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Abstract. In this paper, we prove that if X is a separable space and X∗ is a
locally 2-uniform convex space, then for any 0 < ε < 1, there exist sequences
{x∗n,1}∞n=1 and {x∗n,2}∞n=1 of strongly extreme points such that

∞
∪

n=1

{
B(x∗n,1, 1−

1
8
ε) ∪B(x∗n,2, 1−

1
8
ε) ∪B(

x∗n,1 + x∗n,2

2
, ε)

}
is a ball-covering of X∗. Moreover, we also prove that if (1) X is a separable
space; (2) X is a locally 2-uniform convex space; (3) X is a uniformly nonsquare
space, then there exists a sequence {xn}∞n=1 of strongly extreme points such
that

∞
∪

n=1
B(xn, rn) is a ball-covering of X.

1. Introduction and preliminaries

Let (X, ‖ · ‖) be a real Banach space. S(X) and B(X) denote the unit sphere
and unit ball, respectively. By X∗ denote the dual space of X. B(x, r) denote the
open ball centered at x and of radius r > 0. C denote closed hull of C. dist(x, C)
denote the distance of x and C. Let N, R and R+ denote the sets of natural
number, reals and nonnegative reals, respectively.

The study of geometric and topological properties of unit balls of Banach spaces
plays a central rule in the geometry of Banach spaces. Almost all properties
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of Banach spaces, such as convexity, smoothness, reflexivity and the Radon–
Nikodym property, can be viewed as properties of the unit ball. We should
mention here that there are many topics studying behavior of ball collections.
For example, the Mazur intersection property, the packing sphere problem of
unit balls, the measure of non-compactness with respect to topological degree,
and the ball topology have also brought great attention of many mathematicians.

Starting with a different viewpoint, a notion of ball-covering property is intro-
duced by Cheng in [3].

Definition 1.1. A Banach space is said to have the ball-covering property if its
unit sphere can be contained in the union of countably many balls off the origin.

In [2], Cheng proved that if X is a locally uniformly convex space and B(X∗)
is w∗-separable, then X has the ball-covering property. In [4], Cheng and Liu
proved that by constructing the equivalent norms on l∞, there exists a Banach
space (l∞, ‖ · ‖0) such that (l∞, ‖ · ‖0) has not the ball-covering property. In [7],
it was established that for every ε > 0 every Banach space with a w∗-separable
dual has an 1 + ε-equivalent norm with the ball-covering property.

Let us recall some geometrical notions which will be used in the further part
of the paper.

Definition 1.2. A Banach space X is said to be uniformly nonsquare if for any
x, y ∈ S(X), there exists δ > 0 such that min{‖x + y‖ , ‖x− y‖} < 2− δ.

Definition 1.3. A point x ∈ S(X) is said to be a strongly extreme point if for
any {xn}∞n=1 ⊂ X, {yn}∞n=1 ⊂ X with ‖xn‖ → 1, ‖yn‖ → 1 and 2x = xn + yn,
there holds ‖xn − yn‖ → 0 as n → ∞. The set of all strongly extreme points of
B(X) is denoted by SExtB(X).

F. Sullivan defined the locally k-uniform convex spaces in [14]. I. Singer defined
the k-strictly convex spaces in [13].

Definition 1.4. A Banach space X is said to be locally k-uniform convex if for
any x ∈ S(X), ε > 0, there exists δx,ε > 0 such that x1, · · · , xk ∈ S(X) and
‖x + x1 + · · ·+ xk‖ ≥ k + 1− δx,ε implies

∆(x, x1, · · · , xk) = sup
x∗i∈S(X∗)

i≤k

∣∣∣∣∣∣∣∣
1 1 · · · 1

x∗1(x) x∗1(x1) · · · x∗1(xk)
· · · · · · · · · · · ·

x∗k(x) x∗k(x1) · · · x∗k(xk)

∣∣∣∣∣∣∣∣ < ε.

Definition 1.5. A Banach space X is said to be k-strictly convex if for any
k + 1 elements x1, x2, · · · , xk+1 ∈ S(X), if ‖x1 + x2 + · · · + xk+1‖ = k + 1, then
x1, x2, · · · , xk+1 are linearly dependent.

It is well known that if X is locally k-uniform convex, then X is k-strictly con-
vex. Clearly, every separable space has ball-covering property, but the converse
version is not true. Moreover, there exists a separable space X such that X∗ is
not separable. It is very natural to ask in which separable Banach spaces X, X∗

has the ball-covering property. In this paper, we prove that if X is a separable



44 S. SHANG, Y. CUI

space and X∗ is a locally 2-uniform convex space, then for any 0 < ε < 1, there
exist sequences {x∗n,1}∞n=1 and {x∗n,2}∞n=1 of strongly extreme points such that

S(X∗) ⊂
∞
∪

n=1

{
B(x∗n,1, 1−

1

8
ε) ∪B(x∗n,2, 1−

1

8
ε) ∪B(

x∗n,1 + x∗n,2

2
, ε)

}
.

Moreover, we also prove that if (1) X is a separable space; (2) X is a locally
2-uniform convex space; (3) X is a uniformly nonsquare space, then there exists

a sequence {xn}∞n=1 of strongly extreme points such that
∞
∪

n=1
B(xn, rn) is a ball-

covering of X. The topic of this paper is related to the topic of [1]-[12].

2. Main results

Theorem 2.1. Suppose that X is a separable space and X∗ is a locally 2-uniform
convex space. Then for any 0 < ε < 1, there exist sequences {x∗n,1}∞n=1 and
{x∗n,2}∞n=1 of strongly extreme points such that

S(X∗) ⊂
∞
∪

n=1

{
B(x∗n,1, 1−

1

8
ε) ∪B(x∗n,2, 1−

1

8
ε) ∪B(

x∗n,1 + x∗n,2

2
, ε)

}
.

Proof. (a) First we will prove that for any x ∈ S(X), if x∗n(x) → 1, then {x∗n}∞n=1

has a Cauchy subsequence. Suppose that {x∗n}∞n=1 has not Cauchy subsequence.
Then {x∗n}∞n=1 is not relatively compact. Hence there exists ε0 > 0 such that
{x∗n}∞n=1 has not finite ε0−net. Pick x∗ ∈ A(x) = {x∗ ∈ S(X∗) : x∗(x) = ‖x‖ =
1}. We claim that there exist x∗1,1 ∈ {x∗n}∞n=1 and x∗1,2 ∈ {x∗n}∞n=1 such that

dist(x∗1,2, span{x∗, x∗1,1}) ≥
ε0

4
.

Otherwise, for any x∗n, we have dist(x∗n, span{x∗, x∗1)} < ε0/4 whenever n ≥ 2.
Then there exists y∗n ∈ span{x∗, x∗1} such that

‖x∗n − y∗n‖ = dist(x∗n, span{x∗, x∗1}) <
ε0

4
.

It is easy to see that {y∗n}∞n=1 is a bounded sequence. Then {y∗n}∞n=1 is relatively
compact. This implies that {y∗n}∞n=1 has a finite ε0/4−net. By ‖x∗n − y∗n‖ ≤
ε0/4, we obtain that {x∗n}∞n=1 has a finite ε0−net, a contradiction. Hence there
exist x∗2,1 ∈ {x∗n}∞n=1 \ {x∗1,1, x

∗
1,2} and x∗2,2 ∈ {x∗n}∞n=1 \ {x∗1,1, x

∗
1,2} such that

dist(x∗2,2, span{x∗, x∗2,1}) ≥ ε0/4.
Generally, there exist x∗n,1 ∈ {x∗n}∞n=1 \ {x∗1,1, x

∗
1,2, x

∗
2,1, x

∗
2,2, · · · , x∗n−1,1, x

∗
n−1,2}

and x∗n,2 ∈ {x∗n}∞n=1 \ {x∗1,1, x
∗
1,2, x

∗
2,1, x

∗
2,2, · · · , x∗n−1,1, x

∗
n−1,2} such that

dist(x∗n,2, span{x∗, x∗n,1}) ≥
ε0

4
.

Hence we define two sequences {x∗n,1}∞n=1 and {x∗n,2}∞n=1. Moreover, we may as-
sume that

3 ≥
∥∥x∗ + x∗n,1 + x∗n,2

∥∥ ≥ x∗(x) + x∗n,1(x) + x∗n,2(x) → 3 as n →∞.

This implies that
∥∥x∗ + x∗n,1 + x∗n,2

∥∥ → 3 as n → ∞. Since {x∗n}∞n=1 has not
Cauchy subsequence, there exists η > 0 such that η = inf {‖x∗n − x∗‖ : n ∈ N}.
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By Hahn-Banach theorem, there exist x∗∗n,1 ∈ S(X∗∗) and x∗∗n,2 ∈ S(X∗∗) such that

x∗∗n,1(x
∗) = 0, x∗∗n,1(x

∗
n,1) ≥ η (2.1)

and

x∗∗n,2(x
∗) = 0, x∗∗n,2(x

∗
n,1) = 0, x∗∗n,2(x

∗
n,2) ≥

ε0

4
. (2.2)

Therefore, by (2.1) and (2.2), we have

∆(x∗, x∗n,2, x
∗
n,3) ≥

∣∣∣∣∣∣
1 1 1

x∗∗n,1(x
∗) x∗∗n,1(x

∗
n,1) x∗∗n,1(x

∗
n,2)

x∗∗n,2(x
∗) x∗∗n,2(x

∗
n,1) x∗∗n,2(x

∗
n,2)

∣∣∣∣∣∣ ≥ ε0

4
η,

contradicting the locally 2-uniform convexity of X∗.
(b) Let {z∗k}∞k=1 ⊂ A(x). Then z∗k(x) = 1. By the proof of (a), we obtain that

{z∗k}∞k=1 has a Cauchy subsequence. Moreover, it is easy to see that A(x) is a
closed set. Hence A(x) is compact.

We will prove that for any x ∈ S(X), the set A(x) is a line segment or a
singleton. In fact, for any x∗1 ∈ A(x), x∗2 ∈ A(x) and x∗3 ∈ A(x), we have

‖x∗1 + x∗2 + x∗3‖ ≥ (x∗1 + x∗2 + x∗3)(x) = 3 = ‖x∗1‖+ ‖x∗2‖+ ‖x∗3‖ .

Hence ‖x∗1 + x∗2 + x∗3‖ = ‖x∗1‖+‖x∗2‖+‖x∗3‖. Since X∗ is locally 2-uniform convex,
X∗ is 2-strictly convex. Hence we may assume that x∗3 = t1x

∗
1 + t2x

∗
2. Thus

1 = x∗3(x) = (t1x
∗
1 + t2x

∗
2)(x) = t1x

∗
1(x) + t2x

∗
2(x) = t1 + t2.

Since A(x) is compact, there exist y∗1 ∈ A(x) and y∗2 ∈ A(x) such that

d(x) = sup {‖x∗ − y∗‖ : x∗ ∈ A(x), y∗ ∈ A(x)} = ‖y∗1 − y∗2‖ .

For clarity, we will divide the proof into two cases.
Case I. Let y∗1 = y∗2. Then A(x) is a single-point set.
Case II. Let y∗1 6= y∗2. Then, for any y∗ ∈ A(x), if y∗1 = ty∗ + (1 − t)y∗2,

then t 6= 0. Otherwise, we have y∗1 = y∗2. Hence, for any y∗ ∈ A(x), we have
y∗ = αy∗1 + (1− α)y∗2. Suppose that α < 0. Then

y∗ = αy∗1 + (1− α)y∗2 ⇒ y∗2 =
1

1− α
y∗ +

−α

1− α
y∗1

Hence

‖y∗1 − y∗2‖ =

∥∥∥∥y∗1 −
1

1− α
y∗ − −α

1− α
y∗1

∥∥∥∥ =
−α

1− α
‖y∗1 − y∗‖ < ‖y∗1 − y∗‖ ,

a contradiction. Similarly, we have 1− α ≥ 0. Thus α ∈ [0, 1]. This implies that
for any x ∈ S(X), there exist x∗1,x ∈ A(x) and x∗2,x ∈ A(x) such that

A(x) = [x∗1,x, x
∗
2,x] = {z∗ : z∗ = λx∗1,x + (1− λ)x∗2,x, λ ∈ [0, 1]}.

(c) We will prove that for any n ∈ N , x∗n,1 and x∗n,2 are strongly extreme points.
Let 2x∗n,1 = y∗k + z∗k, lim

k→∞
‖y∗k‖ = 1 and lim

k→∞
‖z∗k‖ = 1. Since

2 = 2x∗n,1(xn) = y∗k(xn) + z∗k(xn), lim
k→∞

‖y∗k‖ = 1 and lim
k→∞

‖z∗k‖ = 1, (2.3)
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we have

2 = lim sup
k→∞

(y∗k(xn) + z∗k(xn)) ≤ lim sup
k→∞

y∗k(xn) + lim sup
k→∞

z∗k(xn) ≤ 2. (2.4)

Therefore, by (2.3) and (2.4), we have lim sup
k→∞

y∗k(xn) = 1. Hence there exists a

subsequence {ki} of {k} such that lim
i→∞

y∗ki
(xn) = 1. By the proof of (a), there

exists a subsequence {kl} of {ki} such that {y∗kl
}∞l=1 is a Cauchy sequence. Let

y∗ = lim
l→∞

y∗kl
. By 2x∗n,1 = y∗k + z∗k, we obtain that {z∗kl

}∞l=1 is a Cauchy sequence.

Let z∗ = lim
l→∞

z∗kl
. Then ‖y∗‖ = ‖z∗‖ = 1 and 2x∗n,1 = y∗ + z∗. Since

2 = 2x∗n,1(xn) = y∗(xn) + z∗(xn) ≤ 1 + 1 ⇒ y∗(xn) = z∗(xn) = 1,

we have y∗ ∈ A(xn) and z∗ ∈ A(xn). By A(xn) = [x∗n,1, x
∗
n,2], we have y∗ = z∗ =

x∗n,1. Then lim
k→∞

y∗k = x∗n,1. Otherwise, there exist δ > 0 and a subsequence {nj} of

{n} such that
∥∥∥y∗kj

− x∗n,1

∥∥∥ ≥ δ. By the previous proof, there exists a subsequence

{nh} of {nl} such that lim
h→∞

y∗kh
= x∗n,1, a contradiction. By 2x∗n,1 = y∗k + z∗k, we

have lim
k→∞

z∗k = x∗n,1. Hence x∗n,1 is a strongly extreme point. Similarly, we obtain

that x∗n,2 is a strongly extreme point.
(d) For any 0 < ε < 1 and n ∈ N , we define open balls

B(x∗n,1, 1−
1

4
ε), B(x∗n,2, 1−

1

4
ε) and B(

x∗n,1 + x∗n,2

2
,
1

2
ε).

We claim that if lim sup
n→∞

dist(A(xn), y∗) ≤ ε/16, then

y∗ ∈
∞
∪

n=1

{
B(x∗n,1, 1−

1

4
ε) ∪B(x∗n,2, 1−

1

4
ε) ∪B(

x∗n,1 + x∗n,2

2
,
1

2
ε)

}
.

In fact, since lim sup
n→∞

dist(A(xn), y∗) ≤ ε/16, there exists natural number n0 such

that dist(A(xn0), y
∗) ≤ ε/12. Since A(xn0) is compact, there exists z∗0 ∈ A(xn0) =

[x∗n0,1, x
∗
n0,2] such that dist(A(xn0), y

∗) = ‖y∗ − z∗0‖ ≤ ε/12. If ‖z∗0 − (x∗n0,1 +
x∗n0,2)/2‖ < ε/4 + ε/11, then∥∥∥∥y∗ −

x∗n0,1 + x∗n0,2

2

∥∥∥∥ ≤ ‖y∗ − z∗0‖+

∥∥∥∥z∗0 −
x∗n0,1 + x∗n0,2

2

∥∥∥∥ ≤ ε

12
+

ε

4
+

ε

11
<

ε

2
.

This implies that y∗ ∈ B((x∗n0,1 +x∗n0,2)/2, ε/2). Since z∗0 ∈ [x∗n0,1, (x
∗
n0,1 +x∗n0,2)/2]

or z∗0 ∈ [(x∗n0,1 +x∗n0,2)/2, x
∗
n0,2, ], we may assume that z∗0 ∈ [x∗n0,1, (x

∗
n0,1 +x∗n0,2)/2].

Since
∥∥x∗n0,1 − x∗n0,2

∥∥ ≤ 2, we have
∥∥x∗n0,1 − (x∗n0,1 + x∗n0,2)/2

∥∥ ≤ 1. Hence, if∥∥z∗0 − (x∗n0,1 + x∗n0,2)/2
∥∥ ≥ ε/4 + ε/11, then∥∥z∗0 − x∗n0,1

∥∥ =

∥∥∥∥x∗n0,1 −
x∗n0,1 + x∗n0,2

2

∥∥∥∥− ∥∥∥∥z∗0 −
x∗n0,1 + x∗n0,2

2

∥∥∥∥ ≤ 1− ε

4
− ε

11
.

This implies that∥∥y∗ − x∗n0,1

∥∥ ≤ ‖y∗ − z∗0‖+
∥∥z∗0 − x∗n0,1

∥∥ ≤ ε

12
+ 1− ε

4
− ε

11
< 1− ε

4
.

Hence y∗ ∈ B(x∗n0,1, 1− ε/4).
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(e) Let d(x) = sup{‖x∗ − y∗‖ : x∗ ∈ A(x), y∗ ∈ A(x)} and d = sup{d(x) : x ∈
S(X)}. It is easy to see that there exist d1, d2, ..., dm ∈ (ε/32, d) such that

(d1 −
ε

(32)2 , d1 +
ε

(32)2 )∪, ...,∪(dm −
ε

(32)2 , dm +
ε

(32)2 ) ⊃ (
ε

32
, d)

Put

H∗
i =

{
x∗ : x∗ ∈ A(x), di −

ε

(32)2 < d(x) < di +
ε

(32)2

}
,

Hi =

{
x ∈ S(X) : di −

ε

(32)2 < d(x) < di +
ε

(32)2

}
and

H =
{

x ∈ S(X) : d(x) ≤ ε

32

}
for any 1 ≤ i ≤ m. It is easy to see that H1 ∪ ...∪Hm ∪H = S(X). Next we will
prove that for any y∗ ∈ A(x), we have

y∗ ∈
∞
∪

n=1

{
B(x∗n,1, 1−

1

4
ε) ∪B(x∗n,2, 1−

1

4
ε) ∪B(

x∗n,1 + x∗n,2

2
,
1

2
ε)

}
.

For clarity, we will divide the proof into two cases.
Case I. Let x ∈ Hi, where i ∈ {1, 2, ...,m}. By the proof of (b), we have

A(x) = [y∗1,x, y
∗
2,x]. We define a open set

UA(x) =
⋃

x∗∈[y∗1,x,y∗2,x]

B(x∗,
ε

(32)2 ).

Since {xn}∞n=1 is a dense subset of S(X), there exists a subsequence {xn,i}∞n=1 of
{xn}∞n=1 such that {xn,i}∞n=1 is a dense subset of Hi. We may assume, without loss
of generality, that xn,i → x as n →∞. Then there exists natural number N1 such
that A(xn,i) ⊂ UA(x) whenever n > N1. Otherwise, there exists a subsequence
{nk} of {n} such that A(xnk,i) 6⊂ UA(x). Then there exists y∗nk,i ∈ A(xnk,i) such
that y∗nk,i /∈ UA(x). Since∣∣y∗nk,i(x)− 1

∣∣ =
∣∣y∗nk,i(x)− y∗nk,i(xnk,i)

∣∣
≤ ‖y∗nk,i‖ ‖xnk,i − x‖
≤ ‖xnk,i − x‖ → 0 as k →∞,

by the proof of (a), there exists a subsequence {y∗nl,i
}∞l=1 of {y∗nk,i}∞k=1 such that

{y∗nl,i
}∞l=1 converges to a point of A(x). Which contradict y∗nk,i /∈ UA(x). We claim

that lim sup
n→∞

dist(A(xn,i), y
∗
1,x) ≤ ε/16. Otherwise, there exists a subsequence {nk}

of {n} such that lim
k→∞

dist(A(xnk,i), y
∗
1,x) > ε/16. Hence we may assume that∥∥y∗1,x − y∗1,x(n1)

∥∥ ≥ ε

16
,

∥∥y∗1,x − y∗2,x(n1)
∥∥ ≥ ε

16
and n1 > N1. (2.5)

Then A(xn1,i) = [y∗1,x(n1), y
∗
2,x(n1)] ⊂ UA(x). According to the definition of UA(x),

there exist z∗1,x ∈ [y∗1,x, y
∗
2,x] and z∗2,x ∈ [y∗1,x, y

∗
2,x] such that∥∥z∗1,x − y∗1,x(n1)

∥∥ <
ε

(32)2 and
∥∥z∗2,x − y∗2,x(n1)

∥∥ <
ε

(32)2 . (2.6)
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Therefore, by (2.5) and (2.6), we have∥∥z∗1,x − y∗1,x

∥∥ ≥ ∥∥y∗1,x(n1)− y∗1,x

∥∥− ∥∥z∗1,x − y∗1,x(n1)
∥∥ ≥ ε

16
− ε

(32)2

and ∥∥z∗2,x − y∗1,x

∥∥ ≥ ∥∥y∗2,x(n1)− y∗1,x

∥∥− ∥∥z∗2,x − y∗2,x(n1)
∥∥ ≥ ε

16
− ε

(32)2 .

By z∗1,x ∈ [y∗1,x, y
∗
2,x] and z∗2,x ∈ [y∗1,x, y

∗
2,x], we may assume, without loss of gener-

ality, that
∥∥z∗1,x − z∗2,x

∥∥ =
∥∥z∗2,x − y∗1,x

∥∥− ∥∥y∗1,x − z∗1,x

∥∥. Hence∥∥z∗1,x − z∗2,x

∥∥ =
∥∥z∗2,x − y∗1,x

∥∥− ∥∥y∗1,x − z∗1,x

∥∥ ≤ di +
ε

(32)2 − (
ε

16
− ε

(32)2 ). (2.7)

Therefore, by (2.6) and (2.7), we have∥∥y∗1,x(n1)− y∗2,x(n1)
∥∥ ≤

∥∥y∗1,x(n1)− z∗1,x

∥∥ +
∥∥z∗1,x − z∗2,x

∥∥ +
∥∥z∗2,x − y∗2,x(n1)

∥∥
≤ ε

(32)2 + di +
ε

(32)2 − (
ε

16
− ε

(32)2 ) +
ε

(32)2

< di −
ε

32
.

By x ∈ Hi and H∗
i =

{
x∗ : x∗ ∈ A(x), di − ε

/
(32)2 < d(x) < di + ε

/
(32)2} , we

have
∥∥y∗1,x(n1)− y∗2,x(n1)

∥∥ > di − ε
/
(32)2, a contradiction. Similarly, we have

lim sup
n→∞

dist(A(xn,i), y
∗
2,x) ≤ ε/16. Since A(xn,i) is compact, by

lim sup
n→∞

dist(A(xn,i), y
∗
1,x) ≤

ε

16
and lim sup

n→∞
dist(A(xn,i), y

∗
2,x) ≤

ε

16
,

there exist y∗n,1 ∈ A(xn,i) and y∗n,2 ∈ A(xn,i) such that

lim sup
n→∞

∥∥y∗n,1 − y∗1,x

∥∥ ≤ ε

16
and lim sup

n→∞

∥∥y∗n,2 − y∗2,x

∥∥ ≤ ε

16
. (2.8)

Moreover, for any y∗ ∈ A(x), there exists α ∈ [0, 1] such that

y∗ = αy∗1,x + (1− α)y∗2,x. (2.9)

Therefore, by (2.8) and (2.9), we have

lim sup
n→∞

∥∥αy∗n,1 + (1− α)y∗n,2 − y∗
∥∥

= lim sup
n→∞

∥∥αy∗n,1 + (1− α)y∗n,2 − αy∗1,x + (1− α)y∗2,x

∥∥
≤ lim sup

n→∞
α

∥∥y∗n,1 − y∗1,x

∥∥ + lim sup
n→∞

(1− α)
∥∥y∗n,2 − y∗2,x

∥∥
≤ α

ε

16
+ (1− α)

ε

16
=

ε

16
.

By αy∗n,1 + (1−α)y∗n,2 ∈ A(xn,i), we have lim sup
n→∞

dist(A(xn,i), y
∗) ≤ ε/16. By the

proof of (d), we obtain that if y∗ ∈ A(x) = [y∗1,x, y
∗
2,x], then there exists n ∈ N

such that

y∗ ∈ B(x∗n,1, 1−
1

4
ε) ∪B(x∗n,2, 1−

1

4
ε) ∪B(

x∗n,1 + x∗n,2

2
,
1

2
ε).
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Case II. Let x ∈ H and A(x) = [z∗1,x, z
∗
2,x]. We define a open set

UA(x) =
⋃

x∗∈[z∗1,x,z∗2,x]

B(x∗,
ε

(32)2 ).

Since {xn}∞n=1 is a dense subset of S(X), there exists a subsequence {yn}∞n=1 of
{xn}∞n=1 such that {yn}∞n=1 is a dense subset of H. We may assume, without loss
of generality, that yn → x as n →∞. Then there exists natural number N2 such
that A(yn) ⊂ UA(x) whenever n > N2. Moreover, by the definition of UA(x), it is
easy to see that

lim sup
n→∞

dist(A(yn), z∗1,x) ≤
ε

16
and lim sup

n→∞
dist(A(yn), z∗2,x) ≤

ε

16
.

Analogous to the proof of Case I, we obtain that if y∗ ∈ A(x) = [z∗1,x, z
∗
2,x], then

there exists n ∈ N such that

y∗ ∈ B(x∗n,1, 1−
1

4
ε) ∪B(x∗n,2, 1−

1

4
ε) ∪B(

x∗n,1 + x∗n,2

2
,
1

2
ε).

(f) It is easy to see that for any δ > 0, there exists η ∈ (0, 1) such that
(25(1− η))/(4(5η − 1)) < δ. If z∗ ∈ {z∗ ∈ X∗ : ‖z∗ − ηx∗‖ < (1− η)/4}, then
(5η − 1)/4 ≤ ‖z∗‖ ≤ (3η + 1)/4. Hence∥∥∥∥ z∗

‖z∗‖
− x∗

∥∥∥∥ ≤
∥∥∥∥ z∗

‖z∗‖
− x∗

‖z∗‖

∥∥∥∥ +

∥∥∥∥ x∗

‖z∗‖
− x∗

∥∥∥∥
≤

∥∥∥∥ z∗

‖z∗‖
− ηx∗

‖z∗‖

∥∥∥∥ +

∥∥∥∥ ηx∗

‖z∗‖
− x∗

‖z∗‖

∥∥∥∥ +

∥∥∥∥ x∗

‖z∗‖
− x∗

∥∥∥∥
=

1

‖z∗‖
‖z∗ − ηx∗‖+ (1− η)

1

‖z∗‖
+ (

1

‖z∗‖
− 1) ‖x∗‖

≤ 1− η

4
· 4

5η − 1
+ (1− η)

4

5η − 1
+ (

4

5η − 1
− 1)

=
25(1− η)

4(5η − 1)
< δ.

By Bishp-Phelp theorem, there exist z∗0 ∈ X∗ and z0 ∈ S(X) such that z∗0(z0) =
‖z∗0‖ and z∗0 ∈ {z∗ ∈ X∗ : ‖z∗ − ηx∗‖ < (1− η)/4}. Let y∗0 = z∗0/‖z∗0‖. Then
y∗0(z0) = 1 and ‖x∗ − y∗0‖ < δ. This implies that for any x∗ ∈ S(X∗), there exists
a sequence {y∗n}∞n=1 ⊂ S(X∗) such that y∗n → x∗ as n → ∞, where y∗n is norm
attainable on S(X). For any n ∈ N , we define open balls

B(x∗n,1, 1−
1

8
ε), B(x∗n,2, 1−

1

8
ε) and B(

x∗n,1 + x∗n,2

2
, ε).

By the previous proof, we obtain that for any x∗ ∈ S(X∗), there exists z∗ ∈ S(X∗)
such that ‖x∗ − z∗‖ < ε/16, where z∗ ∈ S(X∗) is norm attainable on S(X).
Moreover, by the previous proof, there exists k ∈ N such that

z∗ ∈ B(x∗k,1, 1−
1

4
ε) ∪B(x∗k,2, 1−

1

4
ε) ∪B(

x∗k,1 + x∗k,2

2
,
1

2
ε)
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Hence, if z∗ ∈ B(x∗k,1, 1− ε/4), then∥∥x∗k,1 − x∗
∥∥ ≤ ∥∥x∗k,1 − z∗

∥∥ + ‖x∗ − z∗‖ < 1− ε

4
+

ε

16
< 1− ε

8
.

Similarly, we obtain that if z∗ ∈ B(x∗k,2, 1 − ε/4), then
∥∥x∗k,2 − x∗

∥∥ < 1 − ε/8.
Moreover, if z∗ ∈ B((x∗k,1 + x∗k,2)/2, ε/2), then∥∥∥∥x∗k,1 + x∗k,2

2
− x∗

∥∥∥∥ ≤ ∥∥∥∥x∗k,1 + x∗k,2

2
− z∗

∥∥∥∥ + ‖x∗ − z∗‖ <
ε

2
+

ε

16
< ε.

This implies that

S(X∗) ⊂
∞
∪

n=1

{
B(x∗n,1, 1−

1

8
ε) ∪B(x∗n,2, 1−

1

8
ε) ∪B(

x∗n,1 + x∗n,2

2
, ε)

}
.

This completes the proof. �

By Theorem 2.1, it is very natural to ask whether for any separable space X,
if X∗ is a locally 2-uniform convex space, then there exists a sequence {x∗n}∞n=1 of

strongly extreme points such that
∞
∪

n=1
B(x∗n, rn) is a ball-covering of X∗. Unfor-

tunately, it is not true.

Example 2.2. Let (R2, ‖·‖1) = {(x, y) : x, y ∈ R, ‖(x, y)‖1 = |x| + |y|} and
(R2, ‖·‖∞) = {(x, y) : x, y ∈ R, ‖(x, y)‖∞ = max(|x| , |y|)}. It is easy to see that
(R2, ‖·‖1)

∗ = (R2, ‖·‖∞) and (R2, ‖·‖∞) is locally 2-uniform convex. Moreover, it
is easy to see that

{(1, 1), (1,−1), (−1,−1), (−1, 1)} = SExt(B((R2, ‖·‖∞))).

Suppose that there exist 0 < r1 ≤ 1, 0 < r2 ≤ 1, 0 < r3 ≤ 1 and 0 < r4 ≤ 1 such
that

S((R2, ‖·‖∞)) ⊂ B((1, 1), r1) ∪B((1,−1), r2) ∪B((−1,−1), r3) ∪B((−1, 1), r4).

It is easy to see that

(0, 1) /∈ B((1, 1), r1) ∪B((1,−1), r2) ∪B((−1,−1), r3) ∪B((−1, 1), r4),

a contradiction.

We next will prove that in which Banach spaces, there exists a sequence {x∗n}∞n=1

of strongly extreme points such that
∞
∪

n=1
B(x∗n, rn) is a ball-covering of X∗. First

we define a geometric constant

H(X) = sup
x∈X

{‖x∗ − y∗‖ : x∗ ∈ A(x), y∗ ∈ A(x)}

Proposition 2.3. Banach space X is smooth if and only if H(X) = 0.

Proof. By the definition smooth space, it is easy to see that the Proposition is
true. This completes the proof. �
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Theorem 2.4. Suppose that
(1) X is a separable space;
(2) X∗ is a locally 2-uniform convex space;
(3) H(X) < 2.

Then there exists a sequence {x∗n}∞n=1 of strongly extreme points such that S(X∗) ⊂
∞
∪

n=1
B(x∗n, rn) and sup

n
{rn} < 1.

Proof. Let 2h = H(X) < 2 and A(xn) = [x∗n,1, x
∗
n,2], where {xn}∞n=1 be a dense

subset of S(X). By Theorem 2.1, we obtain that x∗n,1 and x∗n,2 are strongly
extreme points. For any n ∈ N , we define open balls

B(x∗n,1,
3

4
+

1

4
h) and B(x∗n,2,

3

4
+

1

4
h).

We claim that if lim sup
n→∞

dist(A(xn), y∗) ≤ (1− h)/16, then there exists n ∈ N

such that

y∗ ∈ B(x∗n,1,
3

4
+

1

4
h) ∪B(x∗n,2,

3

4
+

1

4
h).

In fact, since lim sup
n→∞

dist(A(xn), y∗) ≤ (1− h)/16, there exists natural number

n0 such that dist(A(xn0), y
∗) ≤ (1− h)/15. Since A(xn0) is compact, there exists

z∗ ∈ A(xn0) = [x∗n0,1, x
∗
n0,2] such that dist(A(xn0), y

∗) = ‖z∗ − y∗‖ ≤ (1− h)/15.
Then ∥∥z∗ − x∗n0,1

∥∥ <
2

3
+

1

3
h or

∥∥z∗ − x∗n0,2

∥∥ <
2

3
+

1

3
h.

Otherwise,
∥∥z∗ − x∗n0,1

∥∥ ≥ 2/3+h/3 and
∥∥z∗ − x∗n0,2

∥∥ ≥ 2/3+h/3. Noticing that∥∥x∗n0,1 − x∗n0,2

∥∥ =
∥∥z∗ − x∗n0,1

∥∥ +
∥∥z∗ − x∗n0,2

∥∥, we have

H(X) ≥
∥∥x∗n0,1 − x∗n0,2

∥∥
=

∥∥z∗ − x∗n0,1

∥∥ +
∥∥z∗ − x∗n0,2

∥∥
≥ 2

3
+

1

3
h +

2

3
+

1

3
h > 2h,

a contradiction. Hence we may assume that
∥∥z∗ − x∗n0,1

∥∥ < 2/3 + h/3. Then∥∥y∗ − x∗n0,1

∥∥ ≤ ‖y∗ − z∗‖+
∥∥z∗ − x∗n0,1

∥∥ ≤ 1− h

15
+

2

3
+

1

3
h <

3

4
+

1

4
h.

This implies that

y∗ ∈ B(x∗n0,1,
3

4
+

1

4
h) ∪B(x∗n0,2,

3

4
+

1

4
h).

Analogous to the proof of Theorem 2.1, we obtain that if y∗ ∈ S(X∗) is norm
attainable on S(X), then there exists n ∈ N such that

y∗ ∈ B(x∗n,1,
3

4
+

1

4
h) ∪B(x∗n,2,

3

4
+

1

4
h).

Analogous to the proof of Theorem 2.1, we obtain that

S(X∗) ⊂
∞
∪

n=1
B(x∗n,1,

4

5
+

1

5
h) ∪B(x∗n,2,

4

5
+

1

5
h).

This completes the proof. �
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Theorem 2.5. Suppose that
(1) X is a separable space;
(2) X is a locally 2-uniform convex space;
(3) X is a uniformly nonsquare space.

Then there exists a sequence {xn}∞n=1 of strongly extreme points such that S(X) ⊂
∞
∪

n=1
B(xn, rn) and sup

n
{rn} < 1.

Proof. Since X is uniformly nonsquare, we obtain that X is reflexive. By Theo-
rem 2.4, we just need to prove that H(X∗) < 2. Since X is a uniformly nonsquare
space, then for any x, y ∈ S(X), there exists δ > 0 such that min{‖x− y‖ , ‖x + y‖}
< 2− δ. Moreover, for any x, y ∈ A(x∗), we have

2 ≥ ‖x + y‖ ≥ x∗(x + y) = x∗(x) + x∗(y) = 2.

Then

H(X∗) = sup
x∗∈X∗

{‖x− y‖ : x ∈ A(x∗), y ∈ A(x∗)} ≤ 2− δ < 2.

This completes the proof. �
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