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Abstract. This paper is devoted to an investigation of frames and Riesz bases
for general Banach sequence spaces. We establish various relationships between
Bessel (respectively, frames) and Riesz sequences (respectively, Riesz bases),
and then some of their applications are presented. Some recent results for
Banach frames and atomic decompositions are sharpened with simple proofs.
Banach spaces consisting of Bessel or Riesz sequences are introduced and it
is shown that they are isometrically isomorphic to some Banach spaces of
bounded linear operators, and that some subspaces of those Banach spaces are
isometrically isomorphic to some Banach spaces of compact operators.

1. Introduction

A sequence (fn) in a Hilbert space H is called a frame if there exist constants
A,B > 0 such that

A‖f‖ ≤
(∑

n

|〈f, fn〉|2
) 1

2 ≤ B‖f‖

for every f ∈ H. The concept is well known and the theory for it has been
much studied. The introductory text of Christensen [9] and the survey article of
Casazza [6] contain many results and references for the frame theory for Hilbert
spaces. We are now naturally led to a Banach space version of the frame. For
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1 ≤ p ≤ ∞, a sequence (x∗n) in the dual space X∗ of a Banach space X is called
a p-frame for X if there exist constants A,B > 0 such that

A‖x‖ ≤
(∑

n

|x∗n(x)|p
) 1

p ≤ B‖x‖

for every x ∈ X. For the case p =∞, (
∑

n |x∗n(x)|p)
1
p is replaced by supn |x∗n(x)|.

If there exists a 2-frame for a Banach space, then the Banach space is isomorphic
to a Hilbert space. The concept was introduced by Aldroubi, Sun and Tang [2]
and some abstract theories for it were studied by Christensen and Stoeva [11, 19].

Casazza, Christensen and Stoeva [7] introduced and studied a more general
notion. They defined that a sequence (x∗n) in X∗ is a Bs-frame for X, where Bs

is a scalar-valued Banach sequence space that is a linear space of sequences with
a norm which makes it a Banach space and for which the coordinate functionals
are continuous, if

(i) (x∗n(x)) ∈ Bs for every x ∈ X,
(ii) there exist constants A,B > 0 such that

A‖x‖ ≤ ‖(x∗n(x))‖Bs ≤ B‖x‖

for every x ∈ X. An lp-frame for a Banach space is exactly a p-frame. We say
that (x∗n) is a Bs-Bessel sequence for X if (i) and the upper Bs-frame condition
are satisfied. Since a Banach space X can be identified with a subspace of the
bidual space X∗∗ of X, for a given sequence in X, the Bs-Bessel sequence (resp.
frame) for X∗ can be analogously defined.

For a sequence (x∗n) in X∗ (resp. (xn) in X), if the map

F(x∗n) : X → Bs, x 7→ (x∗n(x))

(resp. F(xn) : X∗ → Bs, x
∗ 7→ (x∗(xn)))

is well defined, then from the closed graph theorem it is automatically bounded.
This means that the condition of Bs-Bessel sequence is only (i) in the frame
conditions. The operator is called the analysis operator. A sequence is a Bs-
frame if and only if the analysis operator is an isomorphism.

Considering the classical Banach sequence spaces lp (1 ≤ p ≤ ∞) and c0, then
an lp (1 ≤ p <∞) (resp. c0)-Bessel sequence (xn) for X∗ is a weakly p-summable
(resp. null) sequence, an l∞-Bessel sequence (xn) for X∗ is a bounded sequence,
and for a sequence (x∗n) in X∗, a c0-Bessel sequence (x∗n) for X is a weak∗ null
sequence.

We say that a sequence (xn) in X is a Bs-Riesz basic sequence for X if
(i)
∑

n αnxn converges for every (αn) ∈ Bs,
(ii) there exist constants A,B > 0 such that

A‖(αn)‖Bs ≤
∥∥∥∑

n

αnxn

∥∥∥ ≤ B‖(αn)‖Bs

for every (αn) ∈ Bs.
In particular, a Bs-Riesz basic sequence (xn) for X is a Bs-Riesz basis if X =

span{xn} and in this paper we call (xn) a Bs-Riesz sequence for X if (i) is satisfied.
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Note that (xn) is an l∞-Riesz sequence for X if and only if (xn) is unconditionally
summable (cf. [17, Theorem 4.2.8]).

For a Bs-Riesz sequence (xn) for X, the synthesis operator is defined by

R(xn) : Bs → X, (αn) 7→
∑
n

αnxn.

From the Banach-Steinhaus theorem, a sequence is a Bs-Riesz sequence if and
only if the synthesis operator is well defined and bounded. Also a sequence is a
Bs-Riesz basic sequence if and only if the synthesis operator is an isomorphism.
The Riesz basis for a Hilbert space is well known (cf. [6, 9]), and in [2, 11], lp-Riesz
bases for Banach spaces were introduced and studied. This paper is organized as
follows.

In Section 2 we establish some relationships between Bessel and Riesz se-
quences. It is well known that a sequence (xn) in X is an l1-Bessel sequence
for X∗ if and only if (xn) is a c0-Riesz sequence for X (cf. [17, Proposition
4.3.9]). Christensen and Stoeva [11, Proposition 2.2] showed that a sequence (x∗n)
in X∗ is an lp (1 < p <∞)-Bessel sequence for X if and only if (x∗n) is an lp∗-Riesz
sequence for X∗, where p∗ = p/(p− 1). We extend those results, more precisely,
for the dual Banach sequence space Ys of Bs, it is shown that a sequence (xn) in
X (resp. (x∗n) in X∗) is a Ys-Bessel sequence for X∗ (resp. X) if and only if (xn)
(resp. (x∗n)) is a Bs-Riesz sequence for X (resp. X∗). Moreover, we establish
some relationships between Bs-Bessel and Ys-Riesz sequences.

In Section 3 we study some relationships between Bs (resp. Ys)-Riesz bases and
Ys (resp. Bs)-frames, necessary and sufficient conditions for Ys (resp. Bs)-frames
to be Bs (resp. Ys)-Riesz bases.

In Section 4 we study Banach frames and atomic decompositions. Some recent
results [3, 4, 7] for them are sharpened with simple proofs.

We denote the collection of Bs-Bessel sequences in X for X∗ (resp. X∗ for
X) by Bw

s (X) (resp. Bw∗
s (X∗)). If Bs = lp (1 ≤ p < ∞) (resp. Bs = l∞),

then Bw
s (X) is the collection of weakly p-summable (resp. bounded) sequences

in X, and cw0 (X) (resp. cw
∗

0 (X∗)) is the collection of weakly (resp. weak∗) null
sequences in X (resp. X∗). We denote the collection of Bs-Riesz sequences in
X by BsR(X). These collections are vector spaces under the standard operation
of scalar multiplication and addition for sequences. In Section 5 we show that
these vector spaces are Banach spaces endowed with some norms and that they
are isometrically isomorphic to some Banach spaces of bounded linear operators.

In Section 6 we introduce the B̌s-Bessel and Riesz sequences which are special
Bessel and Riesz sequences. We show that the Banach spaces consisting of them
are isometrically isomorphic to some Banach spaces of compact operators. Also
it is shown that a sequence is a Y̌s-Bessel (resp. B̌s-Bessel) sequence if and only
if it is a B̌s-Riesz (resp. Y̌s-Riesz) sequence.

2. Relationships between Bessel and Riesz sequences

The purpose of this section is to establish some relationships between Bessel
and Riesz sequences. In order to do this, we need the well known representation
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of the dual space B∗s of Bs; cf. [7, Lemma 3.1]. Let (en) be the sequence of the
canonical unit vectors and suppose that (en) is a Schauder basis for Bs. Let

Ys = {(x∗s(en))|x∗s ∈ B∗s}

and ‖(x∗s(en))‖Ys = ‖x∗s‖. Then we see that (Ys, ‖ · ‖Ys) is a normed space and
the coordinate functionals for Ys are continuous. Consider the map js : Ys → B∗s
defined by js[(x

∗
s(en))] = x∗s. Then js is a surjective linear isometry and so Ys is

a Banach sequence space. For example, if Bs = lp (1 < p < ∞) (resp. l1), then
Ys = lp∗ (resp. l∞), and if Bs = c0, then Ys = l1.

Now for every x∗s ∈ B∗s and (αn) ∈ Bs

x∗s((αn)) = x∗s

(∑
n

αnen

)
=
∑
n

αnx
∗
sen =

∑
n

αn(j−1s x∗s)n,

where (j−1s x∗d)n is the n-th element of j−1s x∗d. Let (fn) be the sequence of the
canonical unit vectors in Ys. Fix k ∈ N. Then for every (αn) ∈ Bs

jsfk((αn)) =
∑
n

αn(j−1s jsfk)n =
∑
n

αn(fk)n = αk.

This shows that (jsfn) is the sequence of the coordinate functionals for Bs. If
(fn) is a Schauder basis for Ys, then for every x∗s ∈ B∗s

x∗s = js[(x
∗
s(en))] = js

(∑
n

x∗s(en)fn

)
=
∑
n

x∗s(en)jsfn.

Throughout this paper we use the objects Ys, js, (en), (fn), the analysis and
synthesis operators in the introduction. Recall that an operator S from Y ∗ to X∗

is weak∗ to weak∗ continuous if and only if there exists an operator T from X to
Y such that S is the adjoint operator T ∗ of T ; cf. see [17, Theorem 3.1.11]. We
now have

Theorem 2.1. Suppose that (en) is a Schauder basis for Bs and let (xn) be a
sequence in X. Then the following are equivalent.

(a) The analysis operator F(xn) : X∗ → Ys is well defined.
(b) The synthesis operator R(xn) : Bs → X is well defined.
(c) The analysis operator F(xn) : X∗ → Ys is well defined and the operator jsF(xn) :
X∗ → B∗s is weak∗ to weak∗ continuous.

Hence (xn) ∈ Y w
s (X) if and only if (xn) ∈ BsR(X).

Proof. (c)=⇒(a) is trivial.
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(a)=⇒(b) Recall that F(xn) is bounded. Let (αn) ∈ Bs. Then∥∥∥ l∑
n=m

αnxn

∥∥∥ = sup
x∗∈BX∗

∣∣∣ l∑
n=m

αnx
∗(xn)

∣∣∣
= sup

x∗∈BX∗

∣∣∣ l∑
n=m

αnjs[(x
∗(xk))](en)

∣∣∣
= sup

x∗∈BX∗

∣∣∣js[(x∗(xk))]( l∑
n=m

αnen

)∣∣∣
≤ sup

x∗∈BX∗
‖js[(x∗(xk))]‖B∗

s

∥∥∥ l∑
n=m

αnen

∥∥∥
Bs

= sup
x∗∈BX∗

‖(x∗(xk))‖Ys
∥∥∥ l∑
n=m

αnen

∥∥∥
Bs

= ‖F(xn)‖
∥∥∥ l∑
n=m

αnen

∥∥∥
Bs

−→ 0 as l,m→∞.

Hence
∑

n αnxn converges.
(b)=⇒(c) Recall that R(xn) is bounded. Consider the operator j−1s R∗(xn) : X∗ →

Ys. Then for every x∗ ∈ X∗

(x∗(xn)) = (x∗(R(xn)en)) = ((R∗(xn)x
∗)en) = j−1s R∗(xn)x

∗ ∈ Ys.

Hence F(xn) is well defined, F(xn) = j−1s R∗(xn) and so jsF(xn) = R∗(xn) is weak∗ to
weak∗ continuous. �

For example, for 1 < p < ∞, (xn) ∈ lpR(X) if and only if (xn) ∈ lwp∗(X),
(xn) ∈ l1R(X) if and only if (xn) ∈ l∞(X), and (xn) ∈ c0R(X) if and only if
(xn) ∈ lw1 (X). For every Banach space X, let (xn) be a bounded sequence in X,
which does not weakly converge to 0. Then (xn) ∈ l1R(X) but (xn) 6∈ cw0 (X).

Remark 2.2. For every Banach space X containing c0 there exists a (xn) ∈ lw1 (X)
such that (xn) 6∈ l∞R(X) because a Banach space X does not contain c0 if and
only if every weakly summable sequence in X is unconditionally summable; see
[14, (I.4.5)] or [17, Theorem 4.3.12].

We have the following duality result of Theorem 2.1.

Corollary 2.3. Suppose that (en) is a Schauder basis for Bs and let (x∗n) be a
sequence in X∗. Then the following are equivalent.

(a) The analysis operator F(x∗n) : X → Ys is well defined.
(b) The synthesis operator R(x∗n) : Bs → X∗ is well defined.
(c) The analysis operator F(x∗n) : X∗∗ → Ys is well defined and the operator jsF(x∗n) :
X∗∗ → B∗s is weak∗ to weak∗ continuous.

Hence (x∗n) ∈ Y w∗
s (X∗) if and only if (x∗n) ∈ BsR(X∗) if and only if (x∗n) ∈

Y w
s (X∗).
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Proof. (c)=⇒(a) is clear and (b)=⇒(c) follows from Theorem 2.1(b)=⇒(c).
(a)=⇒(b) Since for every (αn) ∈ Bs∥∥∥ l∑

n=m

αnx
∗
n

∥∥∥ = sup
x∈BX

∣∣∣ l∑
n=m

αnx
∗
n(x)

∣∣∣ = sup
x∈BX

∣∣∣ l∑
n=m

αnjs[(x
∗
k(x))](en)

∣∣∣,
from the proof of Theorem 2.1(a)=⇒(b) the conclusion follows. �

Interchanging the dual Banach sequence space Ys withBs, we have the following
symmetric version of Theorem 2.1.

Theorem 2.4. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys and let (xn) be a sequence in X. Then the following are equivalent.

(a) The analysis operator F(xn) : X∗ → Bs is well defined.
(b) The synthesis operator R(xn) : Ys → X∗∗ is well defined and the operator
R(xn)j

−1
s : B∗s → X∗∗ is weak∗ to weak continuous.

(c) The analysis operator F(xn) : X∗ → Bs is well defined and weak∗ to weak
continuous.

Proof. (c)=⇒(a) is trivial.
(a)=⇒(b) Consider the operator F ∗(xn)js : Ys → X∗∗. Then for every n and

x∗ ∈ X∗
(F ∗(xn)jsfn)x∗ = jsfnF(xn)x

∗ = jsfn[(x∗(xk))] = x∗(xn)

and so F ∗(xn)jsfn = xn for every n. Now for every (βn) ∈ Ys

F ∗(xn)js((βn)) = F ∗(xn)js

(∑
n

βnfn

)
=
∑
n

βnF
∗
(xn)jsfn =

∑
n

βnxn.

Hence R(xn) = F ∗(xn)js is well defined and R(xn)j
−1
s = F ∗(xn) is weak∗ to weak

continuous because R(xn)(Ys) ⊂ X.
(b)=⇒(c) By the assumption there exists an operator T : X∗ → Bs such that

T ∗ = R(xn)j
−1
s . But for every x∗ ∈ X∗

Tx∗ = (jsfnTx
∗) = ((T ∗jsfn)x∗) = (R(xn)fnx

∗) = (x∗(xn)).

Hence F(xn) = T is well defined and weak∗ to weak continuous because F ∗(xn)(B
∗
s ) =

R(xn)j
−1
s (B∗s ) ⊂ X. �

From Theorem 2.4, if (xn) ∈ Bw
s (X), then (xn) ∈ YsR(X), and the converse

does not hold in general by Remark 2.2 above, but if Bs is reflexive, then the
converse is true.

Remark 2.5. The assumption that (fn) is a Schauder basis for Ys is not used
in the proof of Theorem 2.4(b)=⇒(c), but (a)=⇒(b) need the assumption (see
Remark 2.2).

From the same argument as in the proof of Theorem 2.4, we have the following
duality result.

Corollary 2.6. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys and let (x∗n) be a sequence in X∗. Then the following
are equivalent.
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(a) The analysis operator F(x∗n) : X → Bs is well defined.
(b) The synthesis operator R(x∗n) : Ys → X∗ is well defined and the operator
R(x∗n)j

−1
s : B∗s → X∗ is weak∗ to weak∗ continuous.

3. Bs-Frames and Riesz bases

In this section we use the results in Section 2 to establish some relationships
between frames and Riesz bases, necessary and sufficient conditions for frames to
be Riesz bases.

Recall that an operator T is surjective if and only if T ∗ is an isomorphism,
and T ∗ is surjective if and only if T is an isomorphism; cf. [17, Theorem 3.1.22].
Then we have

Theorem 3.1. Suppose that (en) is a Schauder basis for Bs and let (xn) be a
sequence in X. Then the following are equivalent.

(a) The analysis operator F(xn) : X∗ → Ys is an isomorphism.
(b) The synthesis operator R(xn) : Bs → X is surjective.
(c) The analysis operator F(xn) : X∗ → Ys is an isomorphism and the operator
jsF(xn) : X∗ → B∗s is weak∗ to weak∗ continuous.

Proof. (c)=⇒(a) is trivial.
(a)=⇒(b) By Theorem 2.1 R(xn) is well defined. Then R∗(xn) = jsF(xn) in the

proof of Theorem 2.1(b)=⇒(c). Hence by the assumption (a) R(xn) is surjective.
(b)=⇒(c) Since R∗(xn) = jsF(xn), by the assumption (b) F(xn) is an isomorphism.

�

From Theorem 3.1, if (xn) is a Bs-Riesz basis for X, then (xn) is a Ys-frame
for X∗. For example, if (xn) is an lp-Riesz basis for X (1 ≤ p <∞), then (xn) is
an lp∗-frame for X∗, and if (xn) is a c0-Riesz basis for X, then (xn) is an l1-frame
for X∗. But a Ys-frame for X∗ does not imply a Bs-Riesz basis for X in general.
Indeed, consider the sequence (xn) = (e1, 0, e2, 0, · · ·, 0, en, 0, · · ·) in c0. Then for
every (αk) ∈ l1 ‖(αk)‖1 = ‖((αk)xn)‖1. Thus (xn) is an l1-frame for l1, but (xn)
fails the condition (ii) of a c0-Riesz basic sequence for c0.

In the proof of Theorem 2.4 the synthesis operator R(xn) : Ys → X∗∗ is the
operator F ∗(xn)js, hence we have the following.

Theorem 3.2. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys and let (xn) be a sequence in X. Then the following are equivalent.

(a) The analysis operator F(xn) : X∗ → Bs is an isomorphism.
(b) The synthesis operator R(xn) : Ys → X∗∗ is surjective, and the operator
R(xn)j

−1
s : B∗s → X∗∗ is weak∗ to weak continuous.

(c) The analysis operator F(xn) : X∗ → Bs is weak∗ to weak continuous and an
isomorphism.

Remark 3.3. In Theorem 3.2, if (a) holds, then X is reflexive because R(xn)(Ys) ⊂
X in the proof of Theorem 2.4 . Consequently, under the assumption in Theorem
3.2, a nonreflexive Banach space X cannot contain a Bs-frame for X∗.

We now consider sequences in dual spaces. The following result extends [11,
Theorem 2.4].
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Theorem 3.4. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys and let (x∗n) be a sequence in X∗. Then the following are equivalent.

(a) The analysis operator F(x∗n) : X → Bs is an isomorphism.
(b) The synthesis operator R(x∗n) : Ys → X∗ is surjective and the operator R(x∗n)j

−1
s :

B∗s → X∗ is weak∗ to weak∗ continuous.

Proof. From the same argument as in the proof of Theorem 2.4, we see that the
synthesis operator R(x∗n) : Ys → X∗ is the operator F ∗(x∗n)js, hence the proof is
established. �

In view of Corollary 2.6 and Theorem 3.4, if (x∗n) ∈ Bw∗
s (X∗) and (x∗n) is a Ys-

Riesz basis for X∗, then (x∗n) is a Bs-frame for X, and if Bs is reflexive and (x∗n)
is a Ys-Riesz basis for X∗, then (x∗n) is a Bs-frame for X. Consider the sequence
(x∗n) = (e1, 0, e2, 0, · · ·, 0, en, 0, · · ·) in l1. Then (x∗n) is a c0-frame for c0, but (x∗n)
is not even an l1-Riesz basic sequence for l1.

In Theorem 2.1, we have shown that a sequence (xn) inX is a Bs-Riesz sequence
for X if and only if (xn) is a Ys-Bessel sequence for X∗. But even for a Ys- Riesz
basis in a dual space, it may not be a Bs-Bessel sequence.

Example 3.5. Let x∗1 = e1 and for every n ≥ 2 let x∗n = (1, 0, · · · , 0, 1, 0, · · · ),
where the second 1 is the n-th element. Consider the sequence (x∗n) in l1. Then
for every (αn) ∈ l1

∑
n ‖αnx∗n‖1 =

∑
n 2|αn| < ∞ and so

∑
n αnx

∗
n converges in

l1,

‖(αn)‖1 ≤
∥∥∥(∑

k

αk, α2, · · · , αn, · · ·
)∥∥∥

1
+
∥∥∥(− ∞∑

k=2

αk, 0, · · ·
)∥∥∥

1

≤
∥∥∥∑

n

αnx
∗
n

∥∥∥
1

+
∞∑
k=2

|αk| ≤ 2
∥∥∥∑

n

αnx
∗
n

∥∥∥
1
,

and

(αn) =
(
α1 −

∞∑
k=2

αk, 0, · · ·
)

+ (α2, α2, 0, · · · ) + · · ·+ (αn, 0, · · · , αn, 0, · · · ) + · · ·

=
(
α1 −

∞∑
k=2

αk

)
x∗1 +

∞∑
n=2

αnx
∗
n

which shows l1 = span{x∗n}. Hence (x∗n) is an l1-Riesz basis for l1. But x∗n(e1) = 1
for every n and so (x∗n) does not weak∗ converge to 0 in l1. Hence (x∗n) is not a
c0-Bessel sequence for c0.

We next establish necessary and sufficient conditions for Bessel sequences (resp.
frames) to be Riesz basic sequences (resp. Riesz bases).

Theorem 3.6. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys and let (xn) ∈ Y w

s (X). Then the following are equivalent.
(a) (xn) is a Bs-Riesz basic sequence for X.
(b) For (βn) ∈ Bs, if

∑
n βnxn = 0, then βn = 0 for all n, and R(xn)(Bs) is closed

in X.
(c) F(xn)(X

∗) = Ys.
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(d) (xn) has a biorthogonal sequence and F(xn)(X
∗) is closed in Ys.

(e) For every n xn 6∈ span{xi}i 6=n and R(xn)(Bs) is closed in X.

Proof. (a)=⇒(b) By definition of Bs-Riesz basic sequence this is clear.
(b)=⇒(a) Since (xn) ∈ Y w

s (X), by Theorem 2.1 the synthesis operator R(xn) :
Bs → X is bounded. By the assumption (b) R(xn) is injective. Since R(xn)(Bs) is
closed in X, by the open mapping theorem R(xn) is an isomorphism. Hence (a)
follows.

(a)⇐⇒(c) In the proof of Theorem 2.1 R∗(xn) = jsF(xn). Hence the conclusion
follows.

(c)=⇒(d) Since F(xn) is surjective, for every n there exists an x∗n ∈ F−1(xn)
{fn}.

Consider the sequence (x∗n) in X∗ and fix k. Then

x∗k(xn) = ϕn[F(xn)(x
∗
k)] = ϕn(fk),

where ϕn is the n-th coordinate functional for Ys. Hence (x∗n) is a biorthogonal
sequence for (xn) and so (d) follows.

(d)=⇒(c) Let (x∗n) be a biorthogonal sequence for (xn). Then for every n
F(xn)x

∗
n = (x∗n(xn)) = fn. Consequently {fn} ⊂ F(xn)(X

∗). Since (fn) is a

Schauder basis for Ys and F(xn)(X
∗) is closed in Ys, Ys = span{fn} = F(xn)(X

∗) =
F(xn)(X

∗).
(a)=⇒(e) It is easy to check that if a sequence (xn) in X is a Bs-Riesz basic

sequence under the assumption that (en) is a Schauder basis for Bs, then (xn) is
a Schauder basis for span{xn}. Hence (e) follows.

(e)=⇒(b) By the assumption xn 6= 0 for all n. Suppose that there exists a
(βn) ∈ Bs such that

∑
n βnxn = 0 but βm 6= 0 for some m. Then

∑
n6=m βnxn =

−βmxm and so xm =
∑

n6=m−
βn
βm
xn. Consequently, xm ∈ span{xi}i 6=m. This

contradicts the assumption (e). Hence (b) follows. �

In Theorem 3.6, the condition that (fn) is a Schauder basis for Ys is only used
in the proof of (d)=⇒(c). From Theorem 3.6 we have

Corollary 3.7. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys and let (xn) be a Ys-frame for X∗. Then the following
are equivalent.

(a) (xn) is a Bs-Riesz basis for X.
(b) For (βn) ∈ Bs, if

∑
n βnxn = 0, then βn = 0 for all n.

(c) F(xn)(X
∗) = Ys.

(d) (xn) has a biorthogonal sequence.
(e) For every n xn 6∈ span{xi}i 6=n.

Using the operators in the proof of Theorem 2.4, then from the same argument
as in the proof of Theorem 3.6 we have the following.

Theorem 3.8. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys and let (xn) ∈ Bw

s (X). Then the following are equivalent.
(a) (xn) is a Ys-Riesz basic sequence for X.
(b) For (βn) ∈ Ys, if

∑
n βnxn = 0, then βn = 0 for all n, and R(xn)(Ys) is closed

in X.
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(c) F(xn)(X
∗) = Bs.

(d) (xn) has a biorthogonal sequence and F(xn)(X
∗) is closed in Bs.

(e) For every n xn 6∈ span{xi}i 6=n and R(xn)(Ys) is closed in X.

Use the operators in Corollary 2.6 to show Corollary 3.9.

Corollary 3.9. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys and let (x∗n) ∈ Bw∗

s (X∗). Then the following are equiv-
alent.

(a) (x∗n) is a Ys-Riesz basic sequence for X∗.
(b) F(x∗n)(X) = Bs.
(c) (x∗n) has a biorthogonal sequence in X and F(x∗n)(X) is closed in Bs.

Corollaries 3.10 and 3.11 extend [11, Proposition 2.7].

Corollary 3.10. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys and let (xn) be a Bs-frame for X∗. Then the following are
equivalent.

(a) (xn) is a Ys-Riesz basis for X.
(b) For (βn) ∈ Ys, if

∑
n βnxn = 0, then βn = 0 for all n.

(c) F(xn)(X
∗) = Bs.

(d) (xn) has a biorthogonal sequence.
(e) For every n xn 6∈ span{xi}i 6=n.

Corollary 3.11. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys and let (x∗n) be a Bs-frame for X. Then the following are
equivalent.

(a) (x∗n) is a Ys-Riesz basis for X∗.
(b) F(x∗n)(X) = Bs.
(c) (x∗n) has a biorthogonal sequence in X.

Now we obtain some applications for Riesz bases.

Theorem 3.12. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys. If (xn) is a Bs-Riesz basis for X, then there exists a
Ys-Riesz basis (x∗n) for X∗, which is a biorthogonal sequence for (xn), so that

x =
∑
n

x∗n(x)xn, x∗ =
∑
n

x∗(xn)x∗n

for every x ∈ X and x∗ ∈ X∗.

Proof. We have shown that if (xn) is a Bs-Riesz basis for X, then (xn) is a
Ys-frame for X∗ and F(xn)(X

∗) = Ys. Consider the sequence (F−1(xn)
fn) in X∗.

Then F−1(xn)
fn(xk) = ϕk(F(xn)F

−1
(xn)

fn) = ϕk(fn), where ϕk is the k-th coordinate

functional for Ys. Therefore (F−1(xn)
fn) is a biorthogonal sequence for (xn) and for

every x∗ ∈ X∗
x∗ = F−1(xn)

F(xn)x
∗ = F−1(xn)

[(x∗(xn))]

= F−1(xn)

(∑
n

x∗(xn)fn

)
=
∑
n

x∗(xn)F−1(xn)
fn.
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Let x ∈ X. Then x =
∑

n βnxn for some sequence (βn) of scalars and for ev-
ery k F−1(xn)

fk(x) =
∑

n βnF
−1
(xn)

fk(xn) = βk. Hence x =
∑

n F
−1
(xn)

fn(x)xn. It is

immediate that (F−1(xn)
fn) is equivalent to (fn). �

If Bs is reflexive and (xn) is a Ys-Riesz basis for X, then X is reflexive and
so (xn) is a Bs-frame for X∗ and F(xn)(X

∗) = Bs by Theorem 3.2 and Corollary
3.10. Then by the proof of Theorem 3.12 we have

Theorem 3.13. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys. Let Bs be reflexive. If (xn) is a Ys-Riesz basis for X,
then there exists a Bs-Riesz basis (x∗n) for X∗, which is a biorthogonal sequence
for (xn), so that

x =
∑
n

x∗n(x)xn, x∗ =
∑
n

x∗(xn)x∗n

for every x ∈ X and x∗ ∈ X∗.

If (x∗n) ∈ Bw∗
s (X∗) (or Bs is reflexive) and (x∗n) is a Ys-Riesz basis for X∗, then

(x∗n) is a Bs-frame for X and F(x∗n)(X) = Bs by Theorem 3.4 and Corollary 3.11.
Then by the proof of Theorem 3.12 we have the following which extends [11,
Theorem 2.8].

Theorem 3.14. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys. Let (x∗n) ∈ Bw∗

s (X∗) (or Bs be reflexive). If (x∗n) is a
Ys-Riesz basis for X∗, then there exists a Bs-Riesz basis (xn) for X, which is a
biorthogonal sequence for (x∗n), so that

x =
∑
n

x∗n(x)xn, x∗ =
∑
n

x∗(xn)x∗n

for every x ∈ X and x∗ ∈ X∗.

4. Banach frames and atomic decompositions

For an operator S : Bs → X, a sequence (xn) in X and a Bs-frame (x∗n) in X∗

for X, we say that ((x∗n), S) (resp. ((x∗n), (xn))) is a Banach frame (BF) (resp.
an atomic decomposition (AD)) for X with respect to Bs if

S[(x∗n(x))] = x
(

resp.
∑
n

x∗n(x)xn = x
)

for every x ∈ X. The BF and AD for Banach spaces were introduced and
studied by Gröchenig [15], and Casazza, Han, Larson, Christensen and Heil [8, 10],
respectively. Recently, some abstract theories for them were studied by Carando,
Lassalle and Schmidberg [3, 4], and Casazza, Christensen, Stoeva [7]. The purpose
of this section is to sharpen some recent results [3, 4, 7] for the BF and AD.

First we consider the existence problem of the BF and AD for Banach spaces.
In [8, Theorem 2.10], it was shown that there exists an AD for a Banach space X
if and only if X is separable and has the bounded approximation property (BAP).
Thus there exist a separable reflexive Banach space Z, which does not have the
BAP (see [12]), such that there is no AD for Z. Also we will see that there is no
BF for every nonseparable reflexive Banach space from the following proposition.
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Recall that a sequence (x∗n) in X∗ is called total on X if x∗n(x) = 0 for every n
implies x = 0.

Proposition 4.1. The following are equivalent.
(a) There exists a BF for X.
(b) X∗ is weak∗ separable.
(c) X∗ has a total sequence.

Proof. In [7, Lemma 2.6], (c)=⇒(a) was shown and since a weak∗ countable dense
set in X∗ is a total sequence, (b)=⇒(c) follows.

(a)=⇒(b) Let ((x∗n), S) be a Banach frame for X with respect to Bs. Consider
the countable subset {e∗nF(x∗n)}

∞
n=1 of X∗. If there would exist an x∗ ∈ X∗ such

that x∗ 6∈ spanweak
∗{e∗nF(x∗n)}

∞
n=1, then by the separation theorem there exists an

x ∈ X such that spanweak
∗{e∗nF(x∗n)}

∞
n=1 ⊂ ker(x) and x∗(x) = 1. But

x = SF(x∗n)x = S[(e∗nF(x∗n)x)] = 0,

which is a contradiction. Hence X∗ = spanweak
∗{e∗nF(x∗n)}

∞
n=1 and so X∗ is weak∗

separable. �

Corollary 4.2. Let X be a reflexive Banach space. Then there exists a BF for
X if and only if X is separable.

If X is separable, then there exist Banach frames for X and X∗. Indeed,
if X is separable, then there exist sequences (xn) in X and (x∗n) in X∗ such
that (x∗n) is total on X and (jX(xn)) is total on X∗ (see [16, Proposition 1.f.3]),
where jX : X → X∗∗ is the natural isometry. Hence the assertion follows from
Proposition 4.1(c)=⇒(a)[7, Lemma 2.6].

We now extend some results in [3, 4, 7] for the BF and AD. Our proofs are
simple using some results in the previous sections. First, we note that a Bs-
Bessel sequence (x∗n) in X∗ for X is a Bs-frame if and only if (x∗n) is total and
F(x∗n)(X) is closed in Bs. Indeed, if (x∗n) is total, then the frame operator F(x∗n) is
injective. Thus if F(x∗n)(X) is closed, then by the open mapping theorem F(x∗n) is
an isomorphism. We also remark that if there exist operators U : X → Bs and
V : Bs → X such that V Ux = x for every x ∈ X, then ((U∗e∗n), V ) is a BF for
X with respect to Bs (see [4]), where each e∗n is the coordinate functional for Bs.

We now establish necessary and sufficient conditions for Bs-Bessel sequences
to be Banach frames with respect to Bs, which extend [7, Proposition 3.4].

Theorem 4.3. Let (x∗n) be a Bs-Bessel sequence in X∗ for X. The following are
equivalent.

(a) F(x∗n)(X) is complemented in Bs and (x∗n) is total.
(b) There exists an operator V : Bs → X such that V [(x∗n(x))] = x for every
x ∈ X.

(c) There exists an operator S : Bs → X such that ((x∗n), S) is a BF for X with
respect to Bs.

If (en) is a Schauder basis for Bs, then (a), (b) and (c) are equivalent to
(d) There exists a sequence (xn) in X such that

∑
n αnxn converges for every

(αn) ∈ Bs and x =
∑

n x
∗
n(x)xn for every x ∈ X.
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(e) There exists a Ys-frame (xn) in X for X∗ such that x =
∑

n x
∗
n(x)xn for every

x ∈ X.
If (en) is a Schauder basis for Bs and (fn) is a Schauder basis for Ys, then the

above statements are equivalent to
(f) There exists a Ys-frame (xn) in X for X∗ such that x∗ =

∑
n x
∗(xn)x∗n for

every x∗ ∈ X∗.

Proof. (a)=⇒(b) Since F(x∗n)(X) is closed in Bs, by the note above F(x∗n) is an
isomorphism. Let P : Bs → F(x∗n)(X) be a projection. Then F−1(x∗n)

P is the desired
operator.

(b)=⇒(c) By the assumption V F(x∗n)x = x for every x ∈ X. Then by the note
above ((F ∗(x∗n)e

∗
n), V ) is a BF for X with respect to Bs. But F ∗(x∗n)e

∗
n = x∗n for every

n.
(c)=⇒(a) By the assumption (x∗n) is total and F(x∗n)S is a desired projection.
(b)=⇒(d) We see that (V en) is the desired sequence.
(d)=⇒(b) By the assumption we can define the map V : Bs → X by V ((αn)) =∑
n αnxn. Then by the Banach-Steinhaus theorem V is bounded and then it is

the desired operator.
(d)=⇒(e) follows from Theorem 3.1 and (e)=⇒(d) follows from Theorem 2.1.
Assume (e). Then (x∗(xn)) ∈ Ys for every x∗ ∈ X∗. Hence by Corollary 2.6,

(f) follows, and by Theorem 2.1 (f)=⇒(e) follows. �

Next, we consider the AD. Remark that an AD for X with respect to a Banach
sequence space can be an AD with respect to another Banach sequence space in
which the sequence of the canonical unit vectors is a Schauder basis for it (see
[4]).

We say that an AD ((x∗n), (xn)) for X is shrinking if for every x∗ ∈ X∗

sup
x∈BX

∣∣∣∑
n≥N

x∗n(x)x∗(xn)
∣∣∣ −→ 0

as N →∞, and that it is boundedly complete if
∑

n x
∗∗(x∗n)xn converges for every

x∗∗ ∈ X∗∗. Also it is called unconditional if
∑

n x
∗
n(x)xn converges uncondition-

ally for every x ∈ X. The concepts were introduced in [3]. We now have the
following which extends [4, Remark 3.2].

Theorem 4.4. Let ((x∗n), (xn)) be an AD for X such that
∑

n |x∗n(x)x∗(xn)| <∞
for every x ∈ X and x∗ ∈ X∗. Then the following are equivalent.

(a) X is reflexive.
(b) X does not contain an isomorphic copy c0 and l1.
(c) X and X∗ do not contain an isomorphic copy c0.
(d) ((xn), (x∗n)) is an unconditional AD for X∗ and

∑
n x
∗∗(x∗n)xn unconditionally

converges for every x∗∗ ∈ X∗∗.
(e) ((x∗n), (xn)) is shrinking and boundedly complete.

Proof. (a)=⇒(b) and (d)=⇒(e) are clear, and (b)=⇒(c) and (e)=⇒(a) follows
from [16, Proposition 2.e.8] and [3, Proposition 2.4], respectively.

(c)=⇒(d) Let x∗ ∈ X∗. Then by the hypothesis and Corollary 2.3 (x∗(xn)x∗n) ∈
lw1 (X∗) and so

∑
n x
∗(xn)x∗n is weakly unconditionally Cauchy in X∗. By the



FRAMES AND RIESZ BASES FOR BANACH SPACES 185

assumption (c) and [17, Theorem 4.3.12]
∑

n x
∗(xn)x∗n unconditionally converges.

Since for every x ∈ X∑
n

x∗(xn)x∗n(x) = x∗
(∑

n

x∗n(x)xn

)
= x∗(x),∑

n x
∗(xn)x∗n = x∗ unconditionally converges. This shows the first part. Since for

every x∗ ∈ X∗
∑

n x
∗(xn)x∗n is weakly unconditionally Cauchy, for every x∗∗ ∈ X∗∗∑

n x
∗∗(x∗n)xn is weakly unconditionally Cauchy in X. By the assumption (c) for

every x∗∗ ∈ X∗∗
∑

n x
∗∗(x∗n)xn unconditionally converges. �

From the same proof of Theorem 4.4 we have the following which extends [4,
Theorem 3.3].

Corollary 4.5. Let ((x∗n), (xn)) be an AD for X such that
∑

n |x∗n(x)x∗(xn)| <∞
for every x ∈ X and x∗ ∈ X∗. Then the following are equivalent.

(a) X∗ is separable.
(b) X does not contain an isomorphic copy l1.
(c) X∗ does not contain an isomorphic copy c0.
(d) ((xn), (x∗n)) is an unconditional AD for X∗.
(e) ((x∗n), (xn)) is shrinking.

The following extends [4, Theorem 3.4 and Corollary 3.5].

Theorem 4.6. Let ((x∗n), (xn)) be an AD for X such that
∑

n |x∗n(x)x∗(xn)| <∞
for every x ∈ X and x∗ ∈ X∗. Then the following are equivalent.

(a) X is complemented in X∗∗.
(b) X does not contain an isomorphic copy c0.
(c)

∑
n x
∗∗(x∗n)xn unconditionally converges for every x∗∗ ∈ X∗∗.

(d) ((x∗n), (xn)) is boundedly complete.

Proof. (c)=⇒(d) is clear and (b)=⇒(c) follows from the proof of Theorem 4.4(c)=⇒(d).
(d)=⇒(a) is [4, Remark 2.5] and (a)=⇒(b) is an application of [1, Corollary
2.5.9]. �

We now apply the AD to the approximation property. We say that X has the
the approximation property (AP) if for every compact subset of X and ε > 0
there exists a finite rank operator T on X such that supx∈K ‖Tx− x‖ ≤ ε, and if
we take the operator T such as ‖T‖ ≤ λ for some λ ≥ 1, then X is said to have
the bounded approximation property (BAP).

An AD ((x∗n), (xn)) for X with respect to Bs, in which the sequence of the
canonical unit vectors is a Schauder basis for it, is called strongly shrinking [3] if
for every x∗ ∈ X∗

sup
{∣∣∣∑

n≥N

αnx
∗(xn)

∣∣∣ : ‖(αn)‖Bs ≤ 1
}
−→ 0

as N →∞. The strongly shrinking property is strictly stronger than shrinking [3,
Examples 1.12 and 1.13]. The following is a simple observation of known results
but an interesting relation between the AP and AD.

Theorem 4.7. The following are equivalent.
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(a) There exists an AD for X with respect to a Banach sequence space in which
the sequence of the canonical unit vectors is a shrinking Schauder basis for it.

(b) There exists a strongly shrinking AD for X.
(c) There exists a shrinking AD for X.
(d) X∗ is separable and has the BAP.
(e) X∗ is separable and has the AP.

Proof. (b)=⇒(c) is clear and (a)=⇒(b) follows from [3, Proposition 1.9]. (c)=⇒(d)
is [3, Corollary 1.5] and (d)⇐⇒(e) is well known; cf. [5, Theorem 3.6].

(d)=⇒(a) From [5, Theorem 4.9] there exists a Banach space Z with a shrinking
basis (zn) such that X embeds complementably into Z. Put

Bs =
{

(αn)|
∑
n

αnzn converges in Z
}

with ‖(αn)‖Bs = ‖
∑

n αnzn‖Z . Then we see that Bs is a Banach sequence space
in which the sequence of the canonical unit vectors is a shrinking Schauder basis
for it. Since X embeds complementably into Z, we can find an AD for X with
respect to Bs. �

5. Banach spaces consisting of Bessel or Riesz sequences

Recall the vector spaces

Bw
s (X) = {(xn) in X : (x∗(xn)) ∈ Bs for every x∗ ∈ X∗},

Bw∗

s (X∗) = {(x∗n) in X∗ : (x∗n(x)) ∈ Bs for every x ∈ X},

BsR(X) = {(xn) in X :
∑
n

αnxn converges for every (αn) ∈ Bs}.

Then by boundedness of the analysis and synthesis operators, for every (xn) ∈
Bw
s (X), (x∗n) ∈ Bw∗

s (X∗), (xn) ∈ BsR(X), respectively,

‖(xn)‖Bw
s (X) = sup

x∗∈BX∗
‖(x∗(xn))‖Bs , ‖(x∗n)‖Bw∗

s (X∗) = sup
x∈BX

‖(x∗n(x))‖Bs ,

and

‖(xn)‖BsR(X) = sup
(αn)∈BBs

∥∥∥∑
n

αnxn

∥∥∥
are all finite.

We now have

Proposition 5.1. (Bw
s (X), ‖ · ‖Bw

s (X)) and (Bw∗
s (X∗), ‖ · ‖Bw∗

s (X∗)) are Banach
spaces.

Proof. The proofs of the two cases are the same and so we only prove the first

case. It is easy to check that ‖ · ‖Bw
s (X) is a norm on Bw

s (X). Let ((x
(k)
n ))k be a

Cauchy sequence in Bw
s (X) and let m ∈ N be fixed. Let ε > 0 be given. Then

there exists an N ∈ N so that k, l ≥ N implies

‖(x(k)n )− (x(l)n )‖Bw
s (X) ≤

ε

‖e∗m‖
,
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where e∗m is the m-th coordinate functional for Bs. Then k, l ≥ N implies

‖x(k)m − x(l)m ‖ = sup
x∗∈BX∗

|x∗(x(k)m − x(l)m )|

≤ sup
x∗∈BX∗

‖e∗m‖‖(x∗(x(k)n − x(l)n ))‖Bs ≤ ε.

Thus (x
(k)
m )k is a Cauchy sequence in X and so there exists an xm ∈ X so that

x
(k)
m −→ xm. We have shown that there exists a sequence (xn) in X so that

for every n x
(k)
n −→ xn as k → ∞. Since every x∗ ∈ X∗ ((x∗(x

(k)
n )))k is a

Cauchy sequence in Bs, for every x∗ ∈ X∗ there exists a (αx
∗
n ) ∈ Bs so that

‖(x∗(x(k)n )) − (αx
∗
n )‖Bs −→ 0 as k → ∞ and so for every n x∗(x

(k)
n ) −→ αx

∗
n .

Consequently (x∗(xn)) = (αx
∗
n ) ∈ Bs for every x∗ ∈ X∗ and so (xn) ∈ Bw

s (X).
Now let ε > 0 be given. Then there exists an N ∈ N so that k, l ≥ N implies

sup
x∗∈BX∗

‖(x∗(x(k)n ))− (x∗(x(l)n ))‖Bs ≤ ε.

Then k ≥ N implies that for every x∗ ∈ BX∗

‖(x∗(x(k)n ))− (x∗(xn))‖Bs = lim
l
‖(x∗(x(k)n ))− (x∗(x(l)n ))‖Bs ≤ ε.

Thus k ≥ N implies ‖(x(k)n ) − (xn)‖Bw
s (X) ≤ ε. Hence (x

(k)
n ) −→ (xn) in Bw

s (X)
as k →∞. This completes the proof. �

The following theorem shows that they are actually some Banach spaces of
bounded linear operators. Here L is the Banach space of all bounded linear
operators between Banach spaces.

Theorem 5.2. For every Banach space X, the following statements hold.
(a) Bw

s (X) (resp. Bw∗
s (X∗)) is isometrically isomorphic to {T ∈ L(X∗, Bs) :

T ∗({e∗n}∞n=1) ⊂ X} (resp. L(X,Bs)).
(b) If (en) is a Schauder basis for Bs, then BsR(X) and Y w

s (X) are isometrically
isomorphic to L(Bs, X).

Proof. (a) Recall the analysis operator F(xn) (resp. F(x∗n)) : X∗ (resp. X) → Bs

and then we define the map from Bw
s (X) (resp. Bw∗

s (X∗)) to {T ∈ L(X∗, Bs) :
T ∗({e∗n}∞n=1) ⊂ X} (resp. L(X,Bs)) via

(xn) (resp. (x∗n)) 7→ F(xn) (resp. F(x∗n)).

Then the maps will be the desired isometries. Let us only check the first case.
Since for every n and x∗ ∈ X∗ (F ∗(xn)e

∗
n)(x∗) = x∗(xn), F ∗(xn)({e

∗
n}∞n=1) ⊂ X and

so the map is well defined and clearly a linear isometry. Now let T be an element
in the codomain space and consider the sequence (T ∗e∗n) in X. Then we see that
(T ∗e∗n) ∈ Bw

s (X) and F(T ∗e∗n) = T . Hence the map is surjective.
(b) Define the map from BsR(X) to L(Bs, X) via (xn) 7→ R(xn), where R(xn)

is the synthesis operator. Then it is easy to check that the map is a surjective
linear isometry.

We have shown that for a sequence (xn) in X (xn) ∈ Y w
s (X) if and only if

(xn) ∈ BsR(X) (Theorem 2.1). Moreover, we will show that their norms are the
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same, and then conclude that Y w
s (X) is isometrically isomorphic to L(Bs, X). If

(xn) ∈ BsR(X), then

‖(xn)‖BsR(X) = sup
{∥∥∥ ∞∑

k=1

αkxk

∥∥∥ : (αk) ∈ BBs

}
= sup

{∣∣∣ ∞∑
k=1

αkx
∗(xk)

∣∣∣ : (αk) ∈ BBs , x
∗ ∈ BX∗}

= sup
{∣∣∣ ∞∑

k=1

αkjs[(x
∗(xn))]ek

∣∣∣ : (αk) ∈ BBs , x
∗ ∈ BX∗}

= sup
{∣∣∣js[(x∗(xn))]

( ∞∑
k=1

αkek

)∣∣∣ : (αk) ∈ BBs , x
∗ ∈ BX∗}

= sup
{∥∥∥js[(x∗(xn))]

∥∥∥
Bs

∗
: x∗ ∈ BX∗

}
= sup{‖(x∗(xn))‖Ys : x∗ ∈ BX∗} = ‖(xn)‖Y w

s (X).

�

For example, lpR(X) and lwp∗(X) (1 ≤ p < ∞) are isometrically isomorphic to
L(lp, X), and c0R(X) and lw1 (X) are isometrically isomorphic to L(c0, X).

Remark 5.3. In Theorem 5.2(a), if (fn) is a Schauder basis for Ys, then Bw
s (X) is

isometrically isomorphic to the space Lw∗(X∗, Bs) of weak∗ to weak continuous
operators because an operator T : X∗ → Y is weak∗ to weak continuous if and
only if T ∗(Y ∗) ⊂ X.

Corollary 5.4. Suppose that (en) is a Schauder basis for Bs and (fn) is a
Schauder basis for Ys. Then Bw

s (X∗) is isometrically isomorphic to the space
W(X,Bs) of weakly compact operators and so Bw

s (X∗) is a closed subspace of
Bw∗
s (X∗) with the same norm.

Proof. Note that for every Banach space X and Y , the spaceW(X, Y ) is isomet-
rically isomorphic to the space Lw∗(X∗∗, Y ) via T 7→ j−1Y T ∗∗, where jY : Y → Y ∗∗

is the natural isometry. It follows from Remark 5.3 that Bw
s (X∗) is isometrically

isomorphic to the space W(X,Bs). In view of Theorem 5.2(a), the other part
follows. �

Recall that for a sequence (x∗n) in X∗ (x∗n) ∈ Y w∗
s (X∗) if and only if (x∗n) ∈

Y w
s (X∗) (Corollary 2.3). Moreover, their norms are also the same.

Corollary 5.5. Suppose that (en) is a Schauder basis for Bs. Then Y w
s (X∗) and

Y w∗
s (X∗) are isometrically isomorphic to L(Bs, X

∗).

Proof. By Theorem 5.2(b) we only need to show the case Y w∗
s (X∗). But, for every

Banach space X and Y , L(X, Y ∗) is isometrically isomorphic to L(Y,X∗), hence
the conclusion follows from Theorem 5.2(a). �

For example, ‖(x∗n)‖lwp (X∗)= ‖(x∗n)‖lw∗
p (X∗) (1 ≤ p ≤ ∞) for every (x∗n) ∈ lwp (X∗).
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6. Special Bessel and Riesz sequences

In this section we consider the following subspaces of Bw
s (X), Bw∗

s (X∗), and
BsR(X), respectively;

B̌w
s (X) = {(xn) ∈ Bw

s (X) : lim
n
‖(0, · · ·, 0, xn, xn+1, · · ·)‖Bw

s (X) = 0},

B̌w∗

s (X∗) = {(x∗n) ∈ Bw∗

s (X∗) : lim
n
‖(0, · · ·, 0, x∗n, x∗n+1, · · ·)‖Bw∗

s (X∗) = 0},

B̌sR(X) ={
(xn) ∈ BsR(X) :

{∑
n

αnxn : (αn) ∈ BBs

}
is relatively compact in X

}
.

We will show that they are actually some Banach spaces of compact operators.
In order to do this, we need the following lemma.

Lemma 6.1. Suppose that (en) is a Schauder basis for Bs and let K be a bounded
subset of Bs. Then K is relatively compact if and only if limn sup(kn)∈K ‖(0, · ·
·, 0, kn, kn+1, · · ·)‖Bs = 0.

Proof. Let Pm : Bs → Bs be the m-th basis projection for each m ∈ N. Suppose
that K is relatively compact. Since for every (αn) ∈ Bs ‖Pm(αn)− (αn)‖Bs −→ 0
as n → ∞ and (Pm) is uniformly bounded, we see that for every ε > 0 there is
an N ∈ N such that for all m ≥ N

sup
(kn)∈K

‖Pm(kn)− (kn)‖Bs ≤ ε,

hence the assertion follows.
Suppose the converse. Let ε > 0. Then there is an N ∈ N such that ‖PN(kn)−

(kn)‖ ≤ ε/2 for all (kn) ∈ K. Since K is bounded, PN(K) is relatively compact
in Bs. Let {PN(x1), . . . , PN(xn)} be an ε/2-net of PN(K), where xj ∈ K for all
1 ≤ j ≤ n.

Then for each x ∈ K, there is a j (1 ≤ j ≤ n) such that ‖PNx− PNxj‖ ≤ ε/2,
and so ‖x − PNxj‖ ≤ ε. This means that the set {PN(x1), . . . , PN(xn)} is an
ε-net of K, hence K is relatively compact. �

Theorem 6.2. Suppose that (en) is a Schauder basis for Bs. Then for every
Banach space X, the following statements hold.

(a) B̌w∗
s (X∗) is isometrically isomorphic to the space K(X,Bs) of compact opera-

tors.
(b) B̌sR(X) is isometrically isomorphic to K(Bs, X).
(c) If (fn) is a Schauder basis for Ys, then Y̌ w

s (X) is isometrically isomorphic to
K(Bs, X).

Proof. (a) Consider the map from B̌w∗
s (X∗) to K(X,Bs) via (x∗n) 7→ F(x∗n). Then

by Lemma 6.1 this map is well defined and clearly a linear isometry. If T ∈
K(X,Bs), then by using Lemma 6.1 it is easy to check that (T ∗e∗n) ∈ B̌w∗

s (X∗)
and F(T ∗e∗n) = T . Hence the map is surjective.

(b) Consider the map from B̌sR(X) to K(Bs, X) via (xn) 7→ R(xn). Then it is
easy to check that this map is a surjective linear isometry.
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(c) By Theorem 6.6(a) B̌sR(X) = Y̌ w
s (X) and by the proof of Theorem 5.2(b)

their norms are also the same. Hence the conclusion follows from (b). �

For example, ľpR(X) and ľwp∗(X) (1 < p < ∞) are isometrically isomorphic to

K(lp, X), and č0R(X) and ľw1 (X) are isometrically isomorphic to K(c0, X).

Proposition 6.3. Suppose that (en) is a Schauder basis for Bs. Then B̌w
s (X) is

a closed subspace of Bw
s (X).

Proof. Let ((x
(k)
n ))k be a sequence in B̌w

s (X) and let (xn) ∈ Bw
s (X) with ‖(x(k)n )−

(xn)‖Bw
s (X) −→ 0 as k →∞. Consider the analysis operators F

(x
(k)
n )
, F(xn) : X∗ →

Bs. Then by Lemma 6.1 each F
(x

(k)
n )

is a compact operator. Since ‖F
(x

(k)
n )
−

F(xn)‖ = ‖(x(k)n ) − (xn)‖Bw
s (X) −→ 0 as k → ∞, F(xn) is a compact operator.

Hence by Lemma 6.1 (xn) ∈ B̌w
s (X). �

Now recall the injective tensor product X⊗̌Y of Banach spaces X and Y (see
[18, Chapter 3] or [13, Section 1.1]). Then X⊗̌Y is isometrically isomorphic to

the operator norm closure Fw∗(X∗, Y ) of the space of weak∗ to weak continuous

finite rank operators from X∗ to Y and, if X has the AP, then Fw∗(X∗, Y ) =
Kw∗(X∗, Y ), the space of weak∗ to weak continuous compact operators. Then we
have

Theorem 6.4. Suppose that (en) is a Schauder basis for Bs. Then for every
Banach space X, B̌w

s (X) is isometrically isomorphic to Kw∗(B∗s , X).

Proof. By the note above, it is enough to show that Bs⊗̌X is isometrically iso-
morphic to B̌w

s (X).
We define the map J : (Bs ⊗X, ‖ · ‖∨)→ B̌w

s (X) by

J
(∑
j≤n

(λji )i ⊗ xj
)

=
(∑
j≤n

λjixj

)
i
.
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Then we see that J(Bs ⊗X) ⊂ Bw
s (X), and

lim
m

∥∥∥(0, · · · , 0,
∑
j≤n

λjmxj,
∑
j≤n

λjm+1xj, · · ·
)∥∥∥

Bw
s (X)

= lim
m

sup
{∥∥∥(0, · · · , 0,

∑
j≤n

λjmx
∗(xj),

∑
j≤n

λjm+1x
∗(xj), · · ·

)∥∥∥
Bs

: x∗ ∈ BX∗

}
= lim

m
sup

{∣∣∣γ[(0, · · · , 0,
∑
j≤n

λjmx
∗(xj),

∑
j≤n

λjm+1x
∗(xj), · · ·

)]∣∣∣ : x∗ ∈ BX∗ , γ ∈ BB∗
s

}
= lim

m
sup

{∣∣∣∑
j≤n

γ[(0, · · · , 0, λjmx∗(xj), λ
j
m+1x

∗(xj), · · · )]
∣∣∣ : x∗ ∈ BX∗ , γ ∈ BB∗

s

}
≤ lim

m

∑
j≤n

sup
{∣∣∣γ(∑

i≥m

λjix
∗(xj)ei

)∣∣∣ : x∗ ∈ BX∗ , γ ∈ BB∗
s

}
≤ lim

m

∑
j≤n

‖xj‖ sup
{∣∣∣γ(∑

i≥m

λjiei

)∣∣∣ : γ ∈ BB∗
s

}
= lim

m

∑
j≤n

‖xj‖
∥∥∥∑
i≥m

λjiei

∥∥∥
Bs

= 0.

Thus J is well defined and linear. Since for every (xn) ∈ B̌w
s (X) and every m

(x1, · · · , xm, 0, · · · ) = J
(∑
j≤m

ej ⊗ xj
)

and limm ‖(0, · · · , 0, xm, xm+1, · · · )‖Bw
s (X) = 0, J(Bs ⊗ X) is dense in B̌w

s (X).
Now ∥∥∥∑

j≤n

(λji )i ⊗ xj
∥∥∥
∨

=
{∣∣∣∑

j≤n

γ[(λji )i]x
∗(xj)

∣∣∣ : x∗ ∈ BX∗ , γ ∈ BB∗
s

}
=
{∣∣∣γ(∑

j≤n

x∗(xj)(λ
j
i )i

)∣∣∣ : x∗ ∈ BX∗ , γ ∈ BB∗
s

}
=
{∥∥∥∑

j≤n

x∗(xj)(λ
j
i )i

∥∥∥
Bs

: x∗ ∈ BX∗

}
=
{∥∥∥(x∗(∑

j≤n

xjλ
j
i

))
i

∥∥∥
Bs

: x∗ ∈ BX∗

}
=
∥∥∥(∑

j≤n

xjλ
j
i

)
i

∥∥∥
Bw

s (X)
.

Thus J is an isometry and so there exists an extension J̌ : Bs⊗̌X → B̌w
s (X) of J

such that J̌ is surjective and an isometry. �

For example, ľwp (X) (1 ≤ p < ∞) (resp. c0(X)) is isometrically isomorphic to
Kw∗(lp∗ , X) (resp. Kw∗(l1, X)).
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Corollary 6.5. Suppose that (en) is a Schauder basis for Bs. Then for every
Banach space X, the following statements hold.

(a) B̌w∗
s (X∗) = B̌w

s (X∗) with the same norm.
(b) Y̌ w∗

s (X∗) = Y̌ w
s (X∗) with the same norm.

Proof. (b) follows from Corollary 5.5, and (a) is a result of Theorems 6.2(a) and
6.4 because K(X,Bs) is isometrically isomorphic to Kw∗(B∗s , X

∗). �

For example, ľwp (X∗) = ľw
∗

p (X∗) (1 ≤ p ≤ ∞).
Finally we establish relationships between the special Bessel and Riesz se-

quences.

Theorem 6.6. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys. Let (xn) and (x∗n) be sequences in X and X∗, respectively. Then the
following statements hold.

(a) (xn) ∈ Y̌ w
s (X) if and only if (xn) ∈ B̌sR(X).

(b) (x∗n) ∈ Y̌ w∗
s (X∗) if and only if (x∗n) ∈ B̌sR(X∗).

Proof. (b) follows from (a) and Corollary 6.5(b). To show (a), consider the anal-
ysis operator F(xn) : X∗ → Ys and synthesis operator R(xn) : Bs → X. Then in

the proof of Theorem 2.1 jsF(xn) = R∗(xn). If (xn) ∈ Y̌ w
s (X), then by Lemma 6.1

F(xn) is a compact operator and so is R(xn). Thus (xn) ∈ B̌sR(X). Conversely,

if (xn) ∈ B̌sR(X), then R(xn) is a compact operator and so is F(xn). Hence

(xn) ∈ Y̌ w
s (X) by Lemma 6.1. �

From Theorem 6.6, for a sequence (xn) in X, (xn) ∈ ľwp∗(X) if and only if

(xn) ∈ ľpR(X) (1 < p <∞), and (xn) ∈ ľw1 (X) if and only if (xn) ∈ č0R(X).
Interchanging Bs with Ys we have the following result.

Theorem 6.7. Suppose that (en) is a Schauder basis for Bs and (fn) is a Schauder
basis for Ys. Let (xn) and (x∗n) be sequences in X and X∗, respectively. Then the
following statements hold.

(a) If (xn) ∈ Bw
s (X), then (xn) ∈ B̌w

s (X) if and only if (xn) ∈ Y̌sR(X).
(b) If (x∗n) ∈ Bw∗

s (X∗), then (x∗n) ∈ B̌w∗
s (X∗) if and only if (x∗n) ∈ Y̌sR(X∗).

Proof. (a) Let (xn) ∈ Bw
s (X). Then by the proof of Theorem 2.4 the analysis

operator F(xn) : X∗ → Bs and synthesis operator R(xn) : Ys → X∗∗ is well defined
and F ∗(xn) = R(xn)j

−1
s . Then the conclusion follows from the same argument of

the proof of Theorem 6.6.
(b) Let (x∗n) ∈ Bw∗

s (X∗). Then by Corollary 2.6 the analysis operator F(x∗n) :
X → Bs and synthesis operator R(x∗n) : Ys → X∗ is well defined, and we see that
F ∗(x∗n) = R(x∗n)j

−1
s . Hence the conclusion follows. �
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