . Take f ∈ L(I) with
|f(a)| = 1 and |f | ≤ 1. Note that XUf ∈ L(I) and

p(I∗(XUf)) ≤ ||XUf ||ψ.

By Corollary 2.10, we have

||XUf ||I∗,p = sup{p(I∗(g)) : g ∈ L(I), |g| ≤ |XUf |}
≤ sup{||g||ψ : g ∈ L(I), |g| ≤ |XUf |} ≤ ||XUf ||ψ

which implies that

NI∗,p(a) ≤ sup
x∈U

|f(x)|NI∗,p(x) ≤ sup
x∈U

|f(x)|ψ(x)

≤ sup
x∈U

ψ(x) ≤ ψ(a) + ε.

Since ε was arbitrary, we conclude that NI∗,p(a) ≤ ψ(a). Since NI,p ∈ Ψ, we get
NI∗,p ≤ NI,p.

In order to prove the conversely inequality, suppose that there exists a ∈ X
and t > 0 such that NI∗,p(a) < t < NI,p(a). By Corollary 2.11 and by the fact
that τ(L(I)) = τ ∗, we can choose U ∈ Ω∗ with a ∈ U such that U ⊂ {x ∈ X :
NI∗,p(x) < t}. Note that {x ∈ U : NI∗,p(x) ≥ δ} is τ(L(I))-compact for any
δ > 0. As Xt,p is τ(F)-closed on X and U ∩ Xt,p is τ(F)-clopen on Xt,p, then
U ∪ (X \Xt,p) is τ -open. If f ∈ F , |f(a)| = 1 and |f | ≤ 1, we have

t < |f(a)|NI,p(a)

= Nmf ,p(a) ≤ ||U ∪ (X \Xt,p)||mf ,p

= sup{p(mf (W )) : W ∈ Ω,W ⊂ U ∪ (X \Xt,p)}

which implies that there exists W ∈ Ω,W ⊂ U ∪ (X \Xt,p) such that

p(I(XWf)) = p(mf (W )) > t.
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Since XWf ∈ F ⊂ L(I) and U ∈ Ω∗ ⊂ Ω(L(I)), we have XU(XWf) = XU∩Wf ∈
L(I). It follows that

p(I∗(XWf −XU∩Wf)) ≤ ||XWf −XU∩Wf ||I,p = sup
x∈X

|XW\Uf(x)|NI,p(x)

≤ sup
x∈X

|XW\U |NI,p(x); (|f | ≤ 1)

= sup
x∈W\U

NI,p(x) ≤ sup
x∈X\Xt,p

NI,p(x); (W \ U ⊂ X \Xt,p)

< t.

Therefore,

p(I∗(XWf −XU∩Wf)) < t < p(I(XWf)).

Now, XWf ∈ F implies that I∗(XWf) = I(XWf) which means that

p(I∗(XWf −XU∩Wf)) < t < p(I∗(XWf)),

But,

t < p(I∗(XU∩Wf)) ≤ sup
x∈W∩U

|f(x)|NI∗,p(x) ≤ sup
x∈U

|f(x)|NI∗,p(x) ≤ t

which is impossible. We conclude that NI∗,p ≥ NI,p. �

3. The Radon–Nikodym Theorem

The purpose of this section is to give a version of the Radon–Nikodym Theorem
for locally convex spaces in the non-archimedean context.

In order to do that, we will need to enlarge the range of our functions. Until
previous sections, the range of our functions were the non-archimedean field K.
Now, the range of them will be a locally convex spaces E over K.

Let F(X,E) be a linear vector space of functions defined from a set X into E.
We define

Ω(F(X,E)) = {U ⊂ X : XU ⊗ f ∈ F(X,E), for any f ∈ F(X,E)}

As before, Ω(F(X,E)) is a ring such that X ∈ Ω(F(X,E)) and generates a
zero-dimensional topology τ (F(X,E)) in X. If each of functions in F(X,E) are
continuous in this new topology and for each x ∈ X there exists f ∈ F(X,E)
such that f (x) 6= 0, then we will say that F(X,E) is a Wolfheze space. This
topology is the weakest topology that make every f ∈ F(X,E) continuous.

Now, suppose that X is provided with a zero-dimensional topology τ. We al-
ready know that the collection Ω of all τ−clopen subsets of X forms a ring,
F (X) = 〈{XU : U ∈ Ω}〉 is a Wolfheze space and τ (Ω (F)) = τ. Even more, if
µ : Ω → K is a scalar measure, then the linear operator I :F (X) → K defined
by I (XU) = µ (U) is an integral operator. By the fact that X ∈ Ω, NI = Nµ.

On the other hand, if we consider

F (X,E) = 〈{XU ⊗ e : U ∈ Ω, e ∈ E}〉,

where XU ⊗ e (x) = XU (x)⊗ e, then Ω (F (X,E)) = τ (Ω (F)) = τ and F (X,E)
is a Wolfheze space.
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For a fixed p ∈ Γ, we put

‖g‖µ,p = sup
x∈X

p (g (x))NI (x)

for a function g : X → E. Of course, for any g ∈ F (X,E) , ‖g‖µ,p <∞.

Definition 3.1. Let g : X → E a function. We will say that g is µ−integrable if
for any p ∈ Γ and ε > 0, there exists h = h (ε, p) ∈ F (X,E) such that

‖g − h‖µ,p < ε

The integrable functions form a linear space L (µ,E) that contains F (X,E) .
Note that if g ∈ L (µ,E) , then ‖g‖µ,p <∞ and ‖·‖µ,p is a semi-norm on L (µ,E) ,

for all p ∈ Γ. The family of all seminorms
{
‖·‖µ,p

}
p∈Γ

generates a locally convex

topology on L (µ,E) .
In order to give another characterization of µ-integrable functions, we need

the following lemma whose arguments to prove it, are similar to those arguments
given in Lemma 3.1 [8].

Lemma 3.2. Let Y ⊂ X and Q be a τ(F(X,E))-compact subset of Y . For any
τ(F(X,E))-continuous function f : Y → E, any p ∈ Γ and every δ > 0 there
exists g ∈ F(X,E) such that

• ||g||X,p = sup
x∈X

p(g(x)) ≤ ||f ||Q,p = sup
x∈Q

p(f(x)),

• p(g) ≤ p(f) in Y, and
• ||g − f ||Q,p ≤ δ.

Theorem 3.3. A function f : X → E is µ-integrable if and only if it satisfies
the following conditions:

(1) f is τ(F(X,E))-continuous on each Xt = {x ∈ X : Nµ(x) ≥ t}, t > 0.
(2) For every δ > 0 and p ∈ Γ, there exists a τ(F(X,E))-compact Q, con-

tained in some Xt, such that p(f)Nµ ≤ δ off Q.

Proof. Let f ∈ L(µ,E) and p ∈ Γ. There exists a sequence (gn)n∈N in F(X,E)
such that limn→∞ ||f − gn||µ,p = 0. Now, if t > 0 and x ∈ Xt, then

p(gn(x)− f(x)) =
p(gn(x)− f(x))Nµ(x)

Nµ(x)
≤ 1

t
||gn − f ||µ,p.

which means that (gn)n∈N converges uniformly to f in Xt. From this, f satisfies
(1). Let δ > 0; hence there exists g ∈ F(X,E) such that ||f − g||µ,p ≤ δ. The set

R = {x ∈ X : p(g(x))Nµ(x) ≥ δ}
is compact in X.
If we choose t > 0 such that t||g||R,p < δ, then Q = R ∩Xt is also a compact in
X. A simple calculation proves p(f(x))Nµ(x) ≤ δ for x ∈ X \Q.
Conversely, assume (1) and (2). Take δ > 0; we shall construct a g ∈ F(X,E)
such that ||f − g||µ,p ≤ δ. Let Q, t be as in (2) . Both functions, f and Nµ, are
bounded on Q. Let M > 0, M ≥ ||f ||Q,p, M ≥ ||Nµ||Q,p. Let s = min{t, δM−1}.
Note that Q ⊂ Xt ⊂ Xs and f : Xs → E is continuous. By the preceding lemma,
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there exists g ∈ F(X,E) such that ||g||X,p ≤ ||f ||Q,p, p(g) ≤ p(f) in Xs and
||g − f ||Q,p ≤ s. Thus, if x ∈ Q, then

p(f(x)− g(x))Nµ(x) ≤ sM ≤ δ,

if x ∈ Xs \Q, then

p(f(x)− g(x))Nµ(x) ≤ p(f(x))Nµ(x) ≤ δ

and finally, if x /∈ Xs, then

p(f(x)− g(x))Nµ(x) ≤ max{p(f(x))Nµ(x), p(g(x))Nµ(x)}
≤ max{δ, ||f ||Q,ps} = δ.

Therefore,
||f − g||µ,p ≤ δ.

�

Before giving definitions of certain technical limits, we need the following
lemma that will help make sense of those limits. The proof was held in [6].

Lemma 3.4. Let µ : Ω → K a scalar measure. Then, if a ∈ X and c ∈]0, 1[,
then for every neighborhood U of a there exists a neighborhood W ∈ Ω of a such
that W ⊂ U and |µ(W )| ≥ cNµ(a).

Definition 3.5. Let θ : Ω → E a set function and µ : Ω → K a scalar measure.
For a ∈ X, e ∈ E, c ∈]0, 1[ and r ∈ R we write:

(i)
LIM
U→a

θ(U) = e

if

(∀p ∈ Γ)(∀ε > 0)(∃U ∈ Ω, a ∈ U)(V ⊂ U, V ∈ Ω ⇒ p(θ(V )− e) ≤ ε);

(ii)
LIM
U→a

µ,cθ(U) = e

if

(∀p ∈ Γ)(∀ε > 0)(∃U ∈ Ω, a ∈ U)(V ⊂ U, V ∈ Ω, |µ(V )| ≥ cNµ(a) ⇒ p(θ(V )− e) ≤ ε);

(iii)
LIM
U→a

µθ(U) = e

if
LIM
U→a

µ,cθ(U) = e

for all c ∈]0, 1[;
(iv) For fixed p ∈ Γ,

LIM
U→a

p(θ(U)) = r

if

(∀ε > 0)(∃U ∈ Ω, a ∈ U)(r − ε ≤ sup{p(θ(V )) : V ∈ Ω, V ⊂ U} ≤ r + ε)

Lemma 3.6. Let m : Ω → E a vectorial measure and a ∈ X. Then,
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(1) Nm,p(a) = LIM
U→a

p(θ(U))

(2) ∀p ∈ Γ,Nm,p(a) = 0 ⇐⇒ LIMU→am(U) = 0
(3) Let µ : Ω → K a scalar measure and 0 < c < 1. If LIM

U→a
µ,cm(U) = 0, then

LIM
U→a

m (U) = 0

Proof. To prove (1.) , it is enough to prove that

(∀ε > 0)(∃U ∈ Ω, a ∈ U)(Nm,p(a)− ε ≤ ||U ||m,p ≤ Nm,p(a) + ε)

or equivalently

(∀ε > 0)(∃U ∈ Ω, a ∈ U)(
∣∣∣‖U‖m,p −Nm,p(a)

∣∣∣ ≤ ε)

which follows directed from the definition of Nm,p.
To show (2.) , we need to follow the definitions of Nm,p and LIMU→am(U),

respectively.
To prove (3.) , let ε > 0. By definition, there exists U ∈ Ω such that if a ∈ U,

V ∈ Ω, V ⊂ U and |µ(V )| ≥ cNµ(a), then p(m(V )) ≤ ε.
Take W ∈ Ω such that W ⊂ U, but |µ(W )| < Nµ(a). By Lemma 3.4, we may

assume that |µ(U)| ≥ cNµ(a). Then |µ(U \W )| = |µ(U)| ≥ cNµ(a), therefore

p(m(W )) = p(m(U)−m(U \W )) ≤ max{p(m(U)), p(m(U \W ))} ≤ ε

�

Next, we define a vector measure that will be crucial in what follows. For a
scalar measure µ, we consider the linear operator Tµ : F(X,E) → E defined by

Tµ(XU ⊗ e) = µ(U)e.

We claim that this operator satisfies

∀p ∈ Γ, p(Tµ(f)) ≤ ||f ||µ,p, (f ∈ F(X,E)).

In fact, for p ∈ Γ:

p(Tµ(f)) = p

(
Tµ

(
n∑
i=1

XUi
⊗ ei

))
≤ max{p(µ(Ui)ei) : 1 ≤ i ≤ n}

= max{|µ(Ui)|p(ei) : 1 ≤ i ≤ n} ≤ {||Ui||µp(ei) : 1 ≤ i ≤ n}

= max

{
sup
x∈Ui

p(ei)Nµ(x) : 1 ≤ i ≤ n

}
= sup

x∈X
p(f(x))Nµ(x) = ||f ||µ,p

Now, since F(X,E) is dense in L(µ,E) (with respect to the family {|| · ||µ,p}p∈Γ),
the operator Tµ may be continuously extended to L(µ,E), satisfying

∀p ∈ Γ, p(Tµ(f)) ≤ ||f ||µ,p, (f ∈ L(µ,E)).

On the other hand, if we fix g ∈ L(µ,E), with ||g||X,p = sup p (g (x)) < +∞ for
all p ∈ Γ, then we define

Sg : L(µ) → E, Sg(f) = Tµ(f ⊗ g)
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By Theorem 2.12, Sg is an integral operator, since if f ∈ L(µ) and p ∈ Γ, then

p(Sg(f)) = p(Tµ(f ⊗ g)) ≤ ||f ⊗ g||µ,p = sup
x∈X

p(f(x)g(x))Nµ(x)

≤ ||g||X,p sup
x∈X

|f(x)|Nµ(x) = ||g||X,p||f ||µ.

Thus, by the example ??, there exists a unique vector measure mg : Ω → E
associated to Sg such that

mg(U) = Sg(XU) = Tµ(XU ⊗ g).

Let us denote mg by µ⊗ g. Note that if g = e, then µ⊗ e(U) = µ(U)e, thus the
new notation makes sense. At the same time, if p ∈ Γ, U ∈ Ω and x ∈ X, then

||U ||µ⊗g,p
= sup{p(µ⊗ g(V )) : V ⊂ U, V ∈ Ω} = sup{p(Sg(XV )) : V ⊂ U, V ∈ Ω}
≤ sup{||g||X ||XV ||µ : V ⊂ U, V ∈ Ω} = ||g||X,p sup{||XV ||µ : V ⊂ U, V ∈ Ω}
= ||g||X,p sup{||V ||µ : V ⊂ U, V ∈ Ω} = ||g||X,p||U ||µ.

and

Nµ⊗g,p(x) = inf{||W ||µ⊗g,p : x ∈ W,W ∈ Ω} ≤ {||g||X ||W ||µ : x ∈ W,W ∈ Ω}
= ||g||X,p inf{||W ||µ : x ∈ W,W ∈ Ω} = ||g||X,pNµ(x).

Lemma 3.7. If µ is a scalar measure and g ∈ L(µ,E), then

LIM
U→a

[µ⊗ g(U)− µ⊗ g(a)(U)] = 0.

Proof. Let p ∈ Γ, ε > 0 and a ∈ X. Note that

µ⊗ g(U)− µ⊗ g(a)(U) = µ⊗ [g − g(a)](U).

With out loss of generality, we may assume that g(a) = 0 and Nµ(a) ≤ 1. Since
g is µ-integrable, by Theorem 3.3, there exists a compact Q of X contained in
some Xt such that p(g(x))Nµ(x) ≤ ε for all x ∈ X \ Q. Now, if a /∈ Q, then we
choose U ∈ Ω such that a ∈ U and U ⊂ X \Q; or if a ∈ Q, then we choose U ∈ Ω
such that

x ∈ U ∩Xt =⇒ p(g(x)) ≤ ε.

In both cases we have

∀x ∈ U, p(g(x))Nµ(x) ≤ ε.

Therefore, if V ∈ Ω, V ⊂ U , then

p(µ⊗ g(V )) = p(Tµ(XV ⊗ g)) ≤ ||XV ⊗ g||µ,p
= sup

x∈X
p(XV ⊗ g(x))Nµ(x) = sup

x∈V
p(g(x))Nµ(x) ≤ ε

Since p ∈ Γ was arbitrary, we are done
�
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Definition 3.8. Let m : Ω → E a vector measure and µ : Ω → K a scalar
measure. We will say that m is absolutely continuous with respect to µ if, for
any a ∈ X, there exists ea ∈ E such that

∀p ∈ Γ, Nm−µ⊗ea,p(a) = 0.

In that case we will write m << µ.

Remark 3.9. If m << µ, then for every U ∈ Ω, we have

||U ||µ = 0 =⇒ ∀p ∈ Γ, ||U ||m,p = 0.

Proof. First of all, note that

Nµ(a) = 0 ⇒ ∀p ∈ Γ,Nm,p(a) = 0.

In fact, if a ∈ X such that Nµ(a) = 0 and p ∈ Γ, then there exists ea ∈ E such
that Nm−µ⊗ea,p(a) = 0. Also, by a previous results,

Nµ⊗ea,p(a) ≤ ||ea||XNµ(a) = p(ea)Nµ(a) = 0.

Thus, by Theorem 2.6,

0 ≤ Nm,p(a) = Nm−µ⊗ea+µ⊗ea,p(a) ≤ max{Nm−µ⊗ea,p(a),Nµ⊗ea,p(a)} = 0.

Now, if U ∈ Ω such that ||U ||µ = 0 and x ∈ X, then Nµ(x) = 0; hence Nm,p(x) =
0. Therefore, ||U ||m,p = 0. �

Theorem 3.10. (Radon–Nikodym) Let m : Ω → E a vector measure and µ :
Ω → K a scalar measure. Then the following statements are equivalent:

(1) m << µ.
(2) There exists a g ∈ L(µ,E) such that m = µ⊗ g.

Proof. (2.) ⇒ (1.) It is directed from Lemma 3.7 and Lemma 3.6.
(1.) ⇒ (2.) By the assumption, for all a ∈ X, there exists ea ∈ E such that for
all p ∈ Γ, Nm−µ⊗ea,p(a) = 0, .
First of all, let us prove that if Nµ(a) > 0, then ea is unique. As usual, suppose
that there exists another wa ∈ E such that

Nm−µ⊗ea,p(a) = 0 = Nm−µ⊗wa,p(a), for all p ∈ Γ.

Then, for a given ε > 0, there exists U ∈ Ω, a ∈ U such that

max{||U ||m−µ⊗ea,p, ||U ||m−µ⊗wa,p} ≤ ε.

Note that, in general, p(e)Nµ(a) = Nµ⊗e,p(a). Thus, if Nµ(a) > 0, then

p(ea − wa)Nµ(a) ≤ p(ea − wa)||U ||µ = sup
V ∈Ω,V⊂U

|µ(V )|p(ea − wa)

= sup
V ∈Ω,V⊂U

p(µ⊗ ea(V )− µ⊗ wa(V ))

= sup
V ∈Ω,V⊂U

p(µ⊗ ea(V )−m(V ) +m(V )− µ⊗ wa(V ))

= sup
V ∈Ω,V⊂U

max{p(µ⊗ ea(V )−m(V )), p(m(V )− µ⊗ wa(V ))}

= max{||U ||m−µ⊗ea , ||U ||m−µ⊗wa} < ε
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Thus, p(ea − wa) = 0. Since p is arbitrary, we conclude ea = wa.
Now, let us define the function g : X −→ E, by

g(a) =

{
ea, Nµ(a) > 0

0, Nµ(a) = 0.

By the uniqueness of ea, g is well defined.
The next step is to prove that g is µ-integrable. By Theorem 3.3, it is enough to
prove that

• g is continuous on each Xt, t > 0.
• For a given δ > 0 and p ∈ Γ, there exists a compact subset Q of X,

contained in some Xt, such that p(f)Nµ ≤ δ off Q.

Take t > 0, p ∈ Γ and ε > 0. If a ∈ Xt and Nm−µ⊗g(a),p(a) = 0, by Lemma 3.6,

LIM
U→a

[m(U)− µ⊗ g(a)(U)] = 0.

So, for these t and ε, there exists U ∈ Ω, a ∈ U, such that

V ∈ Ω, V ⊂ U ⇒ p(m(V )− µ⊗ g(a)(V )) ≤ εt

2
.

Now, if b ∈ U ∩ Xt and since Nm−µ⊗g(b),p(b) = 0, then we may choose V0 ∈ Ω,
V0 ⊂ U , b ∈ V0 such that

V ∈ Ω, V ⊂ V0 ⇒ p(m(V )− µ⊗ g(b)(V )) ≤ εt

2
.

Thus,

p(g(a)− g(b))
t

2
≤ p(g(a)− g(b))Nµ(b) ≤ p(g(a)− g(b))||V0||µ
= p(g(a)− g(b)) sup

V ∈Ω,V⊂V0

|µ(V )|

= sup
V ∈Ω,V⊂V0

p(µ⊗ g(a)(V )− µ⊗ g(b)(V ))

= sup
V ∈Ω,V⊂V0

max

{
p (m (V )− µ⊗ g (a) (V ))
p (m (V )− µ⊗ g (b) (V ))

}
≤ εt

2

which implies the continuity of g in Xt.
In order to prove the second condition for g, let δ > 0, p ∈ Γ and define the set
Q = {x ∈ X : Nm,p(x) ≥ δ}. We claim that Q is the compact we need. Note that
Nm−µ⊗g(x),p(x) = 0 implies Nm,p(x) = Nµ⊗g(x),p(x). If x /∈ Q, then

p(g(x))Nµ(x) = Nµ⊗g(x),p(x) = Nm,p(x) < δ.

Therefore, we only need to prove that Q is contained in some Xt. Take a ∈ Q;
again by Lemma 3.6, there exists Ua ∈ Ω, a ∈ Ua such that

V ∈ Ω, V ⊂ Ua ⇒ p(m(V )− µ⊗ g(a)) ≤ δ

2
.

By the compactness and by the fact that

Q ⊂
⋃
a∈Q

Ua,
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we may choose a finite collection {Ua1 , · · ·Uan} in Ω such that

Q ⊂
n⋃
i=1

Uai
.

Thus, if V ∈ Ω, V ⊂ Uai
, then

p(m(V )) = p(m(V )− µ⊗ g(ai)(V ) + µ⊗ g(ai)(V ))

≤ max{p(m(V )− µ⊗ g(ai)(V )), p(µ⊗ g(ai)(V ))}

≤ max

{
δ

2
, p(µ⊗ g(ai)(V ))

}
.

If we choose M ≥ max{p(g(ai)) : 1 ≤ i ≤ n} and t = δM−1, then Q ⊂ Xt. In
fact, take a ∈ Q and Uai

such that a ∈ Uai
. For an arbitrary V ∈ Ω, V ⊂ Uai

we
have

p(m(V )) ≤ max

{
δ

2
, p(µ⊗ g(ai)(V ))

}
= max

{
δ

2
, |µ(V )|p(g(ai))

}
≤ max

{
δ

2
, |µ(V )|δt−1

}
.

and thus,

δ ≤ Nm,p(a) = LIMU→ap(m(U))

≤ max

{
δ

2
, δt−1LIMU→a|µ(U)|

}
= δt−1LIMU→a|µ(U)| = δt−1Nµ(a)

which means
Nµ(a) ≥ t.

As a consequence, g is µ-integrable.
Hence, by Lemma 3.7,

LIM
U→a

[µ⊗ g(U)− µ⊗ g(a)(U)] = 0.

which implies that for every p ∈ Γ, Nµ⊗g−µ⊗g(a),p(a) = 0.
Therefore,

Nm−µ⊗g,p(a) ≤ max{Nm−µ⊗g(a),p(a),Nµ⊗g−µ⊗g(a),p(a)} = 0.

In other words, Nm−µ⊗g,p ≡ 0 or, equivalently, m = µ⊗ g. �
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