

INEQUALITIES FOR INTERPOLATION FUNCTIONS

DINH TRUNG HOA ${ }^{1 *}$ AND HIROYUKI OSAKA ${ }^{2}$
Communicated by M. Fujii

Abstract

In this paper, in relation with interpolation functions we study some generalized Powers-Størmer's type inequalities and monotonicity inequality of indefinite type which generalizes a result of Ando.

1. Introduction and preliminaries

Throughout this paper, M_{n} stands for the algebra of all $n \times n$ matrices. Denote by M_{n}^{+}the set of all positive semi-definite matrices. A continuous function f on $I(\subset \mathbb{R})$ is called matrix convex of order n (or n-convex) if the inequality

$$
f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B)
$$

holds for all self-adjoint matrices $A, B \in M_{n}$ with $\sigma(A), \sigma(B) \subset I$ and for all $\lambda \in[0,1]$, where $\sigma(A)$ stands for the spectrum of A. Also, f is called a n-concave on I if $-f$ is n-convex on I.

A continuous function f on I is called matrix monotone of order n or n monotone, if

$$
A \leq B \quad \Longrightarrow \quad f(A) \leq f(B)
$$

for any pair of self-adjoint matrices $A, B \in M_{n}$ with $\sigma(A), \sigma(B) \subset I$. We call a function f operator convex (resp. operator concave) if f is k-convex (resp. k-concave) for any $k \in \mathbb{N}$, and operator monotone if f is k-monotone for any $k \in \mathbb{N}$.

Date: Received: Feb. 12, 2014; Accepted: Mar. 24, 2014.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 46L30; Secondary 15A45, 47A63.
Key words and phrases. interpolation functions, operator monotone functions, traces, spaces with indefinite inner product, monotonicity inequality of indefinite type.

A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$(where $\mathbb{R}_{+}=(0, \infty)$) is called an interpolation function of order n if for any $T, A \in M_{n}$ with $A>0$ and $T^{*} T \leq 1$,

$$
T^{*} A T \leq A \quad \Longrightarrow \quad T^{*} f(A) T \leq f(A)
$$

We denote by \mathcal{C}_{n} the class of all interpolation functions of order n.
Let $\mathcal{P}\left(\mathbb{R}_{+}\right)$be the set of all Pick functions on \mathbb{R}_{+}, and \mathcal{P}^{\prime} the set of all positive Pick functions on \mathbb{R}_{+}, i.e., functions of the form

$$
h(s)=\int_{[0, \infty]} \frac{(1+t) s}{s+t} d \rho(t), \quad s>0
$$

where ρ is some positive Radon measure on $[0, \infty]$.
Denote by \mathcal{P}_{n}^{\prime} the set of all strictly positive n-monotone functions on $(0, \infty)$. Let us recall a well-known characterization of functions in \mathcal{C}_{n} that actually is due to Ameur [1] and Ameur, Kaijser, and Sergei [2] (see also [8]).

Theorem 1.1. ([2, Corollary 2.4]) A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$belongs to \mathcal{C}_{n} if and only if for every n-set $\left\{\lambda_{i}\right\}_{i=1}^{n} \subset \mathbb{R}_{+}$there exists a function h from \mathcal{P}^{\prime} such that $f\left(\lambda_{i}\right)=h\left(\lambda_{i}\right)$ for $i=1, \ldots, n$.

Corollary 1.2. Let A be a positive definite matrix in M_{n} and $f \in \mathcal{C}_{n}$. Then there exists a positive Radon measure ρ on $[0, \infty]$ such that

$$
f(A)=\int_{[0, \infty]} A(1+s)(A+s)^{-1} d \rho(s)
$$

Remark 1.3.
(i) $\mathcal{P}^{\prime}=\cap_{n=1}^{\infty} \mathcal{P}_{n}^{\prime}$ [13], $\mathcal{P}^{\prime}=\cap_{n=1}^{\infty} \mathcal{C}_{n}$ [7];
(ii) $\mathcal{C}_{n+1} \subseteq \mathcal{C}_{n}$;
(iii) $\mathcal{P}_{n+1}^{\prime} \subseteq \mathcal{C}_{2 n+1} \subseteq \mathcal{C}_{2 n} \subseteq \mathcal{P}_{n}^{\prime}, \mathcal{P}_{n}^{\prime} \subsetneq \mathcal{C}_{n}$ [2];
(iv) $\mathcal{C}_{2 n} \subsetneq \mathcal{P}_{n}^{\prime}$ [14];
(v) $\mathcal{C}_{n} \circ \mathcal{C}_{n} \subset \mathcal{C}_{n}$;
(vi) A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$belongs to \mathcal{C}_{n} if and only if $\frac{t}{f(t)}$ belongs to \mathcal{C}_{n}.

It is not known whether $\mathcal{P}_{n+1}^{\prime} \subsetneq \mathcal{C}_{2 n+1}$ or not.
In this paper, we consider some inequalities with interpolation functions. More precisely, in Section 2, we extend Petz's trace inequality [15, Theorem 11.18] (Theorem 2.1) to the class of interpolation functions and give a new trace inequality (Theorem 2.5) which might play an important role in the quantum information theory. Moreover, in Section 3 we extend an Ando's monotonicity inequality of indefinite type. We show that for $f \in \mathcal{C}_{2 n}$ and any pair of J-selfadjoint matrices $A, B \in M_{n}$ such that $\sigma(A), \sigma(B) \subset(0, \infty)$,

$$
A \leq^{J} B \quad \Longrightarrow \quad f(A) \leq^{J} f(B)
$$

where J is a selfadjoint involution and $A \leq^{J} B$ means that $J A^{*} J=A, J B^{*} J=B$, and $J A \leq J B$.

Theorem 1.4. Let $f \in \mathcal{C}_{2 n}$. For positive definite matrices K and L in M_{n}, let Q the projection onto the range of $(K-L)_{+}$. We have, then,

$$
\begin{equation*}
\operatorname{Tr}(Q L(f(K)-f(L))) \geq 0 \tag{1.1}
\end{equation*}
$$

Proof. Let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and $\left\{\mu_{i}\right\}_{i=1}^{n}$ be sets of eigenvalues of K and L, respectively. Then by Theorem 1.1 there exists an interpolation function $h \in \mathcal{P}^{\prime}$ such that $f(\lambda)=h(\lambda)$ for $\lambda \in\left\{\lambda_{i}\right\}_{i=1}^{n} \cup\left\{\mu_{i}\right\}_{i=1}^{n}$. By Corollary 1.2 there is some positive Radon measure ρ on $[0, \infty]$ such that

$$
\begin{aligned}
f(K)-f(L) & =\int_{[0, \infty]} K(1+s)(K+s)^{-1} d \rho(s)-\int_{[0, \infty]} L(1+s)(L+s)^{-1} d \rho(s) \\
& =\int_{[0, \infty]}\left[(1+s)(K+s)^{-1} K-L(1+s)(L+s)^{-1}\right] d \rho(s) \\
& =\int_{[0, \infty]}(1+s) s(K+s)^{-1}(K-L)(L+s)^{-1} d \rho(s)
\end{aligned}
$$

Hence

$$
\operatorname{Tr}\left(Q L(f(K)-f(L))=\int_{[0, \infty]}(1+s) s \operatorname{Tr}\left(Q L(K+s)^{-1}(K-L)(L+s)^{-1}\right) d \rho(s)\right.
$$

Repeat the same steps in [15, Theorem 11.18], we get the conclusion.
Corollary 1.5. Let $f \in \mathcal{P}_{n+1}^{\prime}$. For positive definite matrices K and L in M_{n}, let Q be the projection onto the range of $(K-L)_{+}$. We have, then,

$$
\operatorname{Tr}(Q L(f(K)-f(L))) \geq 0
$$

Proof. It is suffices to mention that $\mathcal{P}_{n+1}^{\prime} \subset \mathcal{C}_{2 n}$ by Remark 1.3. The conclusion follows from Theorem 1.4.

Using Theorem 1.4 we get a generalized Powers-Størmer's type inequality. Another generalization of Powers-Størmer inequality can be found in [12]. We need the following lemmas.

Lemma 1.6. Let $h:(0, \infty) \rightarrow(0, \infty)$ be a function such that the function $t h(t)$ is operator monotone. Then the inverse of $\frac{t}{h(t)}$ is operator monotone.
Proof. Since $t h(t)$ is operator monotone, the function $\frac{1}{h(t)}=\frac{t}{t h(t)}$ is operator monotone by [11, Corollary 2.6]. Hence the inverse of $t \frac{1}{h(t)}$ is operator monotone from by [3, Lemma 5].

Lemma 1.7. Let f be a function from $(0, \infty)$ into itself such that $t f(t) \in \mathcal{C}_{2 n}$. Then the inverse of $g(t)=\frac{t}{f(t)}(t>0)$ belongs to $\left.\mathcal{C}_{2 n}\right|_{g((0, \infty))}$.
Proof. Indeed, for any set $T \subset g((0, \infty))$ with $|T|=2 n$ we can write

$$
T=\left\{g\left(t_{1}\right), g\left(t_{2}\right), \ldots, g\left(t_{2 n}\right)\right\}
$$

where $t_{i} \in(0, \infty)$ for $1 \leq i \leq 2 n$. Since $t f(t) \in \mathcal{C}_{2 n}$, there is an interpolation map $k_{T} \in \mathcal{P}^{\prime}$ such that $t_{i} f\left(t_{i}\right)=k_{T}\left(t_{i}\right)$ for $1 \leq i \leq 2 n$. Then we have

$$
g\left(t_{i}\right)=\frac{t_{i}}{f\left(t_{i}\right)}=t_{i} \frac{t_{i}}{k_{T}\left(t_{i}\right)} \quad(1 \leq i \leq 2 n)
$$

Consequently,

$$
\begin{equation*}
g^{-1}\left(g\left(t_{i}\right)\right)=t_{i}=\left(\frac{t^{2}}{k_{T}(t)}\right)^{-1}\left(g\left(t_{i}\right)\right) \quad(1 \leq i \leq 2 n) \tag{1.2}
\end{equation*}
$$

From the above argument, it is clear that $\left(\frac{t^{2}}{k_{T}(t)}\right)^{-1}$ is operator monotone. From (1.2) we conclude that the inverse g^{-1} of g belongs to $\left.C_{2 n}\right|_{g((0, \infty))}$.

The main theorem of this section is as follows.
Theorem 1.8. Let f be a function from $(0, \infty)$ into itself such that $t f(t) \in \mathcal{C}_{2 n}$. Then for any pair of positive definite matrices $A, B \in M_{n}$,

$$
\begin{equation*}
\operatorname{Tr}\left(A^{2}\right)+\operatorname{Tr}\left(B^{2}\right)-\operatorname{Tr}\left(\left|A^{2}-B^{2}\right|\right) \leq 2 \operatorname{Tr}\left(A f(A)^{\frac{1}{2}} g(B) f(A)^{\frac{1}{2}}\right) \tag{1.3}
\end{equation*}
$$

where $g(t)=\frac{t}{f(t)}, t \in(0, \infty)$.
Proof. Let A, B be positive definite matrices and $e(t)=t f(t)$ for $t \in(0, \infty)$. Let Q be the projection on the range of $(g(A)-g(B))_{+}$and $L=g(B)$.

Let S be the set of eigenvalues of $g(A)$ and $g(B)$. Since $e \in \mathcal{C}_{2 n}$, there is an interpolation map $h \in \mathcal{P}^{\prime}$ such that $e(\lambda)=h(\lambda)$ for $\lambda \in S$. Since $t(h(t) / t)=h(t)$ is operator monotone, the inverse of $t^{2} / h(t)$ is operator monotone by Lemma 1.6. By Lemma 1.7 the inverse of g belongs to $\left.\mathcal{C}_{2 n}\right|_{g((0, \infty))}$. Consequently, $e \circ g^{-1} \in$ $\left.C_{2 n}\right|_{g((0, \infty))}$ by Remark 1.3(v).

Apply Theorem 1.4 for the function $e \circ g^{-1}$, we get

$$
\begin{aligned}
0 & \leq \operatorname{Tr}\left(Q g(B)\left(\left(e \circ g^{-1}\right)(g(A))-\left(e \circ g^{-1}\right)(g(B))\right)\right. \\
& =\operatorname{Tr}(Q g(B)(A f(A)-B f(B))) \\
& =\operatorname{Tr}(Q g(B) A f(A))-\operatorname{Tr}\left(Q B^{2}\right) .
\end{aligned}
$$

On the contrary,

$$
\begin{align*}
& \operatorname{Tr}\left(Q\left(A^{2}-B^{2}\right)\right)-\operatorname{Tr}(A f(A) Q(g(A)-g(B))) \\
& \quad=\operatorname{Tr}\left(Q A^{2}\right)-\operatorname{Tr}\left(Q B^{2}\right)-\operatorname{Tr}(A f(A) Q g(A))+\operatorname{Tr}(A f(A) Q g(B)) \tag{1.4}\\
& \quad=\operatorname{Tr}(Q g(B) A f(A))-\operatorname{Tr}\left(Q B^{2}\right) \geq 0
\end{align*}
$$

Hence we have

$$
\begin{equation*}
\operatorname{Tr}(A f(A) Q(g(A)-g(B))) \leq \operatorname{Tr}\left(Q\left(A^{2}-B^{2}\right)\right) \leq \operatorname{Tr}\left(\left(A^{2}-B^{2}\right)_{+}\right) \tag{1.5}
\end{equation*}
$$

Therefore, from (1.4) and (1.5) we have

$$
\begin{aligned}
\operatorname{Tr}(A f(A)(g(A)-g(B))) & \leq \operatorname{Tr}\left(A f(A)(g(A)-g(B))_{+}\right) \\
& =\operatorname{Tr}(A f(A) Q(g(A)-g(B))) \\
& \leq \operatorname{Tr}\left(\left(A^{2}-B^{2}\right)_{+}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\left(A^{2}-B^{2}\right)+\left|A^{2}-B^{2}\right|\right)
\end{aligned}
$$

and

$$
\operatorname{Tr}\left(A^{2}+B^{2}-\left|A^{2}-B^{2}\right|\right) \leq 2 \operatorname{Tr}(A f(A) g(B))
$$

Corollary 1.9. Let f be a function from $(0, \infty)$ into itself such that $t f(t) \in \mathcal{P}_{n+1}^{\prime}$. Then for any pair of positive definite matrices $A, B \in M_{n}$,

$$
\operatorname{Tr}\left(A^{2}\right)+\operatorname{Tr}\left(B^{2}\right)-\operatorname{Tr}\left(\left|A^{2}-B^{2}\right|\right) \leq 2 \operatorname{Tr}\left(A f(A)^{\frac{1}{2}} g(B) f(A)^{\frac{1}{2}}\right)
$$

where $g(t)=\frac{t}{f(t)}$ for $t \in(0, \infty)$.
Corollary 1.10 ([5]). Let A, B be positive definite matrices, then for all $0 \leq s \leq$ 1

$$
\operatorname{Tr}(A+B-|A-B|) \leq 2 \operatorname{Tr}\left(A^{1-s} B^{s}\right)
$$

Proof. By adding $\varepsilon>0$ to A and B, we may assume that A and B are positive invertible matrices.

Firstly, we consider the case $s \in\left[\frac{1}{2}, 1\right]$. Let $f(t)=t^{1-2 s}$. Then $t f(t)=t^{2-2 s}$ is operator monotone on $(0, \infty)$. Substitute $X=A^{\frac{1}{2}}$ and $Y=B^{\frac{1}{2}}$ into the inequality (1.3) in Theorem 1.8, we get

$$
\operatorname{Tr}(A+B-|A-B|) \leq 2 \operatorname{Tr}\left(A^{1-s} B^{s}\right)
$$

The remaining case $0 \leq s \leq \frac{1}{2}$ obviously follows by interchanging the roles of A and B.

Remark 1.11. In Lemma 1.6 and Lemma 1.7 operator monotonicity and $\mathcal{C}_{2 n}$ property of inverse functions were considered. There exists counterexample that the inverse of a n-matrix function may not be n-matrix. Indeed, it is well-known that $f_{s}(t)=t^{s}(0 \leq s \leq 1)$ is operator monotone, but the inverse $f_{s}^{-1}(t)=t^{1 / s}$ of f_{s} is not 2-monotone. A similar picture for \mathcal{C}_{n}-functions is still not clear.

Inequality (1.3) in Theorem 1.8 is different to generalized Powers-Srørmer inequality in [12]. The proof of (1.3) is based on the fact that $\left.(t f) \circ g^{-1} \in \mathcal{C}_{2 n}\right|_{g((0, \infty))}$. If we have the condition $\left.f \circ g^{-1} \in \mathcal{C}_{2 n}\right|_{g((0, \infty))}$, then by similar arguments above we can get the generalized Powers-Størmer inequality as in [12]. More precisely, we have the following theorem.

Theorem 1.12. Let f be a function in $\mathcal{C}_{2 n}$ such that $\left.f \circ g^{-1} \in \mathcal{C}_{2 n}\right|_{(g(0, \infty))}$, where $g(t)=\frac{t}{f(t)}, t \in(0, \infty)$. Then for any pair of positive definite matrices $A, B \in M_{n}$,

$$
\operatorname{Tr}(A)+\operatorname{Tr}(B)-\operatorname{Tr}(|A-B|) \leq 2 \operatorname{Tr}\left(f(A)^{\frac{1}{2}} g(B) f(A)^{\frac{1}{2}}\right)
$$

Since the proof of this theorem is done by the same steps in Theorem 1.8, the detail is left to reader.

2. Matrix monotonicity inequality of indefinite type

Let $J\left(\neq I_{n}\right.$ - unit in $\left.M_{n}\right)$ be a selfadjoint involution different to identity, that means, $J=J^{*}, J^{2}=I_{n}$. For a matrix A its J-adjoint A^{\sharp} is defined as follows: $A^{\sharp}=J A^{*} J$. A matrix A is said to be J-selfadjoint if $A=A^{\sharp}$, or, $J A=A^{*} J$. For a pair of J-selfadjoint matrices A, B, we define an indefinite order relation $A \leq^{J} B$ as follows:

$$
A \leq^{J} B \quad \text { if } \quad J A \leq J B
$$

It is known as a result of Potapov-Ginzburg (see [6, Chapter 2, Section 4]) that $\sigma\left(J A^{*} J A\right) \subset[0,+\infty)$ for any A. If A is a J-selfadjoint operator with $\sigma(A) \subset(0, \infty)$, then for any function $f(t) \in \mathcal{C}_{n}$ the matrix $f(A)$ is well-defined by Corollary 1.2. Note that $f(A)$ is J-selfadjoint.

It is well-known that any operator monotone function on $(-1,1)$ has an integral representation

$$
f(t)=f(0)+\int_{-1}^{1} \frac{t}{1-t \lambda} d \mu(\lambda)
$$

where $d \mu(\cdot)$ is a positive measure on $[-1,1]$. T. Ando [4] used this fact to study operator monotonicity inequality of indefinite type.
Theorem 2.1 ([4], Theorem 4). Let J be a selfadjoint involution, and A, B be J-selfadjoint matrices with spectra in (α, β). Then

$$
A \leq^{J} B \Longrightarrow f(A) \leq^{J} f(B)
$$

for any operator monotone function $f(t)$ on (α, β).
For n-monotone functions his proof is not applicable, since an integral representation of n-monotone functions is not clear in general. Fortunately, we can extend Ando's result to class $\mathcal{C}_{2 n}$ with a help of Corollary 1.2 .

The assertions of the following lemma were obtained in [4]. But for convenience of readers we give a proof.

Lemma 2.2. Let A, B be J-selfadjoint matrices in M_{n} such that $\sigma(A), \sigma(B) \subset$ $(0,+\infty)$. Then

$$
A \leq^{J} B \quad \Longrightarrow \quad B^{-1} \leq^{J} A^{-1}
$$

Proof. Mention that for any matrix $C \in M_{n}$,

$$
J C^{\sharp} B C-J C^{\sharp} A C=C^{*}(J B-J A) C \geq 0 \text {, i.e. } \quad C^{\sharp} A C \leq^{J} C^{\sharp} B C .
$$

Since $\sigma(A) \subset(0,+\infty)$ and the function $f(t)=t^{1 / 2}$ is operator monotone on $(0, \infty)$, the J-selfadjoint square root $A^{1 / 2}$ is well defined and its reverse $A^{-1 / 2}$ is also J-selfadjoint. In the case $B=I_{n}$, we have

$$
\begin{equation*}
A^{-1}-I_{n}=A^{-1 / 2}\left(I_{n}-A\right) A^{-1 / 2} \geq^{J} 0 \tag{2.1}
\end{equation*}
$$

In general case,

$$
I_{n}=B^{-1 / 2} B B^{-1 / 2} \geq^{J} B^{-1 / 2} A B^{-1 / 2}=\left[A^{1 / 2} B^{-1 / 2}\right]^{\sharp} A^{1 / 2} B^{-1 / 2} .
$$

On account of a result of Potapov-Ginzburg mentioned, and since $B^{-1 / 2} A B^{-1 / 2}$ is invertible, the latter implies that $\sigma\left(B^{-1 / 2} A B^{-1 / 2}\right) \subset(0,+\infty)$. By (2.1), we obtain

$$
I_{n} \leq^{J}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{-1}=B^{1 / 2} A^{-1} B^{1 / 2}
$$

which equivalent to $A^{-1} \geq^{J} B^{-1}$.
Theorem 2.3. Let $f \in \mathcal{C}_{2 n}$. Then for any pair of J-selfadjoint matrices $A \leq{ }^{J} B$ in M_{n} such that $\sigma(A), \sigma(B) \subset(0, \infty)$,

$$
\begin{equation*}
f(A) \leq^{J} f(B) \tag{2.2}
\end{equation*}
$$

Proof. Let $\lambda_{i}(1 \leq i \leq n)$ and $\mu_{j}(1 \leq j \leq n)$ be the sets of eigenvalues of A and B, respectively.

Then there is an interpolation function $h \in \mathcal{C}_{2 n}$ such that $f(\lambda)=h(\lambda)$ for $\lambda \in\left\{\lambda_{i}, \mu_{j}\right\}_{1 \leq i, j \leq n}$. By Corollary 1.4, there is a positive Radon measure ρ on $[0, \infty]$ such that

$$
f(\alpha)=\int_{[0, \infty]} \frac{\alpha(1+s)}{s+\alpha} d \rho(s) \quad\left(\alpha \in\left\{\lambda_{i}, \mu_{j}\right\}_{1 \leq i, j \leq n}\right) .
$$

Then inequality (2.2) is equivalent to the following:

$$
\int_{[0, \infty]} A(1+s)(s+A)^{-1} d \rho(s) \leq^{J} \int_{[0, \infty]} B(1+s)(s+B)^{-1} d \rho(s)
$$

Therefore, it suffices to prove that

$$
A(s+A)^{-1} \leq^{J} B(s+B)^{-1} \quad(s>0)
$$

or equivalently,

$$
\begin{equation*}
(s+A)^{-1} \geq^{J}(s+B)^{-1} \quad(s>0) \tag{2.3}
\end{equation*}
$$

From $A \leq^{J} B$ it follows that $s+A \leq^{J} s+B \quad(s>0)$. On the other hand, $\sigma(s+A), \sigma(s+B) \subset(s, \infty) \subset(0, \infty)$. On account of Lemma 2.2 we obtain (2.3).

Remark 2.4. A similar conclusion for matrix convex functions on $[0, \infty)$ is wrong. Indeed, it is well-known that the function $f(t)=t^{2}(t \in(0, \infty))$ is operator convex. Let A be an arbitrary J-positive matrix (that means, $J A$ is positive) with spectrum in $(2, \infty)$. Put $B=A+J$. It is clear that $A \leq^{J} B$ and $\sigma(B) \subset(0, \infty)$. We have

$$
f\left(\frac{A}{2}+\frac{B}{2}\right) \not \not^{J} \frac{1}{2} f(A)+\frac{1}{2} f(B),
$$

that is,

$$
\frac{1}{2}\left(A^{2}+B^{2}\right)-\left(\frac{A+B}{2}\right)^{2}=\frac{1}{4}(B-A)^{2}=\frac{1}{4} J^{2}=\frac{I}{4} \not ¥^{J} 0 .
$$

Acknowledgement. This work was partially supported by the JSPS grant for Scientific Research No. 20540220. The Research partially supported by NAFOSTED Vietnam, Grant Number 101.04-2014.40.

References

1. Y. Ameur, The Calderón problem for Hilbert couples, Ark. Mat. 41 (2003), no. 2, 203-231.
2. Y. Ameur, S. Kaijser and S. Silvestrov, Interpolation class and matrix monotone functions, J. Operator Theory. 52 (2007), 409-427.
3. T. Ando, Comparison of norms $\||f(A)-f(B)|\|$ and $|||f(|A-B|)| \||$, Math. Z. 197 (1988), 403-409.
4. T. Ando, Löwner inequality of indefinite type, Linear Algebra Appl. 385 (2004), 73-80.
5. K.M.R. Audenaert, J. Calsamiglia, LI. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan and F. Verstraete, Discriminating States: The Quantum Chernoff Bound, Phys. Rev. Lett. 98 (2007), 160501.
6. T.Ya. Azizov and I.S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow (1986), English translation: Wiley, New York, 1989.
7. C. Foias and J.L. Lions, Sur certains theoremes d'interpolation, Acta Sci. Math. (Szeged). 22 (1961), 269-282.
8. W.F. Donoghue, Monotone matrix function and analytic continuation, Springer, 1974.
9. W.F. Donoghue, The theorems of Löwner and Pick, Israel Journal of Math. 4 (1966), no. 3, 153-170
10. N. Dunford and J. Schwartz, Linear Operators, General theory, Inter-science Publisher, New York, London, 1958.
11. F. Hansen and G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982), 229-241.
12. D.T. Hoa, H. Osaka and H.M. Toan, On generalized Powers-Størmer's Inequality, Linear Algebra Appl. 438 (2013), no. 1, 242-249.
13. K. Löwner, Ü ber monotone matrixfunktionen, Math. Z. 38 (1934), 177-216.
14. H. Osaka and J. Tomiyama, Note on the structure of matrix monotone functions, Analysis for Sciences, Engineering and Beyond, The tribute workshop in honor of Gunnar Sparr held in Lund, May 8-9, 2008, Spring Proceedings in Mathematics. 6 (2008), 319-324.
15. D. Petz, Quantum information theory and quantum statistics, Theoretical and Mathematical Physics. Springer-Verlag, Berlin, 2008.
16. M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal. 231 (2006), 231-244.
17. M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4111-4123.
${ }^{1}$ Institute of Research and Development, Duy Tan University, Vietnam; Institute for Computational Science (INCOS) \& Faculty of Civil Engineering, Ton Duc Thang University, Vietnam;
Faculty of Economic Mathematics, University of Economics and Law, Vietnam
National University - Ho Chi Minh City, Vietnam.
E-mail address: dinhtrunghoa@tdt.edu.vn; trunghoa.math@gmail.com
2 Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail address: osaka@se.ritsumei.ac.jp

