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Abstract. The operator-product ABA appears in many mathematical con-
texts, such as in algebraic Riccati equation, in operator entropy and in operator-
mean theory. The purpose of the present paper is to investigate a reasonable
analogue of ABA when the positive linear operators A and B are convex func-
tionals. As consequence, the square of a convex functional extending A2 is
provided as well.

1. Introduction

For over the last years, an enormous amount of effort by some authors has
been devoted to understand the extension of various operator concepts when
the involved operators are replaced by convex functionals. For instance, some
operator means, the operator inverse A 7−→ A−1, the operator logarithm A 7−→
log A, the power operator A 7−→ Am (−1 < m < 1), the (Tsallis) operator
entropy and the shorted operator have been extended from the case that the
variables are positive linear operators to the case that the variables are convex
functionals, see [1, 2, 3, 4, 6] and the related references cited therein. The above
extensions were investigated in the sense that, if A 7−→ φ(A) is a map between
positive operators then its extension f 7−→ Φ(f) for convex functionals satisfies

Φ(fA) = fφ(A), (1.1)
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where fA denotes the quadratic convex functional generated by the positive op-
erator A acting on a Hilbert space H, i.e. fA(u) = (1/2)〈Au, u〉 for every u ∈ H.
Further, throughout the study of the above functional extensions it could be ob-
served that the involved topology, used in the related topological properties, is
that of point-wise convergence, i.e.

fn −→ f if and only if fn(u) −→ f(u) for all u ∈ H,

while the used topology for the operator version is the quadratical topology, i.e.

An −→ A if and only if 〈Anu, u〉 −→ 〈Au, u〉 for all u ∈ H.

As well-known, if an operator sequence (An) is such that An ≥ A for all n then,
(An)n converges to A in norm if and only if (An) converges quadratically to A.

However, as far as we know, extensions of A 7−→ Am for m > 1 as well as
that of A 7−→ exp A, from operators to convex functionals, are not done yet. In
particular, a reasonable analogue of A 7−→ A1/2 from positive operator to convex
functional is well-known [1] while that of A 7−→ A2 is not yet. Recall that, for
positive operator A, the operator map A 7−→ A2 satisfies the following properties:
(o1) the real-valued function u 7−→ qA(u) := (1/2)〈Au, u〉 is convex,
(o2) the map A 7−→ A2 is operator convex,
(o3) the map A 7−→ A2 is not operator monotone: A ≤ B does not ensure
A2 ≤ B2, in general.

To extend A 7−→ A2 from positive operator to convex functional, we then
search a functional map i.e. map involving functional arguments, denoted by
f 7−→ f [2], that satisfies the operator-functional connection, i.e.
(of) the functional-valued map f 7−→ f [2] is really an extension of A 7−→ A2 via
(1.1), with the next requirements:
(f1) the (extended) real-valued map u 7−→ f [2](u) is convex,
(f2) the functional-valued map f 7−→ f [2] is point-wisely convex,
(f3) the functional-valued map f 7−→ f [2] is in general not point-wisely monotone.

The fundamental goal of this paper is to give an affirmative answer to the
above problem: we give an analogue of ABA when the operator variables A
and B are replaced by two convex functionals f and g, respectively. As already
pointed before, if this functional extension is denoted by Λ(f, g) we should have
the connection-relation Λ

(
fA, fB

)
= fABA, where fA is as above.

2. Basic notions

In this section, we state some basic notions that will be needed throughout
this paper. Let H be a real or complex Hilbert space with the inner product 〈., .〉
and its associated norm ‖.‖. The (extended) space of all functions defined from

H into R̃ := R ∪ {∞} not identically equal to ∞ will be denoted here by R̃H .
This (extended) space will be endowed with the point-wise order defined by: if

f1, f2 ∈ R̃H we write f1 ≤ f2 if and only if f1(u) ≤ f2(u) for all u ∈ H, with the
convention x ≤ ∞ for all x ∈ R ∪ {∞}.
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For a given f ∈ R̃H , the Legendre-Fenchel conjugate of f is the function f ∗

defined by, [6]

∀u∗ ∈ H f ∗(u∗) = sup
u∈H

{
Re〈u, u∗〉 − f(u)

}
, (2.1)

and its effective domain is dom f = {u ∈ H, f(u) < ∞}. Obviously, f ∗(0) =
− inf{f(u), u ∈ H} and if f1 ≤ f2 then f ∗2 ≤ f ∗1 . The following

∀u, u∗ ∈ H Re〈u, u∗〉 ≤ f(u) + f ∗(u∗)

is well-known as the Fenchel inequality in convex analysis.
We denote by σ(u) = 1

2
‖u‖2 the unique self-conjugate function defined on H.

The set of all convex (resp. convex and lower semi-continuous) functions defined

from H into R̃ not identically equal to ∞ is usually denoted by Conv(H) (resp.
Γ◦(H)). It is well-known that if f ∈ Conv(H) then f ∗ ∈ Γ◦(H) and, f ∈ Γ◦(H)
if and only if f ∗∗ := (f ∗)∗ = f .

The sub-differential of f at u ∈ H is the (possibly empty) convex closed subset
of H defined through

∂f(u) =
{

u∗ ∈ H; ∀v ∈ H f(v) ≥ f(u) + Re〈v − u, u∗〉
}

.

It is well-known that u∗ ∈ ∂f(u) if and only if f(u) + f ∗(u∗) = Re〈u, u∗〉 and, if
f ∈ Γ◦(H), u∗ ∈ ∂f(u) if and only if u ∈ ∂f ∗(u∗).

For more details about the above notions in the case of real Hilbert, we refer
the reader to [5, 7] for instance. The complex case can be stated in a similar
manner.

For f : H −→ R̃ and u, v ∈ H, we set

[u, v]f = lim
t↓0+

f(u + t.v)− f(u)

t
, (2.2)

provided that this limit exists in [−∞,∞]. In this case, [u, v]f which is nothing
other than the directional derivative of f is the real-part of the so-called semi-
inner product (or generalized inner product) of u and v, with respect to f , defined
through

∀u, v ∈ H 〈u, v〉f = [u, v]f + i[u, iv]f .

If f(u) = σ(u), the unique self-conjugate function, then 〈u, v〉f coincides with
〈u, v〉 the initial inner product of H, so justifying the terminology of generalized
inner product.

An interesting situation is that where the functional f is convex, [7]. In this
case, for fixed u, v ∈ H, the function θ : t 7−→ f(u + t.v) is convex and conse-
quently the derivative θ

′
(0) = [u, v]f exists. In addition, the map

]0,∞[3 t 7−→ f(u + t.v)− f(u)

t

is monotonically decreasing and so, for f ∈ Conv(H), we have

[u, v]f := lim
t↓0+

f(u + t.v)− f(u)

t
= inf

t>0

f(u + t.v)− f(u)

t
.

The next example is of interest in the following.
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Example 2.1. Let A be a (self-adjoint) positive invertible operator from H into
itself and take fA(u) = 1

2
〈Au, u〉 for every u ∈ H.

(i) It is well-known that f ∗A(u∗) = 1
2
〈A−1u∗, u∗〉 for each u∗ ∈ H. We simply

write f ∗A = fA−1 . Otherwise, simple manipulation leads to ∂fA(u) = {Au} for all
u ∈ H.
(ii) We can easily verify that [u, v]fA

= Re〈Au, v〉 for all u, v ∈ H. In particular,
[u, v]σ = Re〈u, v〉. Remark that fI = σ, where I is the identity operator of H.

This example justifies again the terminology of generalized inner product with
respect to f .

We end this section by stating the following result which will be needed later.

Proposition 2.2. Let f ∈ Conv(H) and u ∈ H be fixed. Then the next assertions
hold true.
(i) The map φf

u : v 7−→ [u, v]f is convex.
(ii) The conjugate of φf

u is given by

∀v∗ ∈ H
(
φf

u

)∗
(v∗) = Ψ∂f(u)(v

∗),

where, for a subset E of H, ΨE refers to the indicator function of E defined by
ΨE(u) = 0 if u ∈ E and Ψ(u) = ∞ else.

Proof. (i) Since f is convex and v 7−→ u + tv is linear affine with respect to v
then v 7−→ f(u + tv) is convex. It follows that

H 3 v 7−→ f(u + tv)− f(u)

t
,

is convex and so is v 7−→ [u, v]f as simple limit of a family of convex functionals.
ii) For the case of real Hilbert, see [5]. The complex case may be stated in a
similar manner. Detail is omitted here for the reader. �

We notice that the above assertion (i) is among the interesting properties of the
generalized inner product and extends the (anti) linearity of the inner product
with respect to its second variable.

3. On a convex functional transformation

As already pointed before, the aim of this section is to give an extension of
ABA when the operator variables A and B are convex functionals. We preserve
the same notations as previous and we start by stating the following definition.

Definition 3.1. Let f ∈ Conv(H) and g ∈ ĨR
H

. We put

∀v ∈ H Λ(f, g)(v) := sup
u∈H

{
[u, v]f − g(u)

}
. (3.1)

In particular, we set

∀v ∈ H f [2](v) := Λ(f, σ)(v) = sup
u∈H

{
[u, v]f − σ(u)

}
, (3.2)

which will be called the convex square of f .
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The elementary properties of the above functional transformation are stated in
the following result.

Proposition 3.2. Let f ∈ Conv(H) and g ∈ ĨR
H
. Then the next assertions hold:

(i) Λ(σ, g) = g∗, (extension of Legendre-Fenchel conjugacy).
(ii) For all u, v ∈ H one has

[u, v]f ≤ Λ(f, g)(v) + g(u), (extension of Fenchel inequality).

(iii) inf{g(u), u ∈ dom f} = −Λ(f, g)(0), (characterization of the infimum).

(iv) Let g1, g2 ∈ ĨR
H
. Then

g1 ≤ g2 =⇒ Λ(f, g1) ≥ Λ(f, g2), (point-wise monotonicity).

(v) For all α > 0 we have

Λ(α.f, α.g) = α.Λ(f, g), (joint-homogeneity).

(vi) The function v 7−→ Λ(f, g)(v) is convex. That is, for given f ∈ Conv(H),
Λ(f, .) is a map from Conv(H) into itself. In particular, v 7−→ f [2](v) is convex.

Proof. (i) Follows from (3.1) with (2.1) and Example 2.1,(ii).
(ii),(iii),(iv) and (v) are immediate from (3.1) with some convenient manipula-
tions. Detail is simple and omitted here.
(vi) Following Proposition 2.2, the function v 7−→ [u, v]f is convex and so is
v 7−→ [u, v]f − f(u), for fixed u ∈ H. It follows that v 7−→ Λ(f, g)(v) is convex
as upper hull of a family of convex functionals. The proof of the proposition is
completed. �

Now, we are in position to state the most interesting result recited as follows.

Theorem 3.3. The map (f, g) 7−→ Λ(f, g) is point-wisely convex upon its func-
tional variables f and g. That is,
(1) Let f ∈ Conv(H) be fixed. Then the map g 7−→ Λ(f, g) is point-wise convex:

for all g1, g2 ∈ ĨR
H

and λ ∈]0, 1[ one has

Λ
(
f, (1− λ).g1 + λ.g2

)
≤ (1− λ).Λ(f, g1) + λ.Λ(f, g2).

(2) Let g ∈ ĨR be fixed. Then the mapping f 7−→ Λ(f, g) is point-wise convex: for
all f1, f2 ∈ Conv(H) and λ ∈]0, 1[ we have

Λ
(
(1− λ).f1 + λ.f2, g

)
≤ (1− λ).Λ(f1, g) + λ.Λ(f2, g).

Proof. (1) It is clear that

[u, v]f −
(
(1− λ).g1 + λ.g2

)
(u) = (1− λ).

(
[u, v]f − g1(u)

)
+ λ.

(
[u, v]f − g2(u)

)
.

By (3.1), with the sub-additivity and the positive homogeneity of the ”supre-
mum”, we obtain the desired inequality.
(2) By (2.2), it is easy to see that

[u, v](1−λ).f1+λ.f2 = (1− λ).[u, v]f1 + λ.[u, v]f2 .

By the same arguments as above, we deduce the desired result. The proof of the
theorem is completed. �



240 M. RAÏSSOULI

Theorem 3.4. The map (f, g) 7−→ Λ(f, g) is jointly super-additive and jointly

point-wise convex. That is, for all f1, f2 ∈ Conv(H), g1, g2 ∈ ĨR
H

and λ ∈]0, 1[
there hold

Λ(f1 + f2, g1 + g2) ≤ Λ(f1, g1) + Λ(f2, g2),

Λ
(
(1− λ).f1 + λ.f2, (1− λ).g1 + λ.g2

)
≤ (1− λ).Λ(f1, g1) + λ.Λ(f2, g2).

Proof. We have

[u, v]f1+f2 −
(
g1 + g2

)
(u) =

(
[u, v]f1 − g1(u)

)
+

(
[u, v]f2 − g2(u)

)
,

from which the joint sub-additivity of (f, g) 7−→ Λ(f, g) follows in a similar man-
ner as previous. This, when combined with the joint-homogeneity (Proposition
3.2,(v)), yields the joint point-wise convexity of (f, g) 7−→ Λ(f, g). The proof is
complete. �

Corollary 3.5. The following assertions hold true:
(i) Let f ∈ Conv(H). For all u, v ∈ H one has

[u, v]f ≤ σ(u) + f [2](v)

(ii) Let f ∈ Conv(H). The functional v 7−→ f [2](v) is convex:

∀λ ∈]0, 1[ ∀u, v ∈ H, f [2]
(
(1− λ)u + λv

)
≤ (1− λ).f [2](u) + λ.f [2](v).

(iii) The map f 7−→ f [2] is point-wise convex, that is, the inequality(
(1− λ).f1 + λ.f2

)[2]

≤ (1− λ).f
[2]
1 + λ.f

[2]
2

holds for all λ ∈]0, 1[ and f1, f2 ∈ Conv(H).

Proof. (i) Comes from (3.2) with Proposition 3.2,(ii).
(ii) Follows from Proposition 3.2,(vi), with (3.2).
(iii) It is immediate from Theorem 3.4,(2) with (3.2). �

Now, we will state a result which justifies that the above functional transfor-
mation is really an extension of ABA for convex functionals.

Theorem 3.6. Let f = fA and g = fB, where A and B are two (self-adjoint)
positive operators from H into itself. Assume that further B is invertible. Then
we have

Λ
(
fA, fB

)
= fC , with C = AB−1A.

In particular,
Λ

(
fA, σ

)
= fA2 .

Proof. By definition, with Example 2.1, we have

Λ
(
fA, fB

)
(v) = sup

u∈H

{
[u, v]fA

− fB(u)
}

= sup
u∈H

{
Re〈Au, v〉 − 1

2
〈Bu, u〉

}
= sup

u∈H

{
− 1

2
‖B1/2u−B−1/2Av‖2 +

1

2
‖B−1/2Av‖2

}
≤ 1

2
‖B−1/2Av‖2.
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Further, this latter side is attained for u = B−1Av and so we have

Λ
(
fA, fB

)
(v) =

1

2
‖B−1/2Av‖2 =

1

2
〈B−1/2Av, B−1/2Av〉

=
1

2
〈AB−1Av, v〉 = fAB−1A(v).

The proof of the theorem is complete. �

It is worth mentioning that, all the above results have been proved in a fast
and simple way. This because the above transformation (f, g) 7−→ Λ(f, g) has a
convex character. Some properties of operators can be immediately deduced by
using the present functional approach. The following example explains this latter
situation.

Example 3.7. Let A and B be as above. Combining Theorem 3.3, Theorem
3.4 and Theorem 3.6 we immediately deduce that the map (A, B) 7−→ AB−1A
is operator convex in A, in B and jointly in A and B. In particular, the maps
A 7−→ A−1 and A 7−→ A2 are operator convex.

The following result, concerning the conjugate of the map v 7−→ Λ(f, g)(v), is
of interest.

Theorem 3.8. Let f ∈ Γ◦(H) and g ∈ ĨR
H
. Then the following inequality holds

∀v∗ ∈ H
(
Λ(f, g)

)∗
(v∗) ≤ inf

{
g(u), u ∈ ∂f ∗(v∗)

}
. (3.3)

Proof. By Proposition 3.2,(i), we have for all u, v ∈ H,

Λ(f, g)(v) ≥ [u, v]f − g(u).

Taking the conjugates of the two sides, with respect to v, we deduce with help of
Proposition 2.2,(ii)

∀v∗ ∈ H
(
Λ(f, g)

)∗
(v∗) ≤ Ψ∂f(u)(v

∗) + g(u).

As pointed before, v∗ ∈ ∂f(u) if and only if u ∈ ∂f ∗(v∗) and the desired inequality
follows after a simple manipulation. �

Remark 3.9. With the assumptions of the above theorem, let v∗ ∈ H be such
that ∂f ∗(v∗) is nonempty. If moreover f ∈ Γ◦(H) then the ”inf” in the second
member of (3.3) is attained, since ∂f ∗(v∗) is weakly compact and g is weakly
lower semi-continuous.

Finally, the next corollary may be stated.

Corollary 3.10. Let f ∈ Γ◦(H). Then there holds

∀v∗ ∈ H
(
f [2]

)∗
(v∗) ≤ 1

2
d2

(
0, ∂f ∗(v∗)

)
,

where, for E ⊂ H, the notation d(0, E) refers to the distance from 0 to E:
d(0, E) := infu∈E ‖u‖ with the convention d(0, ∅) = ∞.
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Proof. By (3.3) we have(
f [2]

)∗
(v∗) ≤ inf

{
σ(u), u ∈ ∂f ∗(v∗)

}
=

1

2

(
inf

{
‖u‖, u ∈ ∂f ∗(v∗)

})2

,

from which the desired inequality follows. �
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