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Abstract. In this paper we study some new converses of the operator version
for the Jensen inequality and the scalar Lah–Ribarič inequality for continu-
ous convex functions and we will give applications of those results to quasi-
arithmetic means and power means for selfadjoint operators. Furthermore, we
will also give improvements of the obtained results.

1. Introduction and preliminaries

The Jensen inequality for convex functions plays a very important role in the
Theory of Inequalities due to the fact that it implies the whole series of the
other classical inequalities such as the quasi-arithmetic mean and arithmetic mean
inequalities, Hölder and Minkowski inequalities, Ky Fan’s inequality etc.

One of the most famous ones amongst them is the so called Lah–Ribarič in-
equality, which we state in the following theorem.

Theorem 1.1. ([10]) Let f : [m, M ] → R be a convex function, y1, · · · , yn ∈
[m, M ] real numbers and let p1, · · · , pn be nonnegative real numbers such that
Pn =

∑n
i=1 pi > 0. Then

1

Pn

n∑
i=1

pif(yi) ≤
M − ȳ

M −m
f(m) +

ȳ −m

M −m
f(M), (1.1)
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where ȳ = 1
Pn

∑n
i=1 piyi.

It was obtained in 1973. by P. Lah and M. Ribarič in their paper [10]. Since
then, there have been many papers written on the subject of it’s generalizations
and converses.

In this paper we refer to a general form of the Jensen inequality for selfad-
joint operators. In order to present our results, we first need to introduce the
appropriate settings.

Let H be a Hilbert space and let B(H) be the C∗-algebra of all bounded (i.e.,
continuous) linear operators on H. A bounded linear operator A on a Hilbert
space H is said to be selfadjoint if A = A∗. An operator A ∈ B(H) is selfadjoint
if and only if 〈Ax, x〉 ∈ R for every x ∈ H. We denote by Bh(H) a semi-space
of all selfadjoint operators in B(H). If A is a selfadjoint operator and f is a real
valued continuous function on Sp(A), then f(t) ≥ 0 for every t ∈ Sp(A) implies
that f(A) ≥ 0, i.e., f(A) is a positive operator on H. Equivalently, if both f
and g are real valued continuous function on Sp(A), then the following property
holds:

f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A) (1.2)

in the operator order of B(H).
The result stated below provides an operator version for Jensen’s inequality

and it is due to Mond and Pečarić [15] (see also [3]):

Theorem 1.2. ([15]) (Mond− Pečarić) Let A ∈ Bh(H) be a selfadjoint operator
with Sp(A) ⊆ [m, M ] for some scalars m < M . If f is a convex function on
[m, M ], then

f(〈Ax, x〉) ≤ 〈f(A)x, x〉 (1.3)

for each x ∈ H with ‖x‖ = 1.

Jensen’s type inequalities for selfadjoint operators in Hilbert spaces have been
an object of study for many different papers. For more on the Mond–Pečarić
inequality, i.e. Jensen’s inequality for selfadjoint operators and it’s refinements,
converses and applications, see [1], [4], [5], [6], [11], [12] and [13].

R. Jakšic and J. Pečarić in their paper [7] gave the following result, which
concerns the difference between the right and the left side of the Mond–Pečarić
inequality (1.3).

Theorem 1.3. ([7]) Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆
[m, M ] for some scalars m < M . If f is a continuous convex function on an

interval of real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is the interior of I, then

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)
f ′
−(M)− f ′

+(m)

M −m
(1.4)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))

holds for each unit vector x in H. If f is concave, the inequalities in (1.4) are
reversed.
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We also need the following converse for the Mond–Pečarić inequality that pro-
vides a generalization of the Lah–Ribarič inequality for convex functions stated
earlier:

Theorem 1.4. ([15]) Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp(A) ⊆ [m, M ] for some scalars m and M with m < M . If f is a
convex function on [m,M ], then

〈f(A)x, x〉 ≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 −m

M −m
f(M) (1.5)

for each x ∈ H with ‖x‖ = 1.

Remark 1.5. One can see that if in Theorem 1.4 we choose A = diag(y1, · · · , yn)
and x = 1√

Pn
(
√

p1, · · · ,
√

pn), where yi, pi (i = 1, · · · , n) and Pn are defined in

Theorem 1.1, then the inequality (1.5) becomes exactly (1.1).

The authors in [7] also gave a series of inequalities that concerns with the
difference between the right and the left side of the inequality (1.5), which we
state below.

Theorem 1.6. ([7]) Let the assumptions of Theorem 1.3 hold. If f is a continu-

ous convex function on an interval of real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is the interior of I, then

0 ≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 −m

M −m
f(M)− 〈f(A)x, x〉

≤
f ′
−(M)− f ′

+(m)

M −m
〈(M1H − A)(A−m1H)x, x〉 (1.6)

≤
f ′
−(M)− f ′

+(m)

M −m
(M − 〈Ax, x〉)(〈Ax, x〉 −m)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))

holds for each unit vector x in H. If f is concave, the inequalities in (1.6) are
reversed.

The main aim of this paper is to give refinements and improvements of converses
of the Jensen inequality (1.4) and the scalar Lah–Ribarič inequality (1.6) for
selfadjoint operators obtained in [7].

In the next section, in Theorem 2.1 we shall give a refinement of the inequality
(1.4) and in Theorem 2.4 we shall give two similar series of inequalities that refine
the inequality (1.6). Also, we shall give applications of the obtained results to
quasi-arithmetic means and power means of selfadjoint operators.

In the last section, in Theorem 5.2 we shall improve the results from Theorem
2.1, and show that we have obtained more accurate upper bounds for the dif-
ference between left and right side of the scalar Jensen inequality for selfadjoint
operators (1.3). We shall also obtain an improvement of the scalar Lah–Ribarič
inequality for selfadjoint operators (1.5), and in Theorem 5.7 we shall improve the
results from Theorem 2.4, and show that we have obtained more accurate lower
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bound for the difference between left and right side of the scalar Lah–Ribarič
inequality for selfadjoint operators (1.5)

2. Main results

Our first result is a refinement of the converse of Jensen’s inequality (1.4) for
selfadjoint operators obtained in [7].

Theorem 2.1. Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M ]
for some scalars m < M . If f is a continuous convex function on an interval of

real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is the interior of I and x ∈ H such

that ‖x‖ = 1, then

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉)
≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup

t∈〈m,M〉
Ψf (t; m,M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)
f ′
−(M)− f ′

+(m)

M −m
(2.1)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m)).

We also have the inequalities

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉) ≤ 1

4
(M −m)2Ψf (〈Ax, x〉; m,M)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m)), (2.2)

where Ψf (·; m, M) : 〈m,M〉 → R is defined by

Ψf (t; m, M) =
1

M −m

(f(M)− f(t)

M − t
− f(t)− f(m)

t−m

)
. (2.3)

If f is concave, the inequalities are reversed.

Proof. First we assume that f is convex. If 〈Ax, x〉 = m or 〈Ax, x〉 = M , the
inequalities are clear. Let us suppose that 〈Ax, x〉 ∈ 〈m, M〉.
The first inequality follows directly from (1.3). By Theorem 1.4, we have

〈f(A)x, x〉 − f(〈Ax, x〉) ≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 −m

M −m
f(M)− f(〈Ax, x〉)

=
(M − 〈Ax, x〉)(〈Ax, x〉 −m)

M −m

{f(M)− f(〈Ax, x〉)
M − 〈Ax, x〉

− f(〈Ax, x〉)− f(m)

〈Ax, x〉 −m

}
= (M − 〈Ax, x〉)(〈Ax, x〉 −m)Ψf (〈Ax, x〉; m, M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup
t∈〈m,M〉

Ψf (t; m,M),
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so we have proved the second inequality in (2.1).

sup
t∈〈m,M〉

Ψf (t; m,M) =
1

M −m
sup

t∈〈m,M〉

{f(M)− f(t)

M − t
− f(t)− f(m)

t−m

}
≤ 1

M −m

(
sup

t∈〈m,M〉

f(M)− f(t)

M − t
+ sup

t∈〈m,M〉

−(f(t)− f(m))

t−m

)
=

1

M −m

(
sup

t∈〈m,M〉

f(M)− f(t)

M − t
− inf

t∈〈m,M〉

f(t)− f(m)

t−m

)
=

f ′
−(M)− f ′

+(m)

M −m
,

which proves the third inequality in (2.1). To prove the last inequality in (2.1),

we notice that for every t ∈ [m, M ], the inequality
(M − t)(t−m)

M −m
≤ 1

4
(M −m)

is valid. Since 〈Ax, x〉 ∈ [m, M ], we can replace t ↔ 〈Ax, x〉 and the proof is
completed.
The proof of the inequalities (2.2) is clear from the proof of the inequalities (2.1).
If f is concave, then −f is convex, so we can apply (2.1) and (2.2) to function
−f and obtain the reversed inequalities for f . �

Remark 2.2. Observe that the function Ψf (·; m, M) : 〈m,M〉 → R defined in (2.3)
is actually the second order divided difference of the function f at the points m,
t and M for any t ∈ 〈m,M〉.

In order to obtain a converse of the Lah–Ribarič inequality for convex functions
(1.6), we need the following result found in [7]:

Lemma 2.3. ([7]) Let f be a continuous convex function on an interval of real

numbers I and m,M ∈ R, m < M with [m, M ] ⊂
◦
I, where

◦
I is the interior of I.

Then for any t ∈ [m, M ] the following inequalities are valid:

∆f (t; m, M) =
(t−m)f(M) + (M − t)f(m)

M −m
− f(t)

≤ (M − t)(t−m) sup
t∈〈m,M〉

Ψf (t; m, M)

≤ (M − t)(t−m)

M −m
(f ′

−(M)− f ′
+(m)) (2.4)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m)).

Also we have

∆f (t; m, M) ≤ 1

4
(M −m)2Ψf (t; m, M) ≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m)),

where Ψf (·; m,M) : 〈m, M〉 → R is defined in (2.3). If f is concave, the inequal-
ities are reversed.

Theorem 2.4. Let the assumptions of Theorem 2.1 hold. If f is a continuous

convex function on an interval of real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is
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the interior of I and x ∈ H such that ‖x‖ = 1, then the following inequalities are
valid

(i)

0 ≤ (〈Ax, x〉 −m)f(M) + (M − 〈Ax, x〉)f(m)

M −m
− 〈f(A)x, x〉

≤ 〈(M1H − A)(A−m1H)x, x〉 sup
t∈〈m,M〉

Ψf (t; m, M)

≤ 〈(M1H − A)(A−m1H)x, x〉
M −m

(f ′
−(M)− f ′

+(m)) (2.5)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)

M −m
(f ′

−(M)− f ′
+(m))

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))

(ii)

0 ≤ (〈Ax, x〉 −m)f(M) + (M − 〈Ax, x〉)f(m)

M −m
− 〈f(A)x, x〉

≤ 〈(M1H − A)(A−m1H)x, x〉 sup
t∈〈m,M〉

Ψf (t; m, M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup
t∈〈m,M〉

Ψf (t; m,M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)

M −m
(f ′

−(M)− f ′
+(m)) (2.6)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))

where Ψf (·; m,M) : 〈m, M〉 → R is defined in (2.3). If f is concave, the inequali-
ties are reversed.

Proof. Let us assume that f is convex. If 〈Ax, x〉 = m or 〈Ax, x〉 = M , the
inequalities are clear. Let us suppose that 〈Ax, x〉 ∈ 〈m, M〉.
The first inequalities follow directly from Theorem 1.4. Due to property (1.2),
we can replace t with operator A in the inequalities (2.4) from Lemma 2.3 and
obtain

1

M −m
((A−m1H)f(M) + (M1H − A)f(m))− f(A)

≤ (M1H − A)(A−m1H) supt∈〈m,M〉 Ψf (t; m, M)

≤ 1

M −m
(M1H − A)(A−m1H)(f ′

−(M)− f ′
+(m))

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))1H

(2.7)

in the operator order of B(H).
Because scalar product is linear in the first argument and ‖x‖ = 1, by applying
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it to (2.7) we have

〈Ax, x〉 −m

M −m
f(M) +

M − 〈Ax, x〉
M −m

f(m)− 〈f(A)x, x〉
≤ 〈(M1H − A)(A−m1H)x, x〉 supt∈〈m,M〉 Ψf (t; m,M)

≤ 1

M −m
〈(M1H − A)(A−m1H)x, x〉(f ′

−(M)− f ′
+(m)).

Since h(t) = (M − t)(t−m) is concave, from the Jensen inequality we have

〈(M1H − A)(A−m1H)x, x〉 ≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m).

To prove the last inequality in (2.5), we notice that for every t ∈ [m, M ],
(M − t)(t−m)

M −m
≤ 1

4
(M − m) is valid, and since 〈Ax, x〉 ∈ [m, M ] for every

x ∈ H such that ‖x‖ = 1, we can replace t with 〈Ax, x〉.
The first and second inequalities in (2.6) are just the first and second inequalities
in (2.5). Again, the function g(t) = (M−t)(t−m) is concave, so from Jessen’s in-
equality it follows that 〈(M1H−A)(A−m1H)x, x〉 ≤ (M−〈Ax, x〉)(〈Ax, x〉−m),
which proves the third inequality in (2.6). In the proof of Theorem 2.1 we have

shown that the inequality supt∈〈m,M〉 Ψf (t; m, M) ≤
f ′
−(M)− f ′

+(m)

M −m
is valid, so

the fourth inequality in (2.6) directly follows. To prove the last inequality in (2.6),

we notice that for every t ∈ [m, M ], the inequality
(M − t)(t−m)

M −m
≤ 1

4
(M−m) is

valid. Since 〈Ax, x〉 ∈ [m, M ], we have
(M − 〈Ax, x〉)(〈Ax, x〉 −m)

M −m
≤ 1

4
(M−m)

and thus the proof is complete.
If f is concave, then −f is convex, so we can apply (2.5) and (2.6) to function
−f and obtain reversed inequalities for f . �

Remark 2.5. For an extensive list of results in inequalities for functions of self-
adjoint operators related to Mond–Pečarić method and applications, see [2] and
the references therein.

3. Applications to quasi-arithmetic means

Let A be a positive invertible operator on a Hilbert space such that Sp(A) ⊆
[m,M ] for some scalars m < M and x a unit vector in H. Let f be a strictly
monotone continuous function on [m, M ]. Quasi-arithmetic mean of the operator
A with respect to f is defined by

Mf (A, x) = f−1(〈f(A)x, x〉). (3.1)

In this section, the objective is to apply the results from the previous section to
some strictly monotone functions, and in that way get two series of inequalities
involving quasi-arithmetic means.

Theorem 3.1. Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m, M ]
for some scalars m < M , let f, g be strictly monotone continuous functions on

an interval of real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is the interior of I,
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and let us denote [mg, Mg] = g([m, M ]). If the function f ◦ g−1 is convex , then
for each x ∈ H such that ‖x‖ = 1 we have

0 ≤ f(Mf (A, x))− f(Mg(A, x))

≤ (Mg − 〈g(A)x, x〉)(〈g(A)x, x〉 −mg) sup
t∈〈m,M〉

Ψf◦g−1(g(t); mg, Mg)

≤ (Mg − 〈g(A)x, x〉)(〈g(A)x, x〉 −mg)
(f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg)

Mg −mg

(3.2)

≤ 1

4
(Mg −mg)((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg)).

We also have the inequalities

0 ≤ f(Mf (A, x))− f(Mg(A, x)) ≤ 1

4
(Mg −mg)

2Ψf◦g−1(〈g(A)x, x〉; mg, Mg)

≤ 1

4
(Mg −mg)((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg)). (3.3)

If f ◦ g−1 is concave, then the inequalities are reversed.

Proof. Function f ◦ g−1 is obviously continuous. Let us assume that f ◦ g−1 is
convex. If g is strictly increasing, then mg = g(m), Mg = g(M); if g is strictly
decreasing, then mg = g(M), Mg = g(m). The conditions of Theorem 2.1 are
satisfied, so we can obtain (3.2) and (3.3) by substituting f ↔ f ◦ g−1 and
A ↔ g(A) in (2.1) and (2.2).
Now let us assume that f ◦ g−1 is concave. Then the function −f ◦ g−1 is convex,
so we can obtain reversed inequalities by replacing f ◦ g−1 with −f ◦ g−1. �

Theorem 3.2. Under the assumptions from Theorem 3.1, if the function f ◦ g−1

is convex , then the following inequalities are valid:

(i)

0 ≤ Mg − 〈g(A)x, x〉
Mg −mg

f(m) +
〈g(A)x, x〉 −mg

Mg −mg

f(M)− f(Mf (A, x))

≤ 〈(Mg1H − g(A))(g(A)−mg1H)x, x〉 sup
t∈〈m,M〉

Ψf◦g−1(g(t); mg, Mg)

≤ 〈(Mg1H − g(A))(g(A)−mg1H)x, x〉
Mg −mg

((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg))

≤ (Mg − 〈g(A)x, x〉)(〈g(A)x, x〉 −mg)

Mg −mg

((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg))

≤ 1

4
(Mg −mg)((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg)) (3.4)
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(ii)

0 ≤ Mg − 〈g(A)x, x〉
Mg −mg

f(m) +
〈g(A)x, x〉 −mg

Mg −mg

f(M)− f(Mf (A, x))

≤ 〈(Mg1H − g(A))(g(A)−mg1H)x, x〉 sup
t∈〈m,M〉

Ψf◦g−1(g(t); mg, Mg)

≤ (Mg − 〈g(A)x, x〉)(〈g(A)x, x〉 −mg) sup
t∈〈m,M〉

Ψf◦g−1(g(t); mg, Mg)

≤ (Mg − 〈g(A)x, x〉)(〈g(A)x, x〉 −mg)

Mg −mg

((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg))

≤ 1

4
(Mg −mg)((f ◦ g−1)′−(Mg)− (f ◦ g−1)′+(mg)) (3.5)

for each x ∈ H such that ‖x‖ = 1, where [mg, Mg] = g([m, M ]). If f ◦ g−1 is
concave, the inequalities are reversed.

Proof. Similarly to the proof of the previous theorem, let us assume that f ◦ g−1

is convex (obviously, f ◦ g−1 is continuous).
If g is strictly increasing, then mg = g(m), Mg = g(M); if g is strictly decreas-

ing, then mg = g(M), Mg = g(m). The conditions of Theorem 2.4 are satisfied.
We obtain (3.4) and (3.5) by substituting f ↔ f ◦ g−1 and A ↔ g(A) in (2.5)
and (2.6).

Now let us assume that f ◦g−1 is concave. Then the function −f ◦g−1 is convex,
so we can obtain reversed inequalities by replacing f ◦ g−1 with −f ◦ g−1. �

Remark 3.3. Let f , g, x and A be as in Theorem 3.2. We can rewrite the first
inequality in (3.4) as:

(g(M)−g(m))f(Mf (A, x))−(f(M)−f(m))g(Mg(A, x)) ≤ g(M)f(m)−g(m)f(M)

if f ◦g−1 is convex and g is strictly increasing. If f ◦g−1 is concave, the inequality
is reversed.

4. Applications to power means

Let A be a positive invertible operator on a Hilbert space and x a unit vector
in H. For r ∈ R, the power mean Mr(A, x) is defined by

Mr(A, x) = (〈Arx, x〉)1/r.

In [15, p.69] it has been shown that if r → 0, then (〈Arx, x〉)1/r converges
monotone to exp〈log Ax, x〉, so we can extend the definition of the power mean
to the case r = 0.

Power means are a special case of quasi-arithmetic means defined in (3.1),
so series of inequalities involving arithmetics means analogue to those from the
previous section easily follow from Theorem 3.1 and Theorem 3.2 respectively.

Theorem 4.1. Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M ]
for some scalars 0 < m < M < ∞. Let x be a unit vector in H, r, s ∈ R such
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that r < s and let

φs,t(t) =

 ts/r : r 6= 0, s 6= 0,
1
r
log t : r 6= 0, s = 0,

est : r = 0, s 6= 0.

.
If r < 0 < s or 0 < r < s, then

0 ≤ (Ms(A, x))s − (Mr(A, x))s

≤ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ s

r
(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M s−r −ms−r

M r −mr
(4.1)

≤ s

4r
(M r −mr)(M s−r −ms−r),

and we also have

0 ≤ (Ms(A, x))s − (Mr(A, x))s ≤ 1

4
(M r −mr)2Ψφs,t(〈Arx, x〉; mr, M r)

≤ s

4r
(M r −mr)(M s−r −ms−r). (4.2)

If r < s < 0, then

0 ≥ (Ms(A, x))s − (Mr(A, x))s

≥ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≥ s

r
(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M s−r −ms−r

M r −mr
(4.3)

≥ s

4r
(M r −mr)(M s−r −ms−r),

and we also have

0 ≥ (Ms(A, x))s − (Mr(A, x))s ≥ 1

4
(M r −mr)2Ψφs,t(〈Arx, x〉; mr, M r)

≥ s

4r
(M r −mr)(M s−r −ms−r). (4.4)

If r = 0 and s > 0, then

0 ≤ (Ms(A, x))s − (M0(A, x))s

≤ (log M − 〈log Ax, x〉)(〈log Ax, x〉 − log m) sup
t∈〈m,M〉

Ψφs,t(log t; log m, log M)

≤ s(log M − 〈log Ax, x〉)(〈log Ax, x〉 − log m)
M s −ms

log M − log m
(4.5)

≤ s

4
(M s −ms) log

M

m
,
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and we also have

0 ≤ (Ms(A, x))s − (M0(A, x))s ≤ 1

4

(
log

M

m

)2

Ψφs,t(〈log Ax, x〉; log m, log M)

≤ s

4
(M s −ms) log

M

m
. (4.6)

If r < 0 or s = 0, then

0 ≤ log(M0(A, x))− log(Mr(A, x))

≤ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ −1

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M rmr
(4.7)

≤ 1

4r
(M r −mr)(M−r −m−r),

and we also have

0 ≤ log(M0(A, x))− log(Mr(A, x)) ≤ 1

4
(M r −mr)2Ψφs,t(〈Arx, x〉; mr, M r)

≤ 1

4r
(M r −mr)(M−r −m−r). (4.8)

Proof. This theorem follows directly from Theorem 3.1 in four steps.
Put f(t) = ts and g(t) = tr in Theorem 3.1. Then f ◦ g−1 is convex and φs,t =
f ◦ g−1 whenever 0 < r < s or r < 0 < s. Therefore (4.1) and (4.2) follow easily
from (3.2) and (3.3), respectively.
Put f(t) = −ts and g(t) = tr in Theorem 3.1. Then f ◦ g−1 is convex and
φs,t = −f ◦ g−1 whenever r < s < 0. Therefore (4.3) and (4.4) follow easily from
(3.2) and (3.3), respectively.
Put f(t) = ts and g(t) = log t in Theorem 3.1. Then f ◦ g−1 is convex and
φs,t = f ◦ g−1 whenever r = 0 and s > 0. Therefore (4.5) and (4.6) follow easily
from (3.2) and (3.3), respectively.
Put f(t) = log t and g(t) = tr in Theorem 3.1. Then f ◦ g−1 is convex and
φs,t = f ◦ g−1 whenever r < 0 and s = 0. Therefore (4.7) and (4.8) follow easily
from (3.2) and (3.3), respectively. �

Theorem 4.2. Under the same hypothesis as in the previous theorem,
if 0 < r < s or r < 0 < s, then:
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(i)

0 ≤ M r − 〈Arx, x〉
M r −mr

ms +
〈Arx, x〉 −mr

M r −mr
M s − (Ms(A, x))s

≤ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ s

r

〈(M r1H − Ar)(Ar −mr1H)x, x〉
M r −mr

(M s−r −ms−r)

≤ s

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M r −mr
(M s−r −ms−r)

≤ s

4r
(M r −mr)(M s−r −ms−r)

(ii)

0 ≤ M r − 〈Arx, x〉
M r −mr

ms +
〈Arx, x〉 −mr

M r −mr
M s − (Ms(A, x))s

≤ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ s

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M r −mr
(M s−r −ms−r)

≤ s

4r
(M r −mr)(M s−r −ms−r).

If r < s < 0 then:

(i)

0 ≥ M r − 〈Arx, x〉
M r −mr

ms +
〈Arx, x〉 −mr

M r −mr
M s − (Ms(A, x))s

≥ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≥ s

r

〈(M r1H − Ar)(Ar −mr1H)x, x〉
M r −mr

(M s−r −ms−r)

≥ s

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M r −mr
(M s−r −ms−r)

≥ s

4r
(M r −mr)(M s−r −ms−r)
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(ii)

0 ≥ M r − 〈Arx, x〉
M r −mr

ms +
〈Arx, x〉 −mr

M r −mr
M s − (Ms(A, x))s

≥ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≥ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≥ s

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M r −mr
(M s−r −ms−r)

≥ s

4r
(M r −mr)(M s−r −ms−r).

If s = 0 and r < 0, then:

(i)

0 ≤ M r − 〈Arx, x〉
M r −mr

log m +
〈Arx, x〉 −mr

M r −mr
log M − log(M0(A, x))

≤ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ −1

r

〈(M r1H − Ar)(Ar −mr1H)x, x〉
M rmr

≤ −1

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M rmr

≤ 1

4r
(M r −mr)(M−r −m−r)

(ii)

0 ≤ M r − 〈Arx, x〉
M r −mr

log m +
〈Arx, x〉 −mr

M r −mr
log M − log(M0(A, x))

≤ 〈(M r1H − Ar)(Ar −mr1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ (M r − 〈Arx, x〉)(〈Arx, x〉 −mr) sup
t∈〈m,M〉

Ψφs,t(t
r; mr, M r)

≤ −1

r

(M r − 〈Arx, x〉)(〈Arx, x〉 −mr)

M rmr

≤ 1

4r
(M r −mr)(M−r −m−r).

If r = 0 and s > 0, then:
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(i)

0 ≤ log M − 〈log Ax, x〉
log M − log m

ms +
〈log Ax, x〉 − log m

log M − log m
M s − (Ms(A, x))s

≤ 〈(log M1H − log A)(log A− log m1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(log t; log m, log M)

≤ s
〈(log M1H − log A)(log A− log m1H)x, x〉

log M − log m
(M s −ms)

≤ s
(log M − 〈log Ax, x〉)(〈log Ax, x〉 − log m)

log M − log m
(M s −ms)

≤ s

4
(M s −ms) log

M

m

(ii)

0 ≤ log M − 〈log Ax, x〉
log M − log m

ms +
〈log Ax, x〉 − log m

log M − log m
M s − (Ms(A, x))s

≤ 〈(log M1H − log A)(log A− log m1H)x, x〉 sup
t∈〈m,M〉

Ψφs,t(log t; log m, log M)

≤ (log M − 〈log Ax, x〉)(〈log Ax, x〉 − log m) sup
t∈〈m,M〉

Ψφs,t(log t; log m, log M)

≤ s
(log M − 〈log Ax, x〉)(〈log Ax, x〉 − log m)

log M − log m
(M s −ms)

≤ s

4
(M s −ms) log

M

m
.

Proof. All the inequalities can be obtained directly from (3.4) and (3.5) by ap-
plying the same methods as in the proof of the previous theorem. �

Remark 4.3. The following inequalities are obtained directly from Theorem 4.2:

(M r −mr)(Ms(A, x))s − (M s −ms)(Mr(A, x))r ≤ M rms −mrM s

if 0 < r < s or r < 0 < s. In case r < s < 0, the inequality is reversed. Similarly,
for r = 0 we have:

(Ms(A, x))s log
M

m
− (M s −ms) log(M0(A, x)) ≤ ms log M −M s log m

Remark 4.4. It is easy to see that Mr(A, x) = (M−r(A, x))−1 holds for every
unit vector x ∈ H, selfadjoint operator A and r ∈ R. Using that result, we can
obtain analogue sequences of inequalities from Theorem 4.1 and Theorem 4.2 by
replacing A ↔ A−1, −r ↔ s and −s ↔ r.

Remark 4.5. For more results concerning quasi-arithmetic mean and power mean,
and order relations amongst them and arithmetic mean, see for instance [16] and
[17].

5. Improvements

In this section we will give improvements of Theorem 2.1 and Theorem 2.4. In
order to do so, we first need to state a result found in [9].
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Lemma 5.1. ([9]) Let f be a convex function on Df , x, y ∈ Df and p, q ∈ [0, 1]
such that p + q = 1. Then

min{p, q}
[
f(x) + f(y)− 2f

(x + y

2

)]
≤ pf(x) + qf(y)− f(px + qy) (5.1)

≤ max{p, q}
[
f(x) + f(y)− 2f

(x + y

2

)]
.

The following result is an improvement of Theorem 2.1.

Theorem 5.2. Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M ]
for some scalars m < M . If f is a continuous convex function on an interval of

real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is the interior of I and x ∈ H such

that ‖x‖ = 1, then

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉)
≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup

t∈〈m,M〉
Ψf (t; m, M)

−
(1

2
− 1

M −m
〈Ãx, x〉

)
δf

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)
f ′
−(M)− f ′

+(m)

M −m
−

(1

2
− 1

M −m
〈Ãx, x〉

)
δf

(5.2)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))−

(1

2
− 1

M −m
〈Ãx, x〉

)
δf .

We also have the inequalities

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉)

≤ 1

4
(M −m)2Ψf (〈Ax, x〉; m, M)−

(1

2
− 1

M −m
〈Ãx, x〉

)
δf

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))−

(1

2
− 1

M −m
〈Ãx, x〉

)
δf , (5.3)

where Ψf (·; m, M) : 〈m,M〉 → R is defined in (2.3) and

δf = f(m) + f(M)− 2f
(m + M

2

)
, Ã =

∣∣∣A− m + M

2
1H

∣∣∣. (5.4)

If f is concave, the inequalities are reversed.
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Proof. First we assume that f is convex. Let t ∈ [m, M ]. Since
t−m

M −m
,

M − t

M −m
∈

[0, 1] and
t−m

M −m
+

M − t

M −m
= 1, from (5.1) it follows that

f(t) = f
( M − t

M −m
m +

t−m

M −m
M

)
≤ M − t

M −m
f(m) +

t−m

M −m
f(M) (5.5)

−min
{ t−m

M −m
,

M − t

M −m

}[
f(m) + f(M)− 2f

(m + M

2

)]
=

Mf(m)−mf(M)

M −m
+

f(M)− f(m)

M −m
t−min

{ t−m

M −m
,

M − t

M −m

}
δf

=
Mf(m)−mf(M)

M −m
+

f(M)− f(m)

M −m
t−

(1

2
− 1

M −m

∣∣∣t− m + M

2

∣∣∣)δf

Due to property (1.2) we can replace t with the operator A in (5.5) and obtain:

f(A) ≤ Mf(m)−mf(M)

M −m
1H +

f(M)− f(m)

M −m
A

−
(1

2
1H − 1

M −m

∣∣∣A− m + M

2
1H

∣∣∣)δf (5.6)

Since scalar product is linear in the first argument, if we apply it on (5.6) for
x ∈ H such that ||x|| = 1 we get

〈f(A)x, x〉 ≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 − f(m)

M −m
f(M)

−
(1

2
− 1

M −m

〈∣∣∣A− m + M

2
1H

∣∣∣x, x
〉)

δf . (5.7)

The first inequality in (5.2) follows directly from the operator version of Jensen’s
inequality (1.3).
Now if we subtract f(〈Ax, x〉) from both sides of the inequality (5.7) we have

〈f(A)x, x〉 − f(〈Ax, x〉)

≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 −m

M −m
f(M)

− f(〈Ax, x〉)−
(1

2
− 1

M −m
〈Ãx, x〉

)
δf

=
(M − 〈Ax, x〉)(〈Ax, x〉 −m)

M −m

{f(M)− f(〈Ax, x〉)
M − 〈Ax, x〉

− f(〈Ax, x〉)− f(m)

〈Ax, x〉 −m

}
−

(1

2
− 1

M −m
〈Ãx, x〉

)
δf (5.8)

= (M − 〈Ax, x〉)(〈Ax, x〉 −m)Ψf (〈Ax, x〉; m,M)−
(1

2
− 1

M −m
〈Ãx, x〉

)
δf

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup
t∈〈m,M〉

Ψf (t; m, M)−
(1

2
− 1

M −m
〈Ãx, x〉

)
δf ,
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so we have proved the second inequality in (5.2).
In the proof of Theorem 2.1 we have shown that

sup
t∈〈m,M〉

Ψf (t; m, M) ≤
f ′
−(M)− f ′

+(m)

M −m
,

which in combination with (5.8) proves the third inequality in (5.2). To prove
the last inequality in (5.2), we notice that for every t ∈ [m, M ], the inequality
(M − t)(t−m)

M −m
≤ 1

4
(M − m) is valid. Since 〈Ax, x〉 ∈ [m, M ], we can replace

t ↔ 〈Ax, x〉 and the proof is completed.
The proof of the inequalities (5.3) is clear from the proof of the inequalities (5.2).
If f is concave, then −f is convex, so we can apply (5.2) and (5.3) to function
−f and obtain the reversed inequalities. �

Remark 5.3. The inequality (5.6) obtained in the proof of the previous theorem
is a known result (see for instance [14]), and the proof is given for the sake of
completeness.

Remark 5.4. In Theorem 5.2 with |A| is denoted the absolute value of a Hilbert

space operator A, that is, |A| = (A∗A)
1
2 , where A∗ stands for the adjoint operator

of A. Since A is a selfadjoint operator we have A∗ = A, so

Ã =
∣∣∣A− m + M

2
1H

∣∣∣ =
((

A− m + M

2
1H

)∗(
A− m + M

2
1H

)) 1
2

=
((

A− m + M

2
1H

)(
A− m + M

2
1H

)) 1
2

=
((

A− m + M

2
1H

)2) 1
2
.

Remark 5.5. From Sp(A) ⊆ [m, M ], that is m1H ≤ A ≤ M1H , we easily obtain

−M −m

2
1H ≤ A− m + M

2
1H ≤ M −m

2
,

which is ((
A− m + M

2
1H

)2) 1
2 ≤ M −m

2
,

so we have Ã ≤ M −m

2
, and therefore 〈Ãx, x〉 ≤ M −m

2
for any x ∈ H such

that ||x|| = 1. Now,

1

2
− 1

M −m
〈Ãx, x〉 ≥ 1

2
− 1

M −m

M −m

2
= 0.

Since for a convex function f we have

δf = f(m) + f(M)− 2f
(m + M

2

)
≥ 0,

the following inequality is valid(1

2
− 1

M −m
〈Ãx, x〉

)
δf ≥ 0. (5.9)
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Remark 5.6. Due to inequality (5.9), one can see that under the assumptions
from the previous theorem, the inequality (5.7) which we state again

〈f(A)x, x〉 ≤ M − 〈Ax, x〉
M −m

f(m) +
〈Ax, x〉 − f(m)

M −m
f(M)

−
(1

2
− 1

M −m

〈∣∣∣A− m + M

2
1H

∣∣∣x, x
〉)

δf

is an improvement of the scalar Lah–Ribarič inequality for selfadjoint operators
(1.5). We can see as well that Theorem 5.2 is really an improvement of Theorem
2.1 obtained in Section 2.

Our next result gives us an improvement of the lower bound from Theorem 2.4
and it is proved in a similar way as the previous theorem by using inequalities
(5.7), (5.9) and the operator version of Jensen’s inequality (1.3).

Theorem 5.7. Let the assumptions of Theorem 5.2 hold. If f is a continuous

convex function on an interval of real numbers I such that [m, M ] ⊂
◦
I, where

◦
I is

the interior of I and x ∈ H such that ‖x‖ = 1, then the following inequalities are
valid

(i)

0 ≤
(1

2
− 1

M −m
〈Ãx, x〉

)
δf

≤ 〈Ax, x〉 −m

M −m
f(M) +

M − 〈Ax, x〉
M −m

f(m)− 〈f(A)x, x〉

≤ 〈(M1H − A)(A−m1H)x, x〉 sup
t∈〈m,M〉

Ψf (t; m,M)

≤ 〈(M1H − A)(A−m1H)x, x〉
f ′
−(M)− f ′

+(m)

M −m
(5.10)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)
f ′
−(M)− f ′

+(m)

M −m

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))

(ii)

0 ≤
(1

2
− 1

M −m
〈Ãx, x〉

)
δf

≤ 〈Ax, x〉 −m

M −m
f(M) +

M − 〈Ax, x〉
M −m

f(m)− 〈f(A)x, x〉

≤ 〈(M1H − A)(A−m1H)x, x〉 sup
t∈〈m,M〉

Ψf (t; m,M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m) sup
t∈〈m,M〉

Ψf (t; m,M)

≤ (M − 〈Ax, x〉)(〈Ax, x〉 −m)
f ′
−(M)− f ′

+(m)

M −m
(5.11)

≤ 1

4
(M −m)(f ′

−(M)− f ′
+(m))
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where Ψf (·; m, M) : 〈m, M〉 → R is defined in (2.3) and Ã and δf are defined in
(5.4). If f is concave, the inequalities are reversed.

Remark 5.8. One can see that by subtracting
(1

2
− 1

M −m
〈Ãx, x〉

)
δf from all of

the inequalities in (5.10) and (5.11) we can obtain an estimate for the difference
between left and right side in inequality (5.7).

Theorem 5.2 and Theorem 5.7 can be applied to quasi-arithmetic means and
power means in an analogous way as we did with Theorem 2.1 and Theorem 2.4.
In that way we can get improvements of the results obtained in Sections 3 and 4.
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