

Banach J. Math. Anal. 9 (2015), no. 1, 67–74 http://doi.org/10.15352/bjma/09-1-6 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

INEQUALITIES FOR INTERPOLATION FUNCTIONS

DINH TRUNG HOA 1* AND HIROYUKI OSAKA 2

Communicated by M. Fujii

ABSTRACT. In this paper, in relation with interpolation functions we study some generalized Powers-Størmer's type inequalities and monotonicity inequality of indefinite type which generalizes a result of Ando.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, M_n stands for the algebra of all $n \times n$ matrices. Denote by M_n^+ the set of all positive semi-definite matrices. A continuous function f on $I (\subset \mathbb{R})$ is called *matrix convex of order* n (or *n*-convex) if the inequality

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B)$$

holds for all self-adjoint matrices $A, B \in M_n$ with $\sigma(A), \sigma(B) \subset I$ and for all $\lambda \in [0, 1]$, where $\sigma(A)$ stands for the spectrum of A. Also, f is called a *n*-concave on I if -f is *n*-convex on I.

A continuous function f on I is called *matrix monotone of order* n or *n*-monotone, if

$$A \le B \implies f(A) \le f(B)$$

for any pair of self-adjoint matrices $A, B \in M_n$ with $\sigma(A), \sigma(B) \subset I$. We call a function f operator convex (resp. operator concave) if f is k-convex (resp. k-concave) for any $k \in \mathbb{N}$, and operator monotone if f is k-monotone for any $k \in \mathbb{N}$.

Date: Received: Feb. 12, 2014; Accepted: Mar. 24, 2014.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L30; Secondary 15A45, 47A63.

Key words and phrases. interpolation functions, operator monotone functions, traces, spaces with indefinite inner product, monotonicity inequality of indefinite type.

A function $f : \mathbb{R}_+ \to \mathbb{R}_+$ (where $\mathbb{R}_+ = (0, \infty)$) is called an *interpolation function* of order n if for any $T, A \in M_n$ with A > 0 and $T^*T \leq 1$,

$$T^*AT \le A \implies T^*f(A)T \le f(A).$$

We denote by \mathcal{C}_n the class of all interpolation functions of order n.

Let $\mathcal{P}(\mathbb{R}_+)$ be the set of all Pick functions on \mathbb{R}_+ , and \mathcal{P}' the set of all positive Pick functions on \mathbb{R}_+ , i.e., functions of the form

$$h(s) = \int_{[0,\infty]} \frac{(1+t)s}{s+t} d\rho(t), \quad s > 0,$$

where ρ is some positive Radon measure on $[0, \infty]$.

Denote by \mathcal{P}'_n the set of all strictly positive *n*-monotone functions on $(0, \infty)$. Let us recall a well-known characterization of functions in \mathcal{C}_n that actually is due to Ameur [1] and Ameur, Kaijser, and Sergei [2] (see also [8]).

Theorem 1.1. ([2, Corollary 2.4]) A function $f : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to \mathcal{C}_n if and only if for every n-set $\{\lambda_i\}_{i=1}^n \subset \mathbb{R}_+$ there exists a function h from \mathcal{P}' such that $f(\lambda_i) = h(\lambda_i)$ for i = 1, ..., n.

Corollary 1.2. Let A be a positive definite matrix in M_n and $f \in C_n$. Then there exists a positive Radon measure ρ on $[0, \infty]$ such that

$$f(A) = \int_{[0,\infty]} A(1+s)(A+s)^{-1} d\rho(s).$$

Remark 1.3.

(i)
$$\mathcal{P}' = \bigcap_{n=1}^{\infty} \mathcal{P}'_n$$
 [13], $\mathcal{P}' = \bigcap_{n=1}^{\infty} \mathcal{C}_n$ [7];
(ii) $\mathcal{C}_{n+1} \subseteq \mathcal{C}_n$;
(iii) $\mathcal{P}'_{n+1} \subseteq \mathcal{C}_{2n+1} \subseteq \mathcal{C}_{2n} \subseteq \mathcal{P}'_n$, $\mathcal{P}'_n \subsetneq \mathcal{C}_n$ [2];
(iv) $\mathcal{C}_{2n} \subsetneq \mathcal{P}'_n$ [14];
(v) $\mathcal{C}_n \circ \mathcal{C}_n \subset \mathcal{C}_n$;
(vi) A function $f : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to \mathcal{C}_n if and only if $\frac{t}{f(t)}$ belongs to \mathcal{C}_n

It is not known whether $\mathcal{P}'_{n+1} \subsetneq \mathcal{C}_{2n+1}$ or not.

In this paper, we consider some inequalities with interpolation functions. More precisely, in Section 2, we extend Petz's trace inequality [15, Theorem 11.18] (Theorem 2.1) to the class of interpolation functions and give a new trace inequality (Theorem 2.5) which might play an important role in the quantum information theory. Moreover, in Section 3 we extend an Ando's monotonicity inequality of indefinite type. We show that for $f \in C_{2n}$ and any pair of *J*-selfadjoint matrices $A, B \in M_n$ such that $\sigma(A), \sigma(B) \subset (0, \infty)$,

$$A \leq^J B \implies f(A) \leq^J f(B),$$

where J is a selfadjoint involution and $A \leq^{J} B$ means that $JA^{*}J = A$, $JB^{*}J = B$, and $JA \leq JB$.

Theorem 1.4. Let $f \in C_{2n}$. For positive definite matrices K and L in M_n , let Q the projection onto the range of $(K - L)_+$. We have, then,

$$\operatorname{Tr}(QL(f(K) - f(L))) \ge 0. \tag{1.1}$$

Proof. Let $\{\lambda_i\}_{i=1}^n$ and $\{\mu_i\}_{i=1}^n$ be sets of eigenvalues of K and L, respectively. Then by Theorem 1.1 there exists an interpolation function $h \in \mathcal{P}'$ such that $f(\lambda) = h(\lambda)$ for $\lambda \in \{\lambda_i\}_{i=1}^n \cup \{\mu_i\}_{i=1}^n$. By Corollary 1.2 there is some positive Radon measure ρ on $[0, \infty]$ such that

$$\begin{split} f(K) - f(L) &= \int_{[0,\infty]} K(1+s)(K+s)^{-1} d\rho(s) - \int_{[0,\infty]} L(1+s)(L+s)^{-1} d\rho(s) \\ &= \int_{[0,\infty]} [(1+s)(K+s)^{-1}K - L(1+s)(L+s)^{-1}] d\rho(s) \\ &= \int_{[0,\infty]} (1+s)s(K+s)^{-1}(K-L)(L+s)^{-1} d\rho(s). \end{split}$$

Hence

$$\operatorname{Tr}(QL(f(K) - f(L))) = \int_{[0,\infty]} (1+s)s \operatorname{Tr}(QL(K+s)^{-1}(K-L)(L+s)^{-1})d\rho(s)$$

Repeat the same steps in [15, Theorem 11.18], we get the conclusion.

Corollary 1.5. Let $f \in \mathcal{P}'_{n+1}$. For positive definite matrices K and L in M_n , let Q be the projection onto the range of $(K - L)_+$. We have, then,

$$\operatorname{Tr}(QL(f(K) - f(L))) \ge 0.$$

Proof. It is suffices to mention that $\mathcal{P}'_{n+1} \subset \mathcal{C}_{2n}$ by Remark 1.3. The conclusion follows from Theorem 1.4.

Using Theorem 1.4 we get a generalized Powers-Størmer's type inequality. Another generalization of Powers-Størmer inequality can be found in [12]. We need the following lemmas.

Lemma 1.6. Let $h: (0, \infty) \to (0, \infty)$ be a function such that the function th(t) is operator monotone. Then the inverse of $\frac{t}{h(t)}$ is operator monotone.

Proof. Since th(t) is operator monotone, the function $\frac{1}{h(t)} = \frac{t}{th(t)}$ is operator monotone by [11, Corollary 2.6]. Hence the inverse of $t\frac{1}{h(t)}$ is operator monotone from by [3, Lemma 5].

Lemma 1.7. Let f be a function from $(0, \infty)$ into itself such that $tf(t) \in C_{2n}$. Then the inverse of $g(t) = \frac{t}{f(t)}$ (t > 0) belongs to $C_{2n}|_{g((0,\infty))}$.

Proof. Indeed, for any set $T \subset g((0,\infty))$ with |T| = 2n we can write $T = \{g(t_1), g(t_2), \dots, g(t_{2n})\},\$ where $t_i \in (0, \infty)$ for $1 \leq i \leq 2n$. Since $tf(t) \in \mathcal{C}_{2n}$, there is an interpolation map $k_T \in \mathcal{P}'$ such that $t_i f(t_i) = k_T(t_i)$ for $1 \leq i \leq 2n$. Then we have

$$g(t_i) = \frac{t_i}{f(t_i)} = t_i \frac{t_i}{k_T(t_i)} \quad (1 \le i \le 2n).$$

Consequently,

$$g^{-1}(g(t_i)) = t_i = \left(\frac{t^2}{k_T(t)}\right)^{-1}(g(t_i)) \quad (1 \le i \le 2n).$$
 (1.2)

From the above argument, it is clear that $(\frac{t^2}{k_T(t)})^{-1}$ is operator monotone. From (1.2) we conclude that the inverse g^{-1} of g belongs to $C_{2n}|_{g((0,\infty))}$.

The main theorem of this section is as follows.

Theorem 1.8. Let f be a function from $(0, \infty)$ into itself such that $tf(t) \in C_{2n}$. Then for any pair of positive definite matrices $A, B \in M_n$,

$$\operatorname{Tr}(A^{2}) + \operatorname{Tr}(B^{2}) - \operatorname{Tr}(|A^{2} - B^{2}|) \leq 2\operatorname{Tr}(Af(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}), \quad (1.3)$$

where $g(t) = \frac{t}{f(t)}, t \in (0, \infty).$

Proof. Let A, B be positive definite matrices and e(t) = tf(t) for $t \in (0, \infty)$. Let Q be the projection on the range of $(g(A) - g(B))_+$ and L = g(B).

Let S be the set of eigenvalues of g(A) and g(B). Since $e \in C_{2n}$, there is an interpolation map $h \in \mathcal{P}'$ such that $e(\lambda) = h(\lambda)$ for $\lambda \in S$. Since t(h(t)/t) = h(t) is operator monotone, the inverse of $t^2/h(t)$ is operator monotone by Lemma 1.6. By Lemma 1.7 the inverse of g belongs to $C_{2n}|_{g((0,\infty))}$. Consequently, $e \circ g^{-1} \in C_{2n}|_{g((0,\infty))}$ by Remark 1.3(v).

Apply Theorem 1.4 for the function $e \circ g^{-1}$, we get

$$0 \leq \operatorname{Tr}(Qg(B)((e \circ g^{-1})(g(A)) - (e \circ g^{-1})(g(B))))$$

= $\operatorname{Tr}(Qg(B)(Af(A) - Bf(B)))$
= $\operatorname{Tr}(Qg(B)Af(A)) - \operatorname{Tr}(QB^2).$

On the contrary,

$$\operatorname{Tr}(Q(A^{2} - B^{2})) - \operatorname{Tr}(Af(A)Q(g(A) - g(B)))$$

= $\operatorname{Tr}(QA^{2}) - \operatorname{Tr}(QB^{2}) - \operatorname{Tr}(Af(A)Qg(A)) + \operatorname{Tr}(Af(A)Qg(B))$ (1.4)
= $\operatorname{Tr}(Qg(B)Af(A)) - \operatorname{Tr}(QB^{2}) \ge 0.$

Hence we have

$$\operatorname{Tr}(Af(A)Q(g(A) - g(B))) \le \operatorname{Tr}(Q(A^2 - B^2)) \le \operatorname{Tr}((A^2 - B^2)_+).$$
 (1.5)

Therefore, from (1.4) and (1.5) we have

$$\begin{aligned} \operatorname{Tr}(Af(A)(g(A) - g(B))) &\leq \operatorname{Tr}(Af(A)(g(A) - g(B))_{+}) \\ &= \operatorname{Tr}(Af(A)Q(g(A) - g(B))) \\ &\leq \operatorname{Tr}((A^{2} - B^{2})_{+}) \\ &= \frac{1}{2}\operatorname{Tr}((A^{2} - B^{2}) + |A^{2} - B^{2}|), \end{aligned}$$

and

$$\operatorname{Tr}(A^2 + B^2 - |A^2 - B^2|) \le 2 \operatorname{Tr}(Af(A)g(B)).$$

Corollary 1.9. Let f be a function from $(0, \infty)$ into itself such that $tf(t) \in \mathcal{P}'_{n+1}$. Then for any pair of positive definite matrices $A, B \in M_n$,

$$\operatorname{Tr}(A^{2}) + \operatorname{Tr}(B^{2}) - \operatorname{Tr}(|A^{2} - B^{2}|) \leq 2\operatorname{Tr}(Af(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$

where $g(t) = \frac{t}{f(t)}$ for $t \in (0, \infty)$.

Corollary 1.10 ([5]). Let A, B be positive definite matrices, then for all $0 \le s \le 1$

$$\operatorname{Tr}(A + B - |A - B|) \le 2\operatorname{Tr}(A^{1-s}B^s).$$

Proof. By adding $\varepsilon > 0$ to A and B, we may assume that A and B are positive invertible matrices.

Firstly, we consider the case $s \in [\frac{1}{2}, 1]$. Let $f(t) = t^{1-2s}$. Then $tf(t) = t^{2-2s}$ is operator monotone on $(0, \infty)$. Substitute $X = A^{\frac{1}{2}}$ and $Y = B^{\frac{1}{2}}$ into the inequality (1.3) in Theorem 1.8, we get

$$\operatorname{Tr}(A + B - |A - B|) \le 2\operatorname{Tr}(A^{1-s}B^s).$$

The remaining case $0 \le s \le \frac{1}{2}$ obviously follows by interchanging the roles of A and B.

Remark 1.11. In Lemma 1.6 and Lemma 1.7 operator monotonicity and C_{2n} property of inverse functions were considered. There exists counterexample that the inverse of a *n*-matrix function may not be *n*-matrix. Indeed, it is well-known that $f_s(t) = t^s (0 \le s \le 1)$ is operator monotone, but the inverse $f_s^{-1}(t) = t^{1/s}$ of f_s is not 2-monotone. A similar picture for C_n -functions is still not clear.

Inequality (1.3) in Theorem 1.8 is different to generalized Powers-Srørmer inequality in [12]. The proof of (1.3) is based on the fact that $(tf) \circ g^{-1} \in \mathcal{C}_{2n}|_{g((0,\infty))}$. If we have the condition $f \circ g^{-1} \in \mathcal{C}_{2n}|_{g((0,\infty))}$, then by similar arguments above we can get the generalized Powers-Størmer inequality as in [12]. More precisely, we have the following theorem.

Theorem 1.12. Let f be a function in C_{2n} such that $f \circ g^{-1} \in C_{2n}|_{(g(0,\infty))}$, where $g(t) = \frac{t}{f(t)}$, $t \in (0,\infty)$. Then for any pair of positive definite matrices $A, B \in M_n$,

$$\operatorname{Tr}(A) + \operatorname{Tr}(B) - \operatorname{Tr}(|A - B|) \le 2 \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}).$$

Since the proof of this theorem is done by the same steps in Theorem 1.8, the detail is left to reader.

2. MATRIX MONOTONICITY INEQUALITY OF INDEFINITE TYPE

Let $J \ (\neq I_n - \text{unit in } M_n)$ be a selfadjoint involution different to identity, that means, $J = J^*, J^2 = I_n$. For a matrix A its J-adjoint A^{\sharp} is defined as follows: $A^{\sharp} = JA^*J$. A matrix A is said to be J-selfadjoint if $A = A^{\sharp}$, or, $JA = A^*J$. For a pair of J-selfadjoint matrices A, B, we define an indefinite order relation $A \leq^J B$ as follows:

$$A \leq^J B$$
 if $JA \leq JB$.

It is known as a result of Potapov-Ginzburg (see [6, Chapter 2, Section 4]) that $\sigma(JA^*JA) \subset [0, +\infty)$ for any A. If A is a J-selfadjoint operator with $\sigma(A) \subset (0, \infty)$, then for any function $f(t) \in \mathcal{C}_n$ the matrix f(A) is well-defined by Corollary 1.2. Note that f(A) is J-selfadjoint.

It is well-known that any operator monotone function on (-1, 1) has an integral representation

$$f(t) = f(0) + \int_{-1}^{1} \frac{t}{1 - t\lambda} d\mu(\lambda),$$

where $d\mu(\cdot)$ is a positive measure on [-1, 1]. T. Ando [4] used this fact to study operator monotonicity inequality of indefinite type.

Theorem 2.1 ([4], Theorem 4). Let J be a selfadjoint involution, and A, B be J-selfadjoint matrices with spectra in (α, β) . Then

$$A \leq^J B \Longrightarrow f(A) \leq^J f(B)$$

for any operator monotone function f(t) on (α, β) .

For *n*-monotone functions his proof is not applicable, since an integral representation of *n*-monotone functions is not clear in general. Fortunately, we can extend Ando's result to class C_{2n} with a help of Corollary 1.2.

The assertions of the following lemma were obtained in [4]. But for convenience of readers we give a proof.

Lemma 2.2. Let A, B be J-selfadjoint matrices in M_n such that $\sigma(A), \sigma(B) \subset (0, +\infty)$. Then

$$A \leq^J B \quad \Longrightarrow \quad B^{-1} \leq^J A^{-1}.$$

Proof. Mention that for any matrix $C \in M_n$,

$$JC^{\sharp}BC - JC^{\sharp}AC = C^*(JB - JA)C \ge 0$$
, i.e. $C^{\sharp}AC \le J C^{\sharp}BC$.

Since $\sigma(A) \subset (0, +\infty)$ and the function $f(t) = t^{1/2}$ is operator monotone on $(0, \infty)$, the *J*-selfadjoint square root $A^{1/2}$ is well defined and its reverse $A^{-1/2}$ is also *J*-selfadjoint. In the case $B = I_n$, we have

$$A^{-1} - I_n = A^{-1/2} (I_n - A) A^{-1/2} \ge^J 0.$$
(2.1)

In general case,

$$I_n = B^{-1/2} B B^{-1/2} \ge^J B^{-1/2} A B^{-1/2} = [A^{1/2} B^{-1/2}]^{\sharp} A^{1/2} B^{-1/2}.$$

On account of a result of Potapov-Ginzburg mentioned, and since $B^{-1/2}AB^{-1/2}$ is invertible, the latter implies that $\sigma(B^{-1/2}AB^{-1/2}) \subset (0, +\infty)$. By (2.1), we obtain

$$I_n \leq^J (B^{-1/2}AB^{-1/2})^{-1} = B^{1/2}A^{-1}B^{1/2}$$

which equivalent to $A^{-1} \ge^J B^{-1}$.

Theorem 2.3. Let $f \in C_{2n}$. Then for any pair of *J*-selfadjoint matrices $A \leq^J B$ in M_n such that $\sigma(A)$, $\sigma(B) \subset (0, \infty)$,

$$f(A) \le^J f(B). \tag{2.2}$$

Proof. Let λ_i $(1 \le i \le n)$ and μ_j $(1 \le j \le n)$ be the sets of eigenvalues of A and B, respectively.

Then there is an interpolation function $h \in C_{2n}$ such that $f(\lambda) = h(\lambda)$ for $\lambda \in \{\lambda_i, \mu_j\}_{1 \leq i, j \leq n}$. By Corollary 1.4, there is a positive Radon measure ρ on $[0, \infty]$ such that

$$f(\alpha) = \int_{[0,\infty]} \frac{\alpha(1+s)}{s+\alpha} d\rho(s) \quad (\alpha \in \{\lambda_i, \mu_j\}_{1 \le i,j \le n}).$$

Then inequality (2.2) is equivalent to the following:

$$\int_{[0,\infty]} A(1+s)(s+A)^{-1} d\rho(s) \le^J \int_{[0,\infty]} B(1+s)(s+B)^{-1} d\rho(s).$$

Therefore, it suffices to prove that

$$A(s+A)^{-1} \leq^{J} B(s+B)^{-1} \quad (s>0),$$

or equivalently,

$$(s+A)^{-1} \ge^{J} (s+B)^{-1} \quad (s>0).$$
 (2.3)

From $A \leq^J B$ it follows that $s + A \leq^J s + B$ (s > 0). On the other hand, $\sigma(s + A), \sigma(s + B) \subset (s, \infty) \subset (0, \infty)$. On account of Lemma 2.2 we obtain (2.3).

Remark 2.4. A similar conclusion for matrix convex functions on $[0, \infty)$ is wrong. Indeed, it is well-known that the function $f(t) = t^2$ ($t \in (0, \infty)$) is operator convex. Let A be an arbitrary J-positive matrix (that means, JA is positive) with spectrum in $(2, \infty)$. Put B = A + J. It is clear that $A \leq^J B$ and $\sigma(B) \subset (0, \infty)$. We have

$$f(\frac{A}{2} + \frac{B}{2}) \not\leq^{J} \frac{1}{2}f(A) + \frac{1}{2}f(B),$$

that is,

$$\frac{1}{2}(A^2 + B^2) - (\frac{A+B}{2})^2 = \frac{1}{4}(B-A)^2 = \frac{1}{4}J^2 = \frac{I}{4} \not\geq^J 0$$

Acknowledgement. This work was partially supported by the JSPS grant for Scientific Research No. 20540220. The Research partially supported by NAFOS-TED Vietnam, Grant Number 101.04-2014.40.

D.T. HOA, H.OSAKA

References

- 1. Y. Ameur, The Calderón problem for Hilbert couples, Ark. Mat. 41 (2003), no. 2, 203–231.
- Y. Ameur, S. Kaijser and S. Silvestrov, Interpolation class and matrix monotone functions, J. Operator Theory. 52 (2007), 409–427.
- 3. T. Ando, Comparison of norms |||f(A) f(B)||| and |||f(|A B|)|||, Math. Z. 197 (1988), 403–409.
- 4. T. Ando, Löwner inequality of indefinite type, Linear Algebra Appl. 385 (2004), 73–80.
- K.M.R. Audenaert, J. Calsamiglia, LI. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan and F. Verstraete, *Discriminating States: The Quantum Chernoff Bound*, Phys. Rev. Lett. 98 (2007), 160501.
- T.Ya. Azizov and I.S. Iokhvidov, *Linear Operators in Spaces with an Indefinite Metric*, Nauka, Moscow (1986), English translation: Wiley, New York, 1989.
- C. Foias and J.L. Lions, Sur certains theorems d'interpolation, Acta Sci. Math. (Szeged). 22 (1961), 269–282.
- 8. W.F. Donoghue, Monotone matrix function and analytic continuation, Springer, 1974.
- W.F. Donoghue, The theorems of Löwner and Pick, Israel Journal of Math. 4 (1966), no. 3, 153–170
- N. Dunford and J. Schwartz, *Linear Operators*, General theory, Inter-science Publisher, New York, London, 1958.
- F. Hansen and G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982), 229–241.
- D.T. Hoa, H. Osaka and H.M. Toan, On generalized Powers-Størmer's Inequality, Linear Algebra Appl. 438 (2013), no. 1, 242–249.
- 13. K. Löwner, Über monotone matrixfunktionen, Math. Z. 38 (1934), 177–216.
- H. Osaka and J. Tomiyama, Note on the structure of matrix monotone functions, Analysis for Sciences, Engineering and Beyond, The tribute workshop in honor of Gunnar Sparr held in Lund, May 8-9, 2008, Spring Proceedings in Mathematics. 6 (2008), 319–324.
- 15. D. Petz, *Quantum information theory and quantum statistics*, Theoretical and Mathematical Physics. Springer-Verlag, Berlin, 2008.
- M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal. 231 (2006), 231–244.
- 17. M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. **355** (2003), no. 10, 4111–4123.

¹ INSTITUTE OF RESEARCH AND DEVELOPMENT, DUY TAN UNIVERSITY, VIETNAM;

INSTITUTE FOR COMPUTATIONAL SCIENCE (INCOS) & FACULTY OF CIVIL ENGINEERING, TON DUC THANG UNIVERSITY, VIETNAM;

FACULTY OF ECONOMIC MATHEMATICS, UNIVERSITY OF ECONOMICS AND LAW, VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY, VIETNAM.

E-mail address: dinhtrunghoa@tdt.edu.vn; trunghoa.math@gmail.com

 2 Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail address: osaka@se.ritsumei.ac.jp