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INEQUALITIES FOR INTERPOLATION FUNCTIONS
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Abstract. In this paper, in relation with interpolation functions we study
some generalized Powers-Størmer’s type inequalities and monotonicity inequal-
ity of indefinite type which generalizes a result of Ando.

1. Introduction and preliminaries

Throughout this paper, Mn stands for the algebra of all n× n matrices. Denote
by M+

n the set of all positive semi-definite matrices. A continuous function f on
I (⊂ R) is called matrix convex of order n (or n-convex ) if the inequality

f(λA + (1− λ)B) ≤ λf(A) + (1− λ)f(B)

holds for all self-adjoint matrices A, B ∈ Mn with σ(A), σ(B) ⊂ I and for all
λ ∈ [0, 1], where σ(A) stands for the spectrum of A. Also, f is called a n-concave
on I if −f is n-convex on I.

A continuous function f on I is called matrix monotone of order n or n-
monotone, if

A ≤ B =⇒ f(A) ≤ f(B)

for any pair of self-adjoint matrices A, B ∈ Mn with σ(A), σ(B) ⊂ I. We call
a function f operator convex (resp. operator concave) if f is k-convex (resp.
k-concave) for any k ∈ N, and operator monotone if f is k-monotone for any
k ∈ N.
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A function f : R+ → R+ (where R+ = (0,∞)) is called an interpolation function
of order n if for any T, A ∈ Mn with A > 0 and T ∗T ≤ 1,

T ∗AT ≤ A =⇒ T ∗f(A)T ≤ f(A).

We denote by Cn the class of all interpolation functions of order n.
Let P(R+) be the set of all Pick functions on R+, and P ′ the set of all positive

Pick functions on R+, i.e., functions of the form

h(s) =

∫
[0,∞]

(1 + t)s

s + t
dρ(t), s > 0,

where ρ is some positive Radon measure on [0,∞].
Denote by P ′

n the set of all strictly positive n-monotone functions on (0,∞).
Let us recall a well-known characterization of functions in Cn that actually is due
to Ameur [1] and Ameur, Kaijser, and Sergei [2] (see also [8]).

Theorem 1.1. ([2, Corollary 2.4]) A function f : R+ → R+ belongs to Cn if and
only if for every n-set {λi}n

i=1 ⊂ R+ there exists a function h from P ′ such that
f(λi) = h(λi) for i = 1, . . . , n.

Corollary 1.2. Let A be a positive definite matrix in Mn and f ∈ Cn. Then
there exists a positive Radon measure ρ on [0,∞] such that

f(A) =

∫
[0,∞]

A(1 + s)(A + s)−1dρ(s).

Remark 1.3.

(i) P ′ = ∩∞n=1P ′
n [13], P ′ = ∩∞n=1Cn [7];

(ii) Cn+1 ⊆ Cn;
(iii) P ′

n+1 ⊆ C2n+1 ⊆ C2n ⊆ P ′
n, P ′

n ( Cn [2];
(iv) C2n ( P ′

n [14];
(v) Cn ◦ Cn ⊂ Cn;

(vi) A function f : R+ → R+ belongs to Cn if and only if
t

f(t)
belongs to Cn.

It is not known whether P ′
n+1 ( C2n+1 or not.

In this paper, we consider some inequalities with interpolation functions. More
precisely, in Section 2, we extend Petz’s trace inequality [15, Theorem 11.18] (The-
orem 2.1) to the class of interpolation functions and give a new trace inequality
(Theorem 2.5) which might play an important role in the quantum information
theory. Moreover, in Section 3 we extend an Ando’s monotonicity inequality of
indefinite type. We show that for f ∈ C2n and any pair of J-selfadjoint matrices
A, B ∈ Mn such that σ(A), σ(B) ⊂ (0,∞),

A ≤J B =⇒ f(A) ≤J f(B),

where J is a selfadjoint involution and A ≤J B means that JA∗J = A, JB∗J = B,
and JA ≤ JB.
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Theorem 1.4. Let f ∈ C2n. For positive definite matrices K and L in Mn, let
Q the projection onto the range of (K − L)+. We have, then,

Tr(QL(f(K)− f(L))) ≥ 0. (1.1)

Proof. Let {λi}n
i=1 and {µi}n

i=1 be sets of eigenvalues of K and L, respectively.
Then by Theorem 1.1 there exists an interpolation function h ∈ P ′ such that
f(λ) = h(λ) for λ ∈ {λi}n

i=1 ∪ {µi}n
i=1. By Corollary 1.2 there is some positive

Radon measure ρ on [0,∞] such that

f(K)− f(L) =

∫
[0,∞]

K(1 + s)(K + s)−1dρ(s)−
∫

[0,∞]

L(1 + s)(L + s)−1dρ(s)

=

∫
[0,∞]

[(1 + s)(K + s)−1K − L(1 + s)(L + s)−1]dρ(s)

=

∫
[0,∞]

(1 + s)s(K + s)−1(K − L)(L + s)−1dρ(s).

Hence

Tr(QL(f(K)− f(L)) =

∫
[0,∞]

(1 + s)s Tr(QL(K + s)−1(K − L)(L + s)−1)dρ(s)

Repeat the same steps in [15, Theorem 11.18], we get the conclusion. �

Corollary 1.5. Let f ∈ P ′
n+1. For positive definite matrices K and L in Mn, let

Q be the projection onto the range of (K − L)+. We have, then,

Tr(QL(f(K)− f(L))) ≥ 0.

Proof. It is suffices to mention that P ′
n+1 ⊂ C2n by Remark 1.3. The conclusion

follows from Theorem 1.4. �

Using Theorem 1.4 we get a generalized Powers-Størmer’s type inequality. An-
other generalization of Powers-Størmer inequality can be found in [12]. We need
the following lemmas.

Lemma 1.6. Let h : (0,∞) → (0,∞) be a function such that the function th(t)

is operator monotone. Then the inverse of
t

h(t)
is operator monotone.

Proof. Since th(t) is operator monotone, the function
1

h(t)
=

t

th(t)
is operator

monotone by [11, Corollary 2.6]. Hence the inverse of t
1

h(t)
is operator monotone

from by [3, Lemma 5]. �

Lemma 1.7. Let f be a function from (0,∞) into itself such that tf(t) ∈ C2n.

Then the inverse of g(t) =
t

f(t)
(t > 0) belongs to C2n|g((0,∞)).

Proof. Indeed, for any set T ⊂ g((0,∞)) with |T | = 2n we can write

T = {g(t1), g(t2), . . . , g(t2n)},
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where ti ∈ (0,∞) for 1 ≤ i ≤ 2n. Since tf(t) ∈ C2n, there is an interpolation map
kT ∈ P ′ such that tif(ti) = kT (ti) for 1 ≤ i ≤ 2n. Then we have

g(ti) =
ti

f(ti)
= ti

ti
kT (ti)

(1 ≤ i ≤ 2n).

Consequently,

g−1(g(ti)) = ti = (
t2

kT (t)
)−1(g(ti)) (1 ≤ i ≤ 2n). (1.2)

From the above argument, it is clear that (
t2

kT (t)
)−1 is operator monotone. From

(1.2) we conclude that the inverse g−1 of g belongs to C2n|g((0,∞)). �

The main theorem of this section is as follows.

Theorem 1.8. Let f be a function from (0,∞) into itself such that tf(t) ∈ C2n.
Then for any pair of positive definite matrices A, B ∈ Mn,

Tr(A2) + Tr(B2)− Tr(|A2 −B2|) ≤ 2 Tr(Af(A)
1
2 g(B)f(A)

1
2 ), (1.3)

where g(t) =
t

f(t)
, t ∈ (0,∞).

Proof. Let A, B be positive definite matrices and e(t) = tf(t) for t ∈ (0,∞). Let
Q be the projection on the range of (g(A)− g(B))+ and L = g(B).

Let S be the set of eigenvalues of g(A) and g(B). Since e ∈ C2n, there is an
interpolation map h ∈ P ′ such that e(λ) = h(λ) for λ ∈ S. Since t(h(t)/t) = h(t)
is operator monotone, the inverse of t2/h(t) is operator monotone by Lemma 1.6.
By Lemma 1.7 the inverse of g belongs to C2n|g((0,∞)). Consequently, e ◦ g−1 ∈
C2n|g((0,∞)) by Remark 1.3(v).

Apply Theorem 1.4 for the function e ◦ g−1, we get

0 ≤ Tr(Qg(B)((e ◦ g−1)(g(A))− (e ◦ g−1)(g(B)))

= Tr(Qg(B)(Af(A)−Bf(B)))

= Tr(Qg(B)Af(A))− Tr(QB2).

On the contrary,

Tr(Q(A2 −B2))− Tr(Af(A)Q(g(A)− g(B)))

= Tr(QA2)− Tr(QB2)− Tr(Af(A)Qg(A)) + Tr(Af(A)Qg(B))

= Tr(Qg(B)Af(A))− Tr(QB2) ≥ 0.

(1.4)

Hence we have

Tr(Af(A)Q(g(A)− g(B))) ≤ Tr(Q(A2 −B2)) ≤ Tr((A2 −B2)+). (1.5)

Therefore, from (1.4) and (1.5) we have
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Tr(Af(A)(g(A)− g(B))) ≤ Tr(Af(A)(g(A)− g(B))+)

= Tr(Af(A)Q(g(A)− g(B)))

≤ Tr((A2 −B2)+)

=
1

2
Tr((A2 −B2) + |A2 −B2|),

and

Tr(A2 + B2 − |A2 −B2|) ≤ 2 Tr(Af(A)g(B)).

�

Corollary 1.9. Let f be a function from (0,∞) into itself such that tf(t) ∈ P ′
n+1.

Then for any pair of positive definite matrices A, B ∈ Mn,

Tr(A2) + Tr(B2)− Tr(|A2 −B2|) ≤ 2 Tr(Af(A)
1
2 g(B)f(A)

1
2 ),

where g(t) = t
f(t)

for t ∈ (0,∞).

Corollary 1.10 ([5]). Let A, B be positive definite matrices, then for all 0 ≤ s ≤
1

Tr(A + B − |A−B|) ≤ 2 Tr(A1−sBs).

Proof. By adding ε > 0 to A and B, we may assume that A and B are positive
invertible matrices.

Firstly, we consider the case s ∈ [1
2
, 1]. Let f(t) = t1−2s. Then tf(t) = t2−2s

is operator monotone on (0,∞). Substitute X = A
1
2 and Y = B

1
2 into the

inequality (1.3) in Theorem 1.8, we get

Tr(A + B − |A−B|) ≤ 2 Tr(A1−sBs).

The remaining case 0 ≤ s ≤ 1
2

obviously follows by interchanging the roles of A
and B. �

Remark 1.11. In Lemma 1.6 and Lemma 1.7 operator monotonicity and C2n-
property of inverse functions were considered. There exists counterexample that
the inverse of a n-matrix function may not be n-matrix. Indeed, it is well-known
that fs(t) = ts(0 ≤ s ≤ 1) is operator monotone, but the inverse f−1

s (t) = t1/s of
fs is not 2-monotone. A similar picture for Cn-functions is still not clear.

Inequality (1.3) in Theorem 1.8 is different to generalized Powers-Srørmer in-
equality in [12]. The proof of (1.3) is based on the fact that (tf)◦g−1 ∈ C2n|g((0,∞)).
If we have the condition f ◦ g−1 ∈ C2n|g((0,∞)), then by similar arguments above
we can get the generalized Powers-Størmer inequality as in [12]. More precisely,
we have the following theorem.

Theorem 1.12. Let f be a function in C2n such that f ◦ g−1 ∈ C2n|(g(0,∞)),

where g(t) =
t

f(t)
, t ∈ (0,∞). Then for any pair of positive definite matrices

A, B ∈ Mn,

Tr(A) + Tr(B)− Tr(|A−B|) ≤ 2 Tr(f(A)
1
2 g(B)f(A)

1
2 ).
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Since the proof of this theorem is done by the same steps in Theorem 1.8, the
detail is left to reader.

2. Matrix monotonicity inequality of indefinite type

Let J (6= In — unit in Mn) be a selfadjoint involution different to identity, that
means, J = J∗, J2 = In. For a matrix A its J-adjoint A] is defined as follows:
A] = JA∗J . A matrix A is said to be J-selfadjoint if A = A], or, JA = A∗J.
For a pair of J-selfadjoint matrices A, B, we define an indefinite order relation
A ≤J B as follows:

A ≤J B if JA ≤ JB.

It is known as a result of Potapov-Ginzburg (see [6, Chapter 2, Section 4])
that σ(JA∗JA) ⊂ [0, +∞) for any A. If A is a J-selfadjoint operator with
σ(A) ⊂ (0,∞), then for any function f(t) ∈ Cn the matrix f(A) is well-defined
by Corollary 1.2. Note that f(A) is J-selfadjoint.

It is well-known that any operator monotone function on (−1, 1) has an integral
representation

f(t) = f(0) +

∫ 1

−1

t

1− tλ
dµ(λ),

where dµ(·) is a positive measure on [−1, 1]. T. Ando [4] used this fact to study
operator monotonicity inequality of indefinite type.

Theorem 2.1 ([4], Theorem 4). Let J be a selfadjoint involution, and A, B be
J-selfadjoint matrices with spectra in (α, β). Then

A ≤J B =⇒ f(A) ≤J f(B)

for any operator monotone function f(t) on (α, β).

For n-monotone functions his proof is not applicable, since an integral repre-
sentation of n-monotone functions is not clear in general. Fortunately, we can
extend Ando’s result to class C2n with a help of Corollary 1.2 .

The assertions of the following lemma were obtained in [4]. But for convenience
of readers we give a proof.

Lemma 2.2. Let A, B be J-selfadjoint matrices in Mn such that σ(A), σ(B) ⊂
(0, +∞). Then

A ≤J B =⇒ B−1 ≤J A−1.

Proof. Mention that for any matrix C ∈ Mn,

JC]BC − JC]AC = C∗(JB − JA)C ≥ 0, i.e. C]AC ≤J C]BC.

Since σ(A) ⊂ (0, +∞) and the function f(t) = t1/2 is operator monotone on
(0,∞), the J-selfadjoint square root A1/2 is well defined and its reverse A−1/2 is
also J-selfadjoint. In the case B = In, we have

A−1 − In = A−1/2(In − A)A−1/2 ≥J 0. (2.1)

In general case,

In = B−1/2BB−1/2 ≥J B−1/2AB−1/2 = [A1/2B−1/2]]A1/2B−1/2.
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On account of a result of Potapov-Ginzburg mentioned, and since B−1/2AB−1/2

is invertible, the latter implies that σ(B−1/2AB−1/2) ⊂ (0, +∞). By (2.1), we
obtain

In ≤J (B−1/2AB−1/2)−1 = B1/2A−1B1/2,

which equivalent to A−1 ≥J B−1. �

Theorem 2.3. Let f ∈ C2n. Then for any pair of J-selfadjoint matrices A ≤J B
in Mn such that σ(A), σ(B) ⊂ (0,∞),

f(A) ≤J f(B). (2.2)

Proof. Let λi (1 ≤ i ≤ n) and µj (1 ≤ j ≤ n) be the sets of eigenvalues of A and
B, respectively.

Then there is an interpolation function h ∈ C2n such that f(λ) = h(λ) for
λ ∈ {λi, µj}1≤i,j≤n. By Corollary 1.4, there is a positive Radon measure ρ on
[0,∞] such that

f(α) =

∫
[0,∞]

α(1 + s)

s + α
dρ(s) (α ∈ {λi, µj}1≤i,j≤n).

Then inequality (2.2) is equivalent to the following:∫
[0,∞]

A(1 + s)(s + A)−1dρ(s) ≤J

∫
[0,∞]

B(1 + s)(s + B)−1dρ(s).

Therefore, it suffices to prove that

A(s + A)−1 ≤J B(s + B)−1 (s > 0),

or equivalently,

(s + A)−1 ≥J (s + B)−1 (s > 0). (2.3)

From A ≤J B it follows that s + A ≤J s + B (s > 0). On the other hand,
σ(s + A), σ(s + B) ⊂ (s,∞) ⊂ (0,∞). On account of Lemma 2.2 we obtain
(2.3). �

Remark 2.4. A similar conclusion for matrix convex functions on [0,∞) is wrong.
Indeed, it is well-known that the function f(t) = t2 (t ∈ (0,∞)) is operator
convex. Let A be an arbitrary J-positive matrix (that means, JA is positive) with
spectrum in (2,∞). Put B = A + J. It is clear that A ≤J B and σ(B) ⊂ (0,∞).
We have

f(
A

2
+

B

2
) �J 1

2
f(A) +

1

2
f(B),

that is,
1

2
(A2 + B2)− (

A + B

2
)2 =

1

4
(B − A)2 =

1

4
J2 =

I

4
�J 0.
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