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CHLODOVSKY TYPE OPERATORS ON PARABOLIC DOMAIN

SEZGİN SUCU∗ AND ERTAN İBİKLİ

Communicated by T. Sugawa

Abstract. In the present paper, we investigate approximation to analytic
function having property B by complex linear operators sequence in parabolic
domain. We apply Gergen, Dressel and Purcell’s method to Chlodovsky type
complex Szasz operators.

1. Introduction

There are many reasons for studying approximation theory ranging from a need
to represent functions in computer calculations to an interest in mathematics of
the subject. Over one hundred years ago Weierstrass proved a very significant
theorem on uniform approximation of continuous functions by polynomials on
intervals of the real line. His study had a incredible impression on the advance-
ment of some parts of the theory of functions besides was an initial point for
investigation of analytic approximation on subset in complex space.

Picard, Volterra and Lebesgue gave other proofs of the above mentioned ap-
proximation theorem after Weierstrass. One of the most elementary proofs of
this theorem is given by Bernstein. Bernstein [1] obtained a probabilistic proof
of Weierstrass’ approximation theorem by introducing the following polynomials

Bn (f ; x) :=
n∑

k=0

(
n

k

)
xk (1− x)n−k f

(
k

n

)
, n ∈ N

Date: Received: 22 December 2012; Revised: 12 February 2013; Accepted: 25 February
2013.

∗ Corresponding author.
2010 Mathematics Subject Classification. Primary 30E10; Secondary 41A35, 47A58.
Key words and phrases. Chlodovsky operator, Vitali theorem, parabolic domain, property

B uniformly.
14



CHLODOVSKY TYPE OPERATORS ON PARABOLIC DOMAIN 15

known as Bernstein polynomials. In the case of the function f (z) is defined
and analytic in a certain region involving the interval [0, 1], the problem was
investigated by Wright [26], Kantorovich [15] and then Bernstein [2]. The degree
of approximation for previous mentioned work at first was obtained by Gal [5] on
compact disks.

Bernstein–Chlodovsky polynomials were introduced by Chlodovsky [3] as a
generalization of Bernstein polynomials to the interval [0, τn], where τn tends to
infinity and with the properties τn

n
→ 0 as n →∞. The polynomials are defined

by

B̃n (f ; x) :=
n∑

k=0

(
n

k

)(
x

τn

)k (
1− x

τn

)n−k

f

(
τnk

n

)
, n ∈ N.

In his paper, he also proved that the sequence of complex version of Bernstein–
Chlodovsky polynomials B̃n (f ; z) converges uniformly to analytic function f (z)
in each circle of finite radius under some conditions on τn.

In 1950, Szasz [22] studied approximations of functions on an unbounded in-
terval. He extended the Bernstein polynomials to an infinite interval as follows

Sn (f ; x) := e−nx

∞∑
k=0

(nx)k

k!
f

(
k

n

)
, n ∈ N. (1.1)

Szasz–Chlodovsky operator was defined as

Cn (f ; x) := e−
nx
τn

∞∑
k=0

(
nx

τn

)k
1

k!
f

(
τnk

n

)
(1.2)

and studied by Stypinski [21]. The author investigated convergence and approxi-
mation properties of Chlodovsky variant of Szasz operators given by (1.2).

Gergen, Dressel and Purcell [11] proved that for a certain class of analytic
functions f (z) the sequence of complex Szasz operators Sn (f ; z) approximates
these functions. Quantitative estimates of this convergence result were obtained
by Gal ([4], [6], (see also [5], pp. 104-113 and pp. 114-124, respectively)). Ghor-
banalizadeh [12] extended Gergen, Dressel and Purcell’s results for Stancu type
generalization of Szasz operators.

In recent years there has been considerable interest in the problem of complex
approximation. Convergence properties with quantitative estimations of complex
Bernstein type polynomials in compact disks were studied by many authors such
as Gal ([4], [5], [6], [7], [8]), Gal–Gupta ([9], [10]), Gupta [13], Mahmudov([16],
[17]), Mahmudov–Gupta [18], Ostrovska [19] and Wang–Wu [25].

Considering the parabolic set for d > 0

p (d) :=
{
z = x + iy : |z| < x + 2d2

}
.

If there exists to each b (0 < b < d) a positive number B (b) such that for z ∈ p (b)

|f (z)| ≤ B (b) exp

{
x

2
− |x|1/2

[
b2 − 1

2
(|z| − x)

]1/2
}

, (1.3)

then a function f (z) defined in p (d) is said to be property B in p (d) . We say
that a sequence {fk}k>0, each defined in p (d) , has property B uniformly in p (d)
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if there corresponds to each b (0 < b < d) a positive constant B (b) such that (1.3)
holds for each fk function.

In this paper, we propose a modification of Szasz operators as follows

Cα,β
n (f ; z) := e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
f

(
k + α

n + β
τn

)
, (1.4)

where α, β ≥ 0 and (τn) is a positive increasing sequence of real with the
properties

lim
n→∞

τn = ∞ and lim
n→∞

τn

n
= 0. (1.5)

This paper is organized as follows. We shall first introduce basic notion on
necessary and sufficient conditions that a function be represented by a convergent
Laguerre series in a parabolic domain p (d) and give some lemmas. By using these
lemmas, we show that for analytic function f (z) having property B in p (d) the
sequence of Chlodovsky type complex Szasz operators Cα,β

n (f ; z) converges to the
function f (z) in parabolic domain.

2. Approximation by complex Chlodovsky type operators

The problem of finding necessary and sufficient conditions that a function be
represented by a Hermite series convergent in a strip has been solved by Hille
[14]. Pollard [20] has solved the corresponding problem for Laguerre series of
order zero in a strip. On the other hand, Szasz and Yeardley [23] investigated the
problem for Laguerre series of order θ (θ > −1) getting as a region a parabola by
way of a strip.

In the first part of this section, we give some background materials needed for
proof our main theorem.

Theorem 2.1. (Szasz and Yeardley [23]) A necessary and sufficient condition
that a function f (z) be analytic and has property B in p (d) , d > 0, is that f (z)
possess a Laguerre series (of order 0)

f (z) ∼
∞∑

m=0

amLm (z) , am =

∞∫
0

e−xLm (x) f (x) dx,

which converges to in p (d) .

Lemma 2.2. If f (z) is polynomial, then Cα,β
n (f ; z) is polynomial. Besides, the

degree of Cα,β
n (f ; z) is equal to the degree of f (z) .

Proof. For m ∈ N0 let be f (z) = em (z) = zm. It is easy to see that the following
identity

e−
nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
km =

m∑
j=0

F
(m)
j

(
nz

τn

)j

(2.1)
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is true, where F
(m)
j are constants such that F

(m)
m = 1. According to the Binomial

identity and statement (2.1) , we get

Cα,β
n (f ; z) = e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!

(
k + α

n + β
τn

)m

= e−
nz
τn

(
τn

n + β

)m ∞∑
k=0

(
nz

τn

)k
1

k!

(
m∑

i=0

(
m

i

)
kiαm−i

)

=
m∑

i=0

(
m

i

)
αm−i

(
τn

n + β

)m i∑
j=0

F
(i)
j

(
nz

τn

)j

.

Using the above equality and (1.5), one can obtain Cα,β
n (em; z) → zm as n →∞.

This convergence is uniform on each compact subset of complex plane. Due to
the fact that Cα,β

n operators are linear, the result obtained is verified for arbitrary
polynomials. �

Lemma 2.3. Suppose that Lm be m− th Laguerre polynomials of order zero and
let be

Gα,β,m
n (z) := Cα,β

n (Lm; z) .

Then ∣∣Gα,β,m
n (z)

∣∣ ≤ (eτn
n,β

)α
exp

(
−nx

τn

+
n |z|
τn

eτn
n,β

)
(2.2)

and for |ω| < 1
∞∑

m=0

Gα,β,m
n (z) ωm =

1

1− ω
e−

αωτn
(n+β)(1−ω)

× exp

{
−nz

τn

+
nz

τn

exp

(
− ωτn

(n + β) (1− ω)

)}
, (2.3)

where eτn
n,β = exp

(
τn

2(n+β)

)
, are satisfied.

Proof. With the help of the following identity |Lm (x) | ≤ exp
(

x
2

)
(x ≥ 0) , we

deduce ∣∣Gα,β,m
n (z)

∣∣ =

∣∣∣∣∣e−nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
Lm

(
k + α

n + β
τn

)∣∣∣∣∣
≤ e−

nx
τn

∞∑
k=0

(
n |z|
τn

)k
1

k!
exp

(
k + α

2 (n + β)
τn

)
=

(
eτn

n,β

)α
exp

(
−nx

τn

+
n |z|
τn

eτn
n,β

)
.

On the other hand, using the below generating relation for Laguerre polynomials
of order zero

∞∑
m=0

Lm (z) ωm =
1

1− ω
exp

(
− ωz

1− ω

)
, |ω| < 1
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we get

∞∑
m=0

Gα,β,m
n (z) ωm =

∞∑
m=0

{
e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
Lm

(
k + α

n + β
τn

)}
ωm

=
∞∑

k=0

e−
nz
τn

(
nz

τn

)k
1

k!

(
∞∑

m=0

Lm

(
k + α

n + β
τn

)
ωm

)

=
1

1− ω
e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
exp

(
− (k + α) ω

(n + β) (1− ω)
τn

)
=

1

1− ω
e−

αωτn
(n+β)(1−ω)

× exp

{
−nz

τn

+
nz

τn

exp

(
− ωτn

(n + β) (1− ω)

)}
.

Because of that the double series in the first statement of the above equality is
absolutely convergent for n, z, ω (|ω| < 1) , we change the order of summation. �

Lemma 2.4. Let be

Hβ
n (z, ω) = <

{
−nz

τn

+
nz

τn

exp

(
− ωτn

(n + β) (1− ω)

)}
.

Then

Hβ
n (z, ω) ≤ ηr

|z| − rx

1− r2
, |ω| = r < 1 (2.4)

where η = η (r, n) = exp
(

r
(n+β)(r+1)

τn

)
.

Proof. Inequality (2.4) can be easily verified for z = 0 or ω = 0. Suppose that for
the proportion n, z, ω such that z 6= 0 and 0 < |ω| = r < 1. Representation for
the convenience, let us define

z = |z| eiφ, ρ = r
1−r2 , eiθ = ω(1−ω)

r(1−ω)

a = τn

n+β
, Φ = φ− aρ sin θ.

It is sufficient to show that the function T (θ, φ) defined by

T (θ, φ) = (aρητnr − (τn − aβ)) cos φ + (τn − aβ) e−aρ(r+cos θ) cos Φ

satisfies for |θ| ≤ π, |φ| ≤ π

T (θ, φ) ≤ aρητn. (2.5)

From the fact that the function T (θ, φ) is symmetric about the origin, we shall
prove the inequality (2.5) on the following defined set

D := {(θ, φ) : 0 ≤ θ ≤ π, − π ≤ φ ≤ π} .
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(i) Consider the case of aηrρ ≥ 1 first. From the well-known inequality et ≤ 1+tet

(t ≥ 0) , one gets

T (θ, φ) = (aρητnr − (τn − aβ)) cos φ + (τn − aβ) e−aρ(r+cos θ) cos Φ

≤ aρητnr − (τn − aβ) + (τn − aβ) e−aρ(r−1)

≤ aρητnr − (τn − aβ) + (τn − aβ)
[
1− aρ (r − 1) e−aρ(r−1)

]
= aρητnr − aρ (r − 1) (τn − aβ) η

= aρη (τn + aβ (r − 1))

≤ aρητn.

(ii) Now suppose aηrρ < 1. Let us denote by (θ, φ) the maximum point of the
function T on D. Hence, there are three possible cases:

(I) θ = 0 (II) θ = π (III) 0 < θ < π .

(I) Observing now that θ = 0, we can write

T (θ, φ) = (aρητnr − (τn − aβ)) cos φ + (τn − aβ) e−aρ(r+1) cos φ

= cos φ
{
aρητnr + (τn − aβ)

[
−1 + e−aρ(r+1)

]}
. (2.6)

If aρητnr + (τn − aβ)
[
−1 + e−aρ(r+1)

]
≥ 0 is satisfied, then we deduce from (2.6)

that

T (θ, φ) = cos φ
{
aρητnr + (τn − aβ)

[
−1 + e−aρ(r+1)

]}
≤ aρητnr + (τn − aβ)

[
−1 + e−aρ(r+1)

]
≤ aρητnr

< aρητn.

If aρητnr +(τn − aβ)
[
−1 + e−aρ(r+1)

]
< 0 is satisfied, then we get from (2.6) and

inequality et ≤ 1 + tet (t ≥ 0) that

T (θ, φ) = cos φ
{
aρητnr + (τn − aβ)

[
−1 + e−aρ(r+1)

]}
≤ −aρητnr + (τn − aβ)

[
1− e−aρ(r+1)

]
= −aρητnr + (τn − aβ) e

ar
r−1

(
e−

ar
r−1 − 1

)
≤ −aρητnr + (τn − aβ)

ar

1− r
= aρ {−rητn + (1 + r) (τn − aβ)}
< aρητn.

(II) We now proceed to prove of the inequality (2.5) for θ = π. Using the et ≤
1 + tet (t ≥ 0) , we conclude the following

T (θ, φ) =
{
aρητnr − (τn − aβ) + (τn − aβ) e−aρ(r−1)

}
cos φ

≤ aρητnr + (τn − aβ) (η − 1)

≤ aρητnr +
ar

r + 1
ητn

= aρητn.
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(III) The proof for the case when 0 < θ < π, we use the following way. It is
important to note that in this case the both first partial derivatives of the function
T at the point (θ, φ) are zero. With the help of this information, we induce

Tθ (θ, φ) = (τn − aβ) aρe−aρ(r+cos θ) {cos θ sin Φ + sin θ cos Φ}
= (τn − aβ) aρe−aρ(r+cos θ) sin (θ + Φ)

= 0,

so

sin (θ + Φ) = 0 (2.7)

and

Tφ (θ, φ) = − (aρητnr − (τn − aβ)) sin φ− (τn − aβ) sin Φe−aρ(r+cos θ)

= 0

so

(aρητnr − (τn − aβ)) sin φ + (τn − aβ) sin Φe−aρ(r+cos θ) = 0. (2.8)

As an immediate consequence of (2.7) and (2.8), we have the following result

T (θ, φ) sin θ = (aρητnr − (τn − aβ)) cos φ sin θ − cos θ sin Φ (τn − aβ) e−aρ(r+cos θ)

= (aρητnr − (τn − aβ)) (cos φ sin θ + cos θ sin φ)

= (aρητnr − (τn − aβ)) sin (θ + φ) . (2.9)

Combining the solution of (2.7) with (2.9) , for k ∈ Z one can get

|T (θ, φ) sin θ| = |aρητnr − (τn − aβ)| |sin (kπ + aρ sin θ)|
≤ aρ |aρητnr − (τn − aβ)| |sin θ| .

On condition that aρητnr − (τn − aβ) ≥ 0, then from aηrρ < 1 and 0 < θ < π

|T (θ, φ) sin θ| ≤ aρaβ sin θ ≤ aρτn sin θ

and provided that aρητnr − (τn − aβ) < 0, then under the same restrictions

|T (θ, φ) sin θ| ≤ aρητn sin θ.

Hence; the above two results immediately prove our lemma. �

Lemma 2.5. (Gergen, Dressel and Purcell [11]) Assume that λ, µ, κ positive
constants such that λ ≤ µ and let us define

u (t) =
4λ2

t
+

t

t + 4
µ2.

Then the following inequality

I (λ, µ, κ) =

∞∫
0

t−
3
2

1− e−t
exp

(
−u (t)− 4κ2

t

)
dt ≤ M1 (κ) exp

(
λ2 − 2λµ

)
is valid, where

M1 (κ) :=
e

e− 1

(
2 +

√
π

16κ3

)
.
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Lemma 2.6. (Gergen, Dressel and Purcell [11]) For 0 < b < c, let us define

J (b, c, z) =

∞∫
0

t−
3
2

1− e−t
exp

{
−4c2

t
+

2e−
t
2

1− e−t

(
|z| − xe−

t
2

)}
dt.

Then we have for z ∈ p (b)

J (b, c, z) ≤ M2 (b, c) exp

{
x− 2 |x|

1
2

[
b2 − 1

2
(|z| − x)

] 1
2

}
where

M2 (b, c) = e4b2M1

((
c2 − b2

) 1
2

)
.

Lemma 2.7. For 0 < b < c and z ∈ p (b) , the image of the Lm Laguerre
polynomials of order zero under the operator Cα,β

n satisfies the following inequality
∞X

m=0

���Gα,β,m
n

�
z/eτn

n,β

����2 exp
�
−4c

√
m
�
≤ M3 (b, c) exp

(
x− 2 |x|

1
2

�
b2 − 1

2
(|z| − x)

� 1
2
)

,

where

M3 (b, c) = sup
n∈N

e
ατn
n+β

2c√
π

M2 (b, c) .

Proof. Let Cr designate the circle having radius r (0 < r < 1) with the center at
the origin in the ω plane. To demonstrate the idea, we first state∫

Cr

ωmω̄j |dω| =
{

2πr2m+1 ; m = j
0 ; m 6= j

.

By using the above-mentioned equality, Lemma 2.3 and Lemma 2.4, we find
∞∑

m=0

∣∣Gα,β,m
n (z)

∣∣2 r2m =
1

2πr

∫
Cr

1

|1− ω|2

∣∣∣∣exp

(
− αωτn

(n + β) (1− ω)

)∣∣∣∣2

×
∣∣∣∣exp

{
−nz

τn

+
nz

τn

exp

(
− ωτn

(n + β) (1− ω)

)}∣∣∣∣2 |dω|

=
1

2πr

∫
Cr

1

|1− ω|2
exp

{
<
(
− 2αωτn

(n + β) (1− ω)

)}
× exp

(
2Hβ

n (z, ω)
)
|dω|

≤
(

sup
n∈N

e
ατn
n+β

)
1

2πr
exp

(
2eτn

n,βr
|z| − rx

1− r2

)∫
Cr

1

|1− ω|2
|dω|

=

(
sup
n∈N

e
ατn
n+β

)
1

1− r2
exp

(
2eτn

n,βr
|z| − rx

1− r2

)
.

With the proper choice of t > 0, one derives
∞∑

m=0

∣∣Gα,β,m
n

(
z/eτn

n,β

)∣∣2 e−tm ≤ sup
n∈N

e
ατn
n+β

1

1− e−t
exp

(
2e−

t
2
|z| − e−

t
2 x

1− e−t

)
.
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Taking into consideration the fact that

exp
(
−4c

√
m
)

=
2c√
π

∞∫
0

t−
3
2 exp

(
−mt− 4c2

t

)
dt

we have by Lemma 2.6
∞∑

m=0

∣∣Gα,β,m
n

(
z/eτn

n,β

)∣∣2 exp (−4c
√

m)

=
2c√
π

∞∑
m=0

∣∣Gα,β,m
n

(
z/eτn

n,β

)∣∣2 ∞∫
0

t−
3
2 exp

(
−mt− 4c2

t

)
dt

=
2c√
π

∞∫
0

t−
3
2 exp

(
−4c2

t

){ ∞∑
m=0

∣∣Gα,β,m
n

(
z/eτn

n,β

)∣∣2 exp (−mt)

}
dt

≤ sup
n∈N

e
ατn
n+β

2c√
π

∞∫
0

t−
3
2

1− e−t
exp

{
−4c2

t
+ 2e−

t
2
|z| − e−

t
2 x

1− e−t

}
dt

≤ sup
n∈N

e
ατn
n+β

2c√
π

M2 (b, c) exp

{
x− 2 |x|

1
2

[
b2 − 1

2
(|z| − x)

] 1
2

}
,

for z ∈ p (b) . This proves the claim. �

Lemma 2.8. Assume that function f (z) is analytic and has property B in p (d) .
Then, the following statements hold:
(i) For each n ∈ N, Cα,β

n (f ; z) is entire function of z ∈ C.
(ii) The sequence

{
Cα,β

n

(
f ; z/eτn

n,β

)}
has property B uniformly in p (d) .

Proof. (i) Due to f (z) has property B in p (d) , there exists a positive constant
A such that

|f (x)| ≤ Ae
x
2 , x ≥ 0.

This means that the following series

e−
nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
f

(
k + α

n + β
τn

)
is convergent for n ∈ N and z ∈ C. Therefore, the first assertion is immediate.
(ii) Since the function f (z) is analytic and has property B in p (d) , from the
work of Szasz–Yeardley [23] stated previously in Theorem 2.1, one deduces

f (z) =
∞∑

m=0

amLm (z) for z ∈ p (d) ,

where

am =

∞∫
0

e−xLm (x) f (x) dx and d = −lim sup
m→∞

(
1

2
√

m
ln |am|

)
. (2.10)
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So, from the last equality, for arbitrary ε > 0 there exists an appropriate Aε > 0
such that

|am| ≤ Aε exp
(
2
√

m (−d + ε)
)
, m = 1, 2, ... (2.11)

Considering the (2.11) , we get

∞∑
m=0

|am| < ∞ (2.12)

and for 0 < c < d

M (c, f) =
∞∑

m=0

|am|2 exp
(
4c
√

m
)

< ∞. (2.13)

Taking account of |Lm (x)| ≤ exp
(

x
2

)
(x ≥ 0) and the statement (2.12), the series

in the first line of following is absolutely convergent for n ∈ N and z ∈ C, because
of that one can write

Cα,β
n (f ; z) = e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
f

(
k + α

n + β
τn

)

= e−
nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!

(
∞∑

m=0

amLm

(
k + α

n + β
τn

))

=
∞∑

m=0

am

(
e−

nz
τn

∞∑
k=0

(
nz

τn

)k
1

k!
Lm

(
k + α

n + β
τn

))

=
∞∑

m=0

amGα,β,m
n (z) . (2.14)

Applying Cauchy–Schwarz inequality to (2.14) , we deduce

∣∣Cα,β
n (f ; z)

∣∣ ≤√M (c, f)

{
∞∑

m=0

∣∣Gα,β,m
n (z)

∣∣2 exp
(
−4c

√
m
)}1/2

. (2.15)

Hence; for 0 < b < c < d and z ∈ p (b) the statement (2.15) and Lemma 2.7 yield

∣∣Cα,β
n

(
f ; z/eτn

n,β

)∣∣ ≤√M (c, f) M3 (b, c) exp

{
x

2
− |x|

1
2

[
b2 − 1

2
(|z| − x)

] 1
2

}
.

For a fixed b such that 0 < b < d, by choosing c = b+d
2

, we conclude

∣∣Cα,β
n

(
f ; z/eτn

n,β

)∣∣ ≤ B (b) exp

{
x

2
− |x|

1
2

[
b2 − 1

2
(|z| − x)

] 1
2

}
,

where B (b) =
√

M
(

b+d
2

, f
)
M3

(
b, b+d

2

)
. This completes the proof. �

After these preparations we are in a position to state our main theorem.
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Theorem 2.9. Let the sequence (τn) satisfies condition (1.5) . Under the assump-
tions of Lemma 2.8, the sequence of linear operators

{
Cα,β

n (f ; z)
}

converges to
the function f (z) as n → ∞ in p (d) . This convergence being uniform on each
compact subset of p (d) .

Proof. We may assume that Ω is a compact subset of p (d) . Now, we will show the
uniform convergence of a sequence of functions Cα,β

n (f ; z) to f (z) on Ω. U (b, x0)
denotes the set of

U (b, x0) :=
{
z = x + iy : |z| < x + 2b2, x < x0

}
, (2.16)

where b, x0 > 0. Let us consider b1, b2, b3 (0 < b1 < b2 < b3 < d) ; x1, x2, x3

(0 < x1 < x2 < x3) such that Ω ⊂ U (b1, x1) . Under favor of Lemma 2.8 (ii), for
z ∈ U (b3, x3) there exists M̃ > 0 such that∣∣Cα,β

n

(
f ; z/eτn

n,β

)∣∣ ≤ M̃. (2.17)

From the definition (2.16) , for arbitrary n ∈ N such that n
τn

> n0

τn0
and z ∈

U (b2, x2) we have zeτn
n,β ∈ U (b3, x3) , where

n0

τn0

= max

{(
4 ln

(
b3

b2

))−1

,

(
2 ln

(
x3

x2

))−1
}

.

By using (2.17) , for suitable natural number n and z ∈ U (b2, x2) we get∣∣Cα,β
n (f ; z)

∣∣ =
∣∣Cα,β

n

(
f ; zeτn

n,β/eτn
n,β

)∣∣ ≤ M̃. (2.18)

On the other hand, in view of Korovkin theorem we have Cα,β
n (f ; x) → f (x) as

n → ∞ for x on (0, x1) . From (2.18) and the mentioned conclusion, by Vitali’s
theorem [24] the sequence

{
Cα,β

n (f ; z)
}

is convergent uniformly on U (b1, x1) to
function F (z) which is analytic on U (b1, x1) . Due to the fact that the function
f (z) is analytic on U (b1, x1) and F (x) = f (x) (0 < x < x1) , in view of identity
theorem of analytic functions we have F (z) = f (z) on U (b1, x1) . Through the
instrument of the these knowledge, above-stated convergence is uniform on Ω.

As a consequence of this conclusion, we get

lim
n→∞

Cα,β
n (f ; z) = f (z)

on p (d) . So, the desired results are obtained. �
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