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Abstract. We give a new characterization for the boundedness of composi-
tion operator followed by differentiation operator acting on Bloch-type spaces
and calculate its essential norm in terms of the n-th power of the induced an-
alytic self-map on the unit disk. From which some sufficient and necessary
conditions of compactness of the operator follow immediately.

1. Introduction and preliminaries

The essential norm of a continuous linear operator T is the distance from the
operator T to compact operators, that is ‖T‖e = inf{‖T −K‖ : K is compact}.
Notice that ‖T‖e = 0 if and only if T is compact, so estimate on ‖T‖e will lead
to condition for the operator T to be compact.

Let H(D) be the space of all holomorphic functions on D and S(D) the collection
of all holomorphic self-maps on D, where D is the unit disk in the complex plane
C.

For 0 < α < ∞, a holomorphic function f is said to be in the Bloch-type space
Bα, or α−Bloch space, if

‖f‖α = sup
z∈D

(1− |z|2)α|f ′(z)| < ∞.
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As we all know, the space Bα is a Banach space under the norm

‖f‖Bα = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|,

It is known that when α = 1, Bα = B, the classical Bloch space; when 0 <
α < 1, Bα = Lip1−α, the analytic Lipschitz space which consists of all f ∈ H(D)
satisfying

|f(z)− f(w)| ≤ C|z − w|1−α,

for some constant C > 0 and all z, w ∈ D; when α > 1, Bα = H∞
α−1, the weighted

Banach space of analytic functions that contains all f ∈ H(D) satisfying

sup
z∈D

(1− |z|2)α−1|f(z)| < ∞.

We refer the readers to the book [21] by K.H. Zhu.
For ϕ ∈ S(D) and u ∈ H(D), we define a weighted composition operator uCϕ

by

uCϕ(f) = u · (f ◦ ϕ)

for f ∈ H(D). As for u ≡ 1, the weighted composition operator is the usual
composition operator, denote by Cϕ. When ϕ is the identity mapping I, the
operator uCI is also called multiplication operator. The recent papers or books [1,
3, 4, 5, 9, 12, 17, 18, 19, 20] and the related references therein are good sources for
information on much of the developments in the theory of composition operators
or weighted composition operators. There are still many unsolved problems, some
old and some new, that are the interests of numerous mathematicians studying
these operators.

Recently interest has arisen to characterize boundedness and compactness of
composition operators Cϕ on Bloch-type spaces in terms of the n-th power of the
analytic self-map ϕ of the open unit disk D. More clearly, Wulan, Zheng and Zhu
[15] obtained a new result about the compactness of the composition operator on
the Bloch space in the unit disk.

Theorem A. Let ϕ ∈ S(D). Then Cϕ is compact on the Bloch space B if and
only if

lim
n→∞

‖ϕn‖B = 0,

where ϕn means the n-th power of ϕ.
Following their approach, Zhao [16] obtained a beautiful essential norm formula

for the composition operator between Bloch-type spaces in in terms of ϕn, which
is stated as follows:

Theorem B. Let 0 < α, β < ∞ and ϕ ∈ S(D). Then the essential norm of the
composition operator Cϕ : Bα → Bβ is

‖Cϕ‖e =
( e

2α

)α

lim sup
n→∞

nα−1‖ϕn‖β.

In [7] Hyvärinen et al. generalized Zhao’s work to composition operators on
Bloch-type spaces with general radial weights which is non-increasing and tends
to zero toward the boundary of D. However, Hyvärinen et al. do not consider
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weights like νlog(z) = (1−|z|2) log
(

2
1−|z|2

)
which is used to define the logarithmic-

Bloch space. Composition operators from logarithmic-Bloch spaces to weighted
Bloch spaces was studied by Castillo et al. in [2](see also [11]). The essential
norm formula for composition operator between Bloch-type spaces when α 6= 1,
was quickly generalized to weighted composition operator by Manhas and Zhao
in [10]; however, they were not able to estimate the essential norm of weighted
composition operators on the Bloch space B. Very recently, in [6], Hyvärinen and
Lindström solved the open problem. Moreover, they presented a direct method
to calculate the essential norm of weighted composition operators acting on all
Bloch-type spaces Bα in terms of u and ϕn.

The differentiation operator D is defined as

Df = f ′, f ∈ H(D).

It is nature to consider the composition operator followed by differentiation op-
erator DCϕ defined as follows,

DCϕf(z) = f ′(ϕ(z))ϕ′(z), f ∈ H(D).

As we all know, the composition operator is a typical bounded operator on
the classical Bloch space B, while the differentiation operators are typically un-
bounded on many Banach spaces of holomorphic functions. Thus it is also inter-
esting to give a characterization for the boundedness and essential norm of the
composition followed by differentiation operator. There has been some work on
composition and differentiation operators between holomorphic spaces, for exam-
ple, [8, 13]. Recently, Wu and Wulan [14] gave a condition for the compactness
of the product of differentiation and composition operator acting on the classical
Bloch space B as follows.

Theorem C. Let ϕ ∈ S(D). Then DCϕ is compact on B if and only if DCϕ is
bounded on B and

lim
n→∞

‖Dϕn‖B = 0.

Building on the above papers, we will give a new estimates for the essential
norm of DCϕ : Bα → Bβ on the unit disk. The paper is organized as follows.
In section 2, we obtain a new characterization of the boundedness of the com-
position followed by differentiation DCϕ : Bα → Bβ in terms of ϕn. In section
3, we calculate the essential norm of DCϕ : Bα → Bβ for all α, β < ∞, and as
corollaries, we characterize compactness of such operators. Some properties are
not easily managed, we need some new methods and calculating technics.

Throughout this paper, C will denote a positive constant, the exact value of
which will vary from one appearance to the next. The notations A � B, A �
B, A � B mean that there maybe different positive constants C such that
B/C ≤ A ≤ CB, A ≤ CB, CB ≤ A.
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2. The boundedness of DCϕ : Bα → Bβ

In this paper, we will borrow two integral operators which are mentioned in
[10]. Let u ∈ H(D), then for every f ∈ H(D), define

Iuf(z) =

∫ z

0

f ′(ζ)u(ζ)dζ, Juf(z) =

∫ z

0

f(ζ)u′(ζ)dζ.

But in the following, we will use the two notations

Iϕ′(ϕ
n)(z) =

∫ z

0

(ϕn)′(ζ)ϕ′(ζ)dζ, Jϕ′(ϕ
n−1)(z) =

∫ z

0

ϕn−1(ζ)ϕ′′(ζ)dζ.

By an easy calculation, it follows that(
Iϕ′(ϕ

n)(z)
)′

= nϕ(z)n−1(ϕ′(z))2 (2.1)

and (
Jϕ′(ϕ

n−1)(z)
)′

= ϕ(z)n−1ϕ′′(z). (2.2)

In this section, we will give a new characterization for the bounded composition
followed by differentiation DCϕ from Bα to Bβ. We first list the following Lemma.

Lemma 2.1. Let α > 0, n ∈ N and 0 ≤ x ≤ 1. Let

Hn,α(x) = xn−1(1− x2)α.

Then Hn,α has the following properties:
(1)

max
0≤x≤1

Hn,α(x) = Hn,α(rn) =

{
1, n = 1;(

2α
n−1+2α

)α(
n−1

n−1+2α

)(n−1)/2

, n > 1.

Where

rn =

{
0, n = 1;(

n−1
n−1+2α

)1/2

, n > 1.
(2.3)

(2) For n ≥ 1, Hn,α is increasing on [0, rn] and decreasing on [rn, 1].
(3) For n ≥ 1, Hn,α is decreasing on [rn, rn+1], and so

min
x∈[rn,rn+1]

Hn,α(x) = Hn,α(rn+1) =
( 2α

n + 2α

)α( n

n + 2α

)(n−1)/2

. (2.4)

Consequently,

lim
n→∞

nα min
x∈[rn,rn+1]

Hn,α(x) =
(2α

e

)α

. (2.5)

The proof for the above lemma uses the important limit lim
x→∞

(1− 1
x
)x = 1

e
and

some easy computations. We omit the details here.
The next lemma is a well-known characterization for the Bloch-type space on

the unit disk.
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Lemma 2.2. For f ∈ H(D), m ∈ N and α > 0. Then

f(z) ∈ Bα ⇔ ‖f‖α � sup
z∈D

(1− |z|2)α+m−1|f (m)(z)| < ∞.

Hence, when f ∈ Bα, we have that

‖f‖α � sup
z∈D

(1− |z|)α+m−1|f (m)(z)| < ∞, (2.6)

where f (m) denotes the m−th order derivative of f ∈ H(D). In this paper, we
only use m = 2, that is,

‖f‖α � sup
z∈D

(1− |z|)α+1|f ′′(z)| < ∞.

In [8], the authors have characterized the boundedness and compactness of
operator DCϕ between Bloch-type spaces, by proving the following results:

Theorem D. Let α, β > 0 and ϕ ∈ S(D). Then the following statements hold:
(a) DCϕ : Bα → Bβ is bounded if and only if

M1 := sup
z∈D

|ϕ′(z)|2(1− |z|2)β

(1− |ϕ(z)|2)α+1
< ∞ and M2 := sup

z∈D

|ϕ′′(z)|(1− |z|2)β

(1− |ϕ(z)|2)α
< ∞. (2.7)

(b) DCϕ : Bα → Bβ is compact if and only if DCϕ : Bα → Bβ is bounded,

lim
|ϕ(z)|→1

|ϕ′(z)|2(1− |z|2)β

(1− |ϕ(z)|2)α+1
= 0 and lim

|ϕ(z)|→1

|ϕ′′(z)|(1− |z|2)β

(1− |ϕ(z)|2)α
= 0. (2.8)

The following main result of this section gives a new characterization for the
boundedness of DCϕ : Bα → Bβ.

Theorem 2.3. Let 0 < α, β < ∞ and ϕ ∈ S(D). Then DCϕ : Bα → Bβ is
bounded if and only if

sup
n≥1

nα‖Iϕ′(ϕ
n)‖β < ∞ (2.9)

and

sup
n≥1

nα‖Jϕ′(ϕ
n−1)‖β < ∞. (2.10)

Proof. Necessity.
Suppose that DCϕ : Bα → Bβ is bounded. By the boundedness and (a) of

Theorem D, it follows that

M1 < ∞ and M2 < ∞.

We first show that (2.9) holds. Indeed,

sup
n≥1

nα‖Iϕ′(ϕ
n)‖β = sup

n≥1
nα sup

z∈D
n(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2,
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and

sup
z∈D

nα+1(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2

= sup
z∈D

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1
nα+1(1− |ϕ(z)|2)α+1|ϕ(z)|n−1

≤ M1 sup
z∈D

nα+1(1− |ϕ(z)|2)α+1|ϕ(z)|n−1. (2.11)

By Lemma 1, it follows that, for every positive integer n ≥ 1,

sup
z∈D

nα+1(1− |ϕ(z)|2)α+1|ϕ(z)|n−1 ≤ nα+1Hn,α+1(rn),

where rn is defined in (2.3). It is easy to see that

lim
n→∞

nα+1Hn,α+1(rn) (2.12)

= lim
n→∞

nα+1
( 2(α + 1)

n− 1 + 2(α + 1)

)α+1( n− 1

n− 1 + 2(α + 1)

)(n−1)/2

= lim
n→∞

[ 2(α + 1)n

n− 1 + 2(α + 1)

]α+1[(
1− 2(α + 1)

n− 1 + 2(α + 1)

)n−1+2(α+1)
2(α+1)

] 2(α+1)
n−1+2(α+1)

n−1
2

=
(2(α + 1)

e

)α+1

. (2.13)

Hence from (2.13), it follows that there exists a constant K1 > 0, independent of
n, such that for every n ≥ 1,

nα+1Hn,α+1(rn) ≤ K1. (2.14)

Thus from (2.11), (12) and (2.14) we obtain that

sup
n≥1

nα‖Iϕ′(ϕ
n)‖β ≤ M1K1 < ∞,

and so (2.9) is true.
Using the similar argument, we can show that (2.10) holds. In fact,

sup
n≥1

nα‖Jϕ′(ϕ
n−1)‖β = sup

n≥1
sup
z∈D

nα(1− |z|2)β|ϕ(z)|n−1|ϕ′′(z)|.

And

sup
z∈D

nα(1− |z|2)β|ϕ(z)|n−1|ϕ′′(z)|

= sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

nα|ϕ(z)|n−1(1− |ϕ(z)|2)α

≤ M2 sup
z∈D

nα(1− |ϕ(z)|2)α|ϕ(z)|n−1

≤ M2n
αHn,α(rn)

= M2n
α
( 2α

n− 1 + 2α

)α( n− 1

n− 1 + 2α

)n−1
2

. (2.15)
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If we note that lim
n→∞

nα
(

2α
n−1+2α

)α(
n−1

n−1+2α

)n−1
2

=
(

2α
e

)α

which can be easily

checked, then we know that there exists a constant K2 such that for every n ≥ 1,

nαHn,α(rn) ≤ K2.

Therefore

sup
n≥1

nα‖Jϕ′(ϕ
n−1)‖β ≤ M2K2 < ∞.

Which means that (2.10) holds.
Sufficiency.
Suppose that (2.9) and (2.10) hold. If we choose n = 1 in (2.9) and (2.10), it

is clear that

‖Iϕ′(ϕ)‖β = sup
z∈D

(1− |z|2)β|ϕ′(z)|2 < ∞ (2.16)

and

‖Jϕ′(1)‖β = sup
z∈D

(1− |z|2)β|ϕ′′(z)| < ∞. (2.17)

Firstly, if sup
z∈D

|ϕ(z)| < 1, then there is a number r, with 0 < r < 1, such that

sup
z∈D

|ϕ(z)| < r.

In this case, by (2.16), (2.17) and (2.6), it follows that for every ‖f‖Bα ≤ 1,

‖DCϕf‖β = sup
z∈D

(1− |z|2)β|f ′′(ϕ(z))(ϕ′(z))2 + f ′(ϕ(z))ϕ′′(z)|

≤ sup
z∈D

(1− |z|2)β|f ′′(ϕ(z))(ϕ′(z))2|+ sup
z∈D

(1− |z|2)β|f ′(ϕ(z))ϕ′′(z)|

= sup
z∈D

(1− |z|2)β|(ϕ′(z))2|
(1− |ϕ(z)|2)α+1

‖f‖α + sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

‖f‖α

≤ sup
z∈D

(1− |z|2)β|(ϕ′(z))2|
(1− r2)α+1

+ sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− r2)α

< ∞. (2.18)

From (2.18), we obtain the boundeness of DCϕ : Bα → Bβ.
In the following, we assume that sup

z∈D
|ϕ(z)| = 1. For any ‖f‖Bα ≤ 1, it is clear

that

‖DCϕf‖β = sup
z∈D

(1− |z|2)β|f ′′(ϕ(z))(ϕ′(z))2 + f ′(ϕ(z))ϕ′′(z)|

= sup
z∈D

(1− |z|2)β|(ϕ′(z))2|
(1− |ϕ(z)|2)α+1

‖f‖α + sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

‖f‖α

≤ sup
z∈D

(1− |z|2)β|(ϕ′(z))2|
(1− |ϕ(z)|2)α+1

+ sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

= I1 + I2. (2.19)
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For any integer n ≥ 1, let

Dn = {z ∈ D : rn ≤ |ϕ(z)| ≤ rn+1},

where rn is given by (2.3). Let k be the the smallest positive integer such that
Dk 6= ∅. Since sup

z∈D
|ϕ(z)| = 1, Dn is not empty for every integer n ≥ k, and

D =
⋃∞

n=k Dn. By Lemma 1, for every n ≥ k,

min
z∈Dn

nα+1|ϕ(z)|n−1(1− |ϕ(z)|2)α+1

≥ nα+1Hn,α+1(rn+1),

Since

lim
n→∞

nα+1Hn,α+1(rn+1) =
(2(α + 1)

e

)α+1

,

there is δ1 > 0 independent of n such that

min
z∈Dn

nα+1(1− |ϕ(z)|2)α+1|ϕ(z)|n−1 ≥ δ1. (2.20)

Hence

I1 : = sup
z∈D

(1− |z|2)β|(ϕ′(z))2|
(1− |ϕ(z)|2)α+1

= sup
z∈D

(1− |z|2)β|(ϕ′(z))2||ϕ(z)|n−1nα+1

(1− |ϕ(z)|2)α+1|ϕ(z)|n−1nα+1

= sup
k≤n

sup
z∈Dn

(1− |z|2)β|(ϕ′(z))2||ϕ(z)|n−1nα+1

(1− |ϕ(z)|2)α+1|ϕ(z)|n−1nα+1

≤ 1

δ1

sup
k≤n

sup
z∈Dn

(1− |z|2)β|(ϕ′(z))2||ϕ(z)|n−1nα+1

≤ 1

δ1

sup
n≥1

sup
z∈D

nα|ϕ′(z)||(ϕn)′(z)|(1− |z|2)β

=
1

δ1

sup
n≥1

nα‖Iϕ′(ϕ
n)‖β < ∞. (2.21)

On the other hand, using the similar proof as that of (2.20), we know that there
is δ2 > 0 independent of n such that

min
z∈Dn

nα(1− |ϕ(z)|2)α|ϕ(z)|n−1 ≥ δ2.
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At the same time, it is clear that

I2 : = sup
z∈D

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

= sup
z∈D

(1− |z|2)β|ϕ′′(z)||ϕ(z)|n−1nα

(1− |ϕ(z)|2)α|ϕ(z)|n−1nα

= sup
k≤n

sup
z∈Dn

(1− |z|2)β|ϕ′′(z)||ϕ(z)|n−1nα

(1− |ϕ(z)|2)α|ϕ(z)|n−1nα

≤ 1

δ2

sup
n≥1

sup
z∈D

(1− |z|2)β|ϕ′′(z)||ϕ(z)|n−1nα

=
1

δ2

sup
n≥1

nα‖Jϕ′(ϕ
n−1)‖β < ∞. (2.22)

By (2.19), (2.21) and (2.22), we obtain that

‖DCϕf‖β ≤
1

δ1

sup
n≥1

nα‖Iϕ′(ϕ
n)‖β +

1

δ2

sup
n≥1

nα‖Jϕ′(ϕ
n−1)‖β < ∞.

Then DCϕ : Bα → Bβ is bounded. This completes the proof. �

Let α = β = 1 in the above theorem, we obtain the following corollary

Corollary 2.4. Let ϕ ∈ S(D). Then DCϕ : B → B is bounded if and only if

sup
n≥1

n‖Iϕ′(ϕ
n)‖B < ∞

and

sup
n≥1

n‖Jϕ′(ϕ
n−1)‖B < ∞.

3. The essential norm of DCϕ : Bα → Bβ

In this section, we will give an estimate for the essential norm of DCϕ : Bα →
Bβ. To simplify the notations, we denote

A :=
( e

2(α + 1)

)α+1

lim sup
n→∞

nα‖Iϕ′(ϕ
n)‖β

and

B :=
( e

2α

)α

lim sup
n→∞

nα‖Jϕ′(ϕ
n−1)‖β.

Moreover, for r ∈ (0, 1), let Krf(z) = f(rz). It is obvious that Kr is a compact
operator on the spaces Bα or Bα

0 for any α > 0 and with ‖Kr‖ ≤ 1.
Next we list three lemmas, they are respectively corresponding to the three

different cases 0 < α < 1, α = 1, and α > 1.

Lemma 3.1. [9, Lemma 1] Let 0 < α < 1. Then there is a sequence {γk}, with
0 < γk < 1 tending to 1, such that the compact operator

Ln =
1

n

n∑
k=1

Kγk
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on Bα
0 satisfies:

(i) For any t ∈ [0, 1), lim
n→∞

sup
‖f‖Bα≤1

sup
|z|≤t

|((I − Ln)f)′(z)| = 0.

(ii) lim
n→∞

sup
‖f‖Bα≤1

sup
z∈D

|(I − Ln)f(z)| = 0.

(iii) lim sup
n→∞

‖I − Ln‖ ≤ 1.

Furthermore, these statements hold as well for the sequence of biadjoints L∗∗
n

on Bα.

Lemma 3.2. [9, Lemma 2] Let α = 1. Then there is a sequence {γk}, with
0 < γk < 1 tending to 1, such that the compact operator

Ln =
1

n

n∑
k=1

Kγk

on B0 satisfies:
(i) For any t ∈ [0, 1), lim

n→∞
sup

‖f‖B≤1

sup
|z|≤t

|((I − Ln)f)′(z)| = 0.

(iia) lim sup
n→∞

sup
‖f‖B≤1

sup
|z|>s

|(I −Ln)f(z)|
(

log 1
1−|z|2

)−1

≤ 1, for s sufficiently close

to 1, and
(iib) lim

n→∞
sup

‖f‖B≤1

sup
|z|≤s

|(I − Ln)f(z)| = 0, for the above s.

(iii) lim sup
n→∞

‖I − Ln‖ ≤ 1.

Furthermore, the same is true for the sequence of biadjoints L∗∗
n on B.

Lemma 3.3. [16, Lemma 4.3] Let α > 1. Then there is a sequence {γk}, with
0 < γk < 1 tending to 1, such that the compact operator

Ln =
1

n

n∑
k=1

Kγk

on Bα
0 satisfies:

(i) For any t ∈ [0, 1), lim
n→∞

sup
‖f‖Bα≤1

sup
|z|≤t

|((I − Ln)f)′(z)| = 0.

(ii) For any t ∈ [0, 1), lim
n→∞

sup
‖f‖Bα≤1

sup
|z|≤t

|(I − Ln)f(z)| = 0.

(iii) lim sup
n→∞

‖I − Ln‖ ≤ 1.

Furthermore, these statements hold as well for the sequence of biadjoints L∗∗
n

on Bα.

The next lemma can be proved in a standard way; see, for example, Proposition
3.11 in [3].

Lemma 3.4. Let 0 < α, β < ∞ and ϕ ∈ S(D). Then DCϕ : Bα → Bβ is
compact if and only if DCϕ : Bα → Bβ is bounded and for any bounded sequence
{fk}k∈N in Bα which converges to zero uniformly on compact subsets of D, then
‖DCϕfk‖Bβ → 0 as k →∞.
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Theorem 3.5. Let 0 < α, β < ∞ and ϕ ∈ S(D). Suppose that DCϕ : Bα → Bβ

is bounded. Then the estimate for the essential norm of DCϕ : Bα → Bβ is

max{ A

3 · 2α+1
,

B

2α+1(3α + 4)
} ≤ ‖DCϕ‖e � (A + B). (3.1)

Proof. Since DCϕ : Bα → Bβ is bounded, it follows from Theorem 1 that A <
∞ and B < ∞. Besides, from the proof of Theorem 1, we know that (2.16) and
(2.17) are true.

In the case, sup
z∈D

|ϕ(z)| < 1. Then there is a number r ∈ (0, 1) such that

sup
z∈D

|ϕ(z)| < r.

In this case, the operator DCϕ : Bα → Bβ is compact. Indeed, suppose that
{fk}k∈N is a bounded sequence in Bα which converges to zero uniformly on com-
pact subsets of D, and denote sup

k∈N
‖fk‖Bα ≤ L. Hence using Cauchy’s integral for-

mula, f ′k and f ′′k converge to zero uniformly on compact subsets of D as k →∞.
Then by (2.16) and (2.17), it follows that

‖DCϕfk‖Bβ

=
(
|f ′k(ϕ(0))ϕ′(0)|+ sup

z∈D
(1− |z|2)β|f ′′k (ϕ(z))(ϕ′(z))2 + f ′k(ϕ(z))ϕ′′(z)|

)
≤ |f ′k(ϕ(0))ϕ′(0)|+ sup

z∈D
(1− |z|2)β|f ′′k (ϕ(z))(ϕ′(z))2|

+ sup
z∈D

(1− |z|2)β|f ′k(ϕ(z))ϕ′′(z)|

≤ |f ′k(ϕ(0))ϕ′(0)|+ sup
|w|≤r

|f ′′k (w)| sup
z∈D

(1− |z|2)β|ϕ′(z)|2

+ sup
|w|≤r

|f ′k(w)| sup
z∈D

(1− |z|2)β|ϕ′′(z)|

→ 0, as k →∞.

That is,

lim
k→∞

‖DCϕfk‖Bβ = 0.

From Lemma 6, it is clear that the operator DCϕ : Bα → Bβ is compact. That is

‖DCϕ‖e = 0. (3.2)

On the other hand, by (2.16), and since lim
n→∞

nαrn−1 = 0, it follows that

A : =
( e

2(α + 1)

)α+1

lim sup
n→∞

nα‖Iϕ′(ϕ
n)‖β

=
( e

2(α + 1)

)α+1

lim sup
n→∞

sup
z∈D

nα(1− |z|2)β|ϕ′(z)|2|ϕ(z)|n−1

≤
( e

2(α + 1)

)α+1

lim sup
n→∞

nαrn−1 sup
z∈D

(1− |z|2)β|ϕ′(z)|2

= 0. (3.3)
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Similarly, by (2.17) it follows that

B : =
( e

2α

)α

lim sup
n→∞

nα‖Jϕ′(ϕ
n−1)‖β

=
( e

2α

)α

lim sup
n→∞

nα sup
z∈D

(1− |z|2)β|ϕ(z)|n−1|ϕ′′(z)|

≤
( e

2α

)α

lim sup
n→∞

nαrn−1 sup
z∈D

(1− |z|2)β|ϕ′′(z)|

= 0. (3.4)

From (3.2), (3.3) and (3.4), we know that both sides of (3.1) are zero. Thus
for the case sup

z∈D
|ϕ(z)| < 1, our essential norm formula (3.1) is trivially true.

Therefore, in the following, we assume that

sup
z∈D

|ϕ(z)| = 1.

We first prove the upper bounded. Let Ln be the sequence of operators given
in Lemmas 3, 4, and 5. Since each Ln is compact as an operator from Bα to Bα,
and DCϕLn : Bα → Bβ is also compact. Thus we have that

‖DCϕ‖e ≤ lim sup
n→∞

‖DCϕ −DCϕLn‖

= lim sup
n→∞

‖DCϕ(I − Ln)‖

= lim sup
n→∞

sup
‖f‖Bα≤1

‖(DCϕ(I − Ln)f‖Bβ

≤ lim sup
n→∞

sup
‖f‖Bα≤1

|((I − Ln)f)′(ϕ(0))| |ϕ′(0)| (3.5)

+ lim sup
n→∞

sup
‖f‖Bα≤1

sup
z∈D

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β (3.6)

+ lim sup
n→∞

sup
‖f‖Bα≤1

sup
z∈D

|((I − Ln)f)′(ϕ(z))||ϕ′′(z)|(1− |z|2)β. (3.7)

By Lemma 3 (ii), Lemma 4 (iib) , Lemma 5 (ii) and Cauchy’ integral formula,
we can obtain that

lim sup
n→∞

sup
‖f‖Bα≤1

|((I − Ln)f)′(ϕ(0))| |ϕ′(0)| = 0. (3.8)

Next we consider the term in (3.6)

I := sup
‖f‖Bα≤1

sup
z∈D

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β.

For any positive integer n ≥ 1, let

Dn = {z ∈ D : rn ≤ |ϕ(z)| ≤ rn+1},

where rn is given by (2.3). Let k be the the smallest positive integer such that
Dk 6= ∅. Since sup

z∈D
|ϕ(z)| = 1, Dn is not empty for every integer n ≥ k, and
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D =
⋃∞

n=k Dn. We divide I into two parts:

I1 := sup
‖f‖Bα≤1

sup
k≤i≤N−1

sup
z∈Di

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β,

I2 := sup
‖f‖Bα≤1

sup
N≤i

sup
z∈Di

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β,

where N is a positive integer chosen as follows.
Consider the term I1, by (i) of Lemmas 3, 4, 5, Cauchy’s integral formula and

(2.16)

lim sup
n→∞

I1 (3.9)

= lim sup
n→∞

sup
‖f‖Bα≤1

sup
k≤i≤N−1

sup
z∈Di

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β

≤ sup
z∈D

(1− |z|2)β|ϕ′(z)|2 lim sup
n→∞

sup
‖f‖Bα≤1

sup
rk≤|ϕ(z)|≤rN−1

|((I − Ln)f)′′(ϕ(z))|

= 0. (3.10)

Next consider the term I2,

I2 := sup
‖f‖Bα≤1

sup
N≤i

sup
z∈Di

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β

= sup
‖f‖Bα≤1

sup
N≤i

sup
z∈Di

|((I − Ln)f)′′(ϕ(z))||ϕ′(z)|2(1− |z|2)β |ϕ(z)|i−1(1− |ϕ(z)|2)α+1iα+1

|ϕ(z)|i−1(1− |ϕ(z)|2)α+1iα+1
.

Since

|ϕ(z)|i−1(1− |ϕ(z)|2)α+1iα+1 ≥ iα+1 min
x∈[ri,ri+1]

Hn,α+1(x),

and by Lemma 1, we have that

lim
i→∞

iα+1 min
x∈[ri,ri+1]

Hn,α+1(x) =
(2(α + 1)

e

)α+1

.

Therefore, for an arbitrary ε > 0, we can find N > k + 1, and N large enough
such that for any i ≥ N,[

|ϕ(z)|i−1(1− |ϕ(z)|2)α+1iα+1
]−1

<
( e

2(α + 1)

)α+1

+ ε.

Then by the above inequality and (2.6), we have that

lim sup
n→∞

I2 ≤
�� e

2(α + 1)

�α+1

+ ε
�

· lim sup
n→∞

sup
‖f‖Bα≤1

sup
N≤i

sup
z∈Di

�
(1− |ϕ(z)|2)α+1|((I − Ln)f)′′(ϕ(z))|

�
iα+1|ϕ(z)|i−1|ϕ′(z)|2(1− |z|2)β

�
�� e

2(α + 1)

�α+1

+ ε
�

sup
‖f‖Bα≤1

‖(I − Ln)f‖Bα sup
N≤i

sup
z∈Di

iαi|ϕ′(z)|2|ϕ(z)|i−1(1− |z|2)β

�
�� e

2(α + 1)

�α+1

+ ε
�
‖I − Ln‖ sup

N≤i
iα‖Iϕ′(ϕi)‖β

�
�� e

2(α + 1)

�α+1

+ ε
�

sup
N≤i

iα‖Iϕ′(ϕi)‖β . (3.11)

Where the last inequality follows from the (iii) of Lemmas 3, 4, and 5.
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From (3.10) and (3.11), it follows that the term in (3.6) is less than

C
(( e

2(α + 1)

)α+1

+ ε
)

sup
N≤i

iα‖Iϕ′(ϕ
i)‖β.

Employing the similar argument as that of (3.6), we get the term in (3.7) is
less than

C
(( e

2α

)α

+ ε
)

sup
N≤i

iα‖Jϕ′(ϕ
i−1)‖β,

where ε and N are given as above (N may be not the same, we can choose the
bigger one). Hence

‖DCϕ‖e �
(( e

2(α + 1)

)α+1

+ ε
)

sup
N≤i

iα‖Iϕ′(ϕ
i)‖β

+
(( e

2α

)α

+ ε
)

sup
N≤i

iα‖Jϕ′(ϕ
i−1)‖β.

Since ε is an arbitrary positive number, we obtain that

‖DCϕ‖e �
( e

2(α + 1)

)α+1

lim sup
i→∞

iα‖Iϕ′(ϕ
i)‖β +

( e

2α

)α

lim sup
i→∞

iα‖Jϕ′(ϕ
i−1)‖β

� A + B.

That is the upper estimate.
Now, we still suppose that sup

z∈D
|ϕ(z)| = 1. We prove the lower estimate. Take

every compact operator K : Bα → Bβ. Then for each sequence {fk}k∈N in Bα

with ‖fk‖Bα ≤ 1, and fk converges to zero weakly in Bα, it follows that

lim
k→∞

‖Kfk‖Bβ = 0.

Therefore,

‖DCϕ −K‖ ≥ lim sup
k→∞

‖(DCϕ −K)fk‖Bβ ≥ lim sup
k→∞

‖DCϕ(fk)‖Bβ .

Choose a sequence {ak}k∈N in D such that |ϕ(ak)| → 1 as k →∞. For any α > 0
consider the functions fk defined by

fk(z) = (α + 1)
1− |ϕ(ak)|2

(1− ϕ(ak)z)α
− α

(1− |ϕ(ak)|2)2

(1− ϕ(ak)z)α+1
.

Clearly fk(z) converges to zero uniformly on compact subsets of D. Notice that

f ′k(z) = α(α + 1)ϕ(ak)
1− |ϕ(ak)|2

(1− ϕ(ak)z)α+1
− α(α + 1)ϕ(ak)

(1− |ϕ(ak)|2)2

(1− ϕ(ak)z)α+2

and

f ′′k (z) = α(α + 1)2(ϕ(ak))
2 1− |ϕ(ak)|2

(1− ϕ(ak)z)α+2

−α(α + 1)(α + 2)(ϕ(ak))
2 (1− |ϕ(ak)|2)2

(1− ϕ(ak)z)α+3
.
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Thus it follows that

f ′k(ϕ(ak)) = 0, f ′′k (ϕ(ak)) = −α(α + 1)(ϕ(ak))
2

(1− |ϕ(ak)|2)α+1
(3.12)

and

|f ′k(z)| ≤ α(α + 1)
1− |ϕ(ak)|2

(1− |z|)α(1− |ϕ(ak)|)
+ α(α + 1)

(1− |ϕ(ak)|2)2

(1− |z|)α(1− |ϕ(ak)|)2

≤ α(α + 1)
2α+1 + 2α+2

(1− |z|2)α
=

3α(α + 1)2α+1

(1− |z|2)α
.

From which it follows that

‖fk‖Bα ≤ |fk(0)|+ 3α(α + 1)2α+1. (3.13)

Let f̃k(z) = fk(z)/‖fk‖Bα . Then ‖f̃k‖Bα = 1, and f̃k converges to zero uniformly
on compact subsets of D. Then by (3.12) and (3.13), it follows that

‖DCϕ‖e ≥ lim sup
k→∞

‖DCϕ(f̃k)‖Bβ

≥ lim sup
k→∞

‖DCϕ(f̃k)‖β

= lim sup
k→∞

‖DCϕ(fk)‖β

‖fk‖Bα

≥ lim sup
k→∞

(1− |ak|2)β|f ′′(ϕ(ak))(ϕ
′(ak))

2 + f ′(ϕ(ak))ϕ
′′(ak)|

|fk(0)|+ 3α(α + 1)2α+1

= lim sup
k→∞

(1− |ak|2)β|f ′′(ϕ(ak))(ϕ
′(ak))

2|
|fk(0)|+ 3α(α + 1)2α+1

= lim sup
k→∞

1

|fk(0)|+ 3α(α + 1)2α+1

α(α + 1)(1− |ak|2)β|ϕ′(ak)|2|ϕ(ak)|2

(1− |ϕ(ak)|2)α+1

= lim sup
k→∞

1

|fk(0)|+ 3 · 2α+1

(1− |ak|2)β|ϕ′(ak)|2

(1− |ϕ(ak)|2)α+1
.

Since

lim
n→∞

|fk(0)| = lim
k→∞

(
(α + 1)(1− |ϕ(ak)|2)− α(1− |ϕ(ak)|2)2

)
= 0,

we obtain that

‖DCϕ‖e ≥
1

3 · 2α+1
lim

|ϕ(z)|→1

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1
. (3.14)

On the other hand, we consider the following term( e

2(α + 1)

)α+1

nα‖Iϕ′(ϕ
n)‖β

=
( e

2(α + 1)

)α+1

nα+1 sup
z∈D

(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2

= L1 + L2.
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Where

L1 :=
( e

2(α + 1)

)α+1

nα+1 sup
|ϕ(z)|≤s

(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2,

L2 :=
( e

2(α + 1)

)α+1

nα+1 sup
|ϕ(z)|>s

(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2.

here s ∈ (0, 1). For L1, by (2.16) it follows that

L1 : =
( e

2(α + 1)

)α+1

nα+1 sup
|ϕ(z)|≤s

(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2

≤
( e

2(α + 1)

)α+1(
sup
z∈D

(1− |z|2)β|ϕ′(z)|2
)
nα+1sn−1.

Thus

lim sup
n→∞

L1 = 0.

For L2, by Lemma 1, it is clear that

L2 : =
( e

2(α + 1)

)α+1

nα+1 sup
|ϕ(z)|>s

(1− |z|2)β|ϕ(z)|n−1|ϕ′(z)|2

=
( e

2(α + 1)

)α+1

sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2nα+1(|ϕ(z)|n−1(1− |ϕ(z)|2)α+1)

(1− |ϕ(z)|2)α+1

≤
( e

2(α + 1)

)α+1

nα+1Hn,α+1(rn) sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1
,

where rn is defined in (2.3). Since

lim
n→∞

nα+1Hn,α+1(rn) =
(2(α + 1)

e

)α+1

,

we have that

lim sup
n→∞

L2 ≤ lim sup
n→∞

( e

2(α + 1)

)α+1

nα+1Hn,α+1(rn) sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1

=
( e

2(α + 1)

)α+1(2(α + 1)

e

)α+1

sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1

= sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1
.

Therefore,

lim sup
n→∞

( e

2(α + 1)

)α+1

nα‖Iϕ′(ϕ
n)‖β

≤ lim
s→1

sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1

≤ lim sup
|ϕ(z)|→1

(1− |z|2)β|ϕ′(z)|2

(1− |ϕ(z)|2)α+1
. (3.15)
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From (3.15) and (3.14), it follows that

‖DCϕ‖e ≥ 1

3 · 2α+1

( e

2(α + 1)

)α+1

lim sup
n→∞

nα‖Iϕ′(ϕ
n)‖β

=
A

3 · 2α+1
. (3.16)

Next we proceed to prove the other lower bound in a similar way as above. We
still choose a sequence {ak}k∈N in D such that |ϕ(ak)| → 1 as k → ∞. For any
α > 0 consider the functions gk defined by

gk(z) = (α + 2)
1− |ϕ(ak)|2

(1− ϕ(ak)z)α
− α

(1− |ϕ(ak)|2)2

(1− ϕ(ak)z)α+1
.

Clearly gk(z) converges to zero uniformly on compact subsets of D. Moreover,

g′k(z) = α(α + 2)
(1− |ϕ(ak)|2)ϕ(ak)

(1− ϕ(ak)z)α+1
− α(α + 1)

(1− |ϕ(ak)|2)2ϕ(ak)

(1− ϕ(ak)z)α+2
,

g′′k(z) = α(α + 1)(α + 2)
(1− |ϕ(ak)|2)(ϕ(ak))

2

(1− ϕ(ak)z)α+2

−α(α + 1)(α + 2)
(1− |ϕ(ak)|2)2(ϕ(ak))

2

(1− ϕ(ak)z)α+3
,

g′k(ϕ(ak)) =
αϕ(ak)

(1− |ϕ(ak)|2)α
, g′′k(ϕ(ak)) = 0.

and

|g′k(z)| ≤ α(α + 2)
1− |ϕ(ak)|2

(1− |ϕ(ak)|)(1− |z|)α
+ α(α + 1)

(1− |ϕ(ak)|2)2

(1− |ϕ(ak)|)2(1− |z|)α

≤ α(α + 2)2α+1 + α(α + 1)2α+2

(1− |z|2)α

=
2α+1α(3α + 4)

(1− |z|2)α
.

Besides,

gk(0) = (α + 2)(1− |ϕ(ak)|2)− α(1− |ϕ(ak)|2)2 → 0, k →∞.
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We choose the test functions g̃k(z) = gk/‖gk‖Bα . Then it follows that

‖DCϕ‖e ≥ lim sup
k→∞

‖DCϕ(g̃k)‖Bβ

≥ lim sup
k→∞

‖DCϕ(g̃k)‖β

= lim sup
k→∞

‖DCϕ(gk)‖β

‖gk‖Bα

≥ lim sup
k→∞

(1− |ak|2)β|g′′(ϕ(ak))(ϕ
′(ak))

2 + g′(ϕ(ak))ϕ
′′(ak)|

|gk(0)|+ 2α+1α(3α + 4)

= lim sup
k→∞

(1− |ak|2)β|g′(ϕ(ak))ϕ
′′(ak)|

|gk(0)|+ 2α+1α(3α + 4)

= lim sup
k→∞

1

2α+1α(3α + 4)

α(1− |ak|2)β|ϕ(ak)||ϕ′′(ak)|
(1− |ϕ(ak)|2)α

=
1

2α+1(3α + 4)
lim sup
|ϕ(z)|→1

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

.

On the other hand, using the similar proof as that of (3.15), we have that( e

2α

)α

nα‖Jϕ′(ϕ
n−1)‖β

≤ lim
s→1

sup
|ϕ(z)|>s

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

≤ lim sup
|ϕ(z)|→1

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

.

Then it is clear that

‖DCϕ‖e ≥ 1

2α+1(3α + 4)
lim sup
|ϕ(z)|→1

(1− |z|2)β|ϕ′′(z)|
(1− |ϕ(z)|2)α

=
B

2α+1(3α + 4)
. (3.17)

From (3.16) and (3.17) we obtain the lower bound for the essential norm. This
completes the proof. �

The following result is an immediate consequence of Theorem 2.

Corollary 3.6. Let 0 < α, β < ∞ and ϕ ∈ S(D). Suppose that the operator
DCϕ : Bα → Bβ is bounded. Then DCϕ : Bα → Bβ is compact if and only if

lim sup
n→∞

nα‖Iϕ′(ϕ
n)‖β = 0

and

lim sup
n→∞

nα‖Jϕ′(ϕ
n−1)‖β = 0.

Combing Theorem D with our Corollary 2, it is easy to obtain Corollary 3
below.
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Corollary 3.7. Let 0 < α, β < ∞ and ϕ ∈ S(D). Suppose that the operator
DCϕ : Bα → Bβ is bounded. Then the following statements are equivalent.

(a)

lim sup
n→∞

nα‖Iϕ′(ϕ
n)‖β = 0 and lim sup

n→∞
nα‖Jϕ′(ϕ

n−1)‖β = 0.

(b)

lim
|ϕ(z)|→1

|ϕ′(z)|2(1− |z|2)β

(1− |ϕ(z)|2)α+1
= 0 and lim

|ϕ(z)|→1

|ϕ′′(z)|(1− |z|2)β

(1− |ϕ(z)|2)α
= 0.
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