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THE BEST LOWER BOUND FOR JENSEN’S INEQUALITY
WITH THREE FIXED ORDERED VARIABLES

VASILE CIRTOAJE

Communicated by Z. Péles

ABSTRACT. In this paper we establish the best lower bound for the weighted
Jensen’s discrete inequality with ordered variables applied to a convex function
f, in the case when the bound depends on f, weights and three fixed variables.
Some applications for particular cases of interest are provided.

1. INTRODUCTION

Let I be an interval in R, let x = (x1, 29, -+ ,x,) € I, and let p = (p1,p2, -+, Pn)
be a positive n-tuple such that py +ps+---+p, = 1. If f: I — R is a convex
function, then the well-known discrete Jensen’s inequality [2] states that

A”(f? p7X) Z 07

where the functional

An(f,p,x) = pif(x1) +paf(x2) + -+ Do f(Tn) — f(Pr171 + P22 + -+ - + Ppp)

is so called Jensen’s difference.
In [1], we presented the theorem below which establishes the best lower bound
Ly ¢(z;, zx) of Jensen’s difference A, (f, p,x) for

<<y < <ap <o <y

and fixed x; and zy,.
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THE BEST LOWER BOUND DEPENDED ON THREE FIXED VARIABLES 117

Theorem 1.1. Let f be a conver function on 1, and let xq,x9,- -+ 2, € T (n > 3)
such that

Ty S Xy < S T
For fized x; and x), (i < k), Jensen’s difference A, (f, p, ) is minimal when

X1 =Ty =+ =Tj—1 = Ty, Tp = Tp—1 = = Tgy41 = Tk,

. L Pz + Py,
LTit1 = Tjgp2 = " = T—1 =

P+ Py ’
where
Poy=pr4+pa+--+pi  Pon=pk+DPrs1+ 0+ Dn
that is
An(f,p.x) 2 Ly (i, 2k),
where

Pz + Pz
Ly p(xi, o) = Prif (i) + Penf(x) — (Pri+ Pen) f ( ; ] k) :

Pl,i + Pk:,n
Towards proving Theorem 1.1, we have used the following three lemmas.

Lemma 1.2. Let p, q be nonnegative real numbers, and let f be a convex function
on 1. If a,b,c,d € 1 are such that c,d € |a,b], and
pa + qb = pc + qd,
then
pfla) +qf(b) > pf(c) + qf(d).
Lemma 1.3. Let f be a convex function on 1, and let x1, 29, ,x, €1 (n > 3)
be such that
T STy < - STy
For fized x;, xi1q1,- - ,x,, wherei € {2,3,--- ,n}, Jensen’s difference A, (f, p, x)
1s minimal when
Ty =T =" " =Tj-1 = Ty
Lemma 1.4. Let f be a convez function on 1, and let x1, 29, ,x, €I (n > 3)
be such that
) B S
For fivzed 1, xq,- -+ ,x, wherek € {1,2,--- ,n—1}, Jensen’s difference A, (f, p, x)
15 manimal when
L = Tg41 = """ = Tp—1 = Tn.
In this paper, we will use these lemmas to establish the best lower bound of

weighted Jensen’s difference for three fixed variables. In addition, we will use the
following lemma.
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Lemma 1.5. Let f be a convex function on 1, and let x1, 29, -+ ,x, €1 (n > 4)
be such that
rp < Sy < S S STy

where 1 <i<i1+ 1<k <n. We have
A (f,p, ) > An(f, DY),

where
Y = T1, Y2 = T2, -+, Yi = Ty,
Pit1Tip1 + -+ Pp_1Tp—1

Pit1 + o+ Pr
Yk = Tky Yk+1 = Tk+1, *°° 5 Yn = Tn.

Yit1r = " = Yr—1 =

Note that the proof of this lemma follows immediately from Lemma 1.3, Lemma
1.4 and Jensen’s inequality

Dit1Tit1 + -+ pk133k1)
Pit1+ -+ Pr—1

Pit1f(Tig1)+ - Fpe—1 f(@p—1) > (Piga+ - +Dr—1) f <

2. MAIN RESULT

We will establish the best lower bound Ly f(z;,z;,x)) of Jensen’s difference
Ay (f,p,x) for z; < x9 <--- <z, and fixed w;, ;, z; such that

1<i<ji<k<n.
To do this, we need Lemmas 1.2, 1.3, 1.4, 1.5 and Lemma 2.1 below.
Lemma 2.1. Let f be a convex function on 1, let ai, as, as, as,as € 1 be such that
a; < az < az < ay < as,

let r1,7r9,13, 74,75 be positive weights satisfying vy + 1o +1r3+ry+15 =1, and let

riay + (re 4+ r3)as + rsas
T i Aradrstrs
riay + (73 + 14)as + r5a;

ri+r3+rs+ 15 ‘

For fized ay, as, as, the best lower bound of Jensen’s difference As(f, r, a) is

Ay

AQI

161 + T505

T+ 75
r1a1 + 505 !

7“1—|-7“5

Ala fOT as <

Ars(ay, as,as5) =
Ao, for as >

where
Ay =7rif(ar) + (ro+13) flas) +r5f(as) — (r1 + 72+ 173 +75) f(A1).

Ay = rlf(al) + (7“3 + 7"4)f(a3) + 7‘5f(a5) — (7’1 +7r3+1ry + 7’5)f(A2).
In addition, we have
As(f,ra) =M\
for as = a3 and ay = Ay, and

A5(f7 T, G,) = AQ
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for as = As and ay = as.

For any 1 <1 < j < n, we introduce the notation
Pij =pi+pit1+ -+ ;.
In addition, let us denote

X, — Pz + P jxg + Prpxy
! P+ Py + Pen

P Py + P17 + Py pxy
? P+ Pij1+Pen

and
Ly =Py f(z;) + Pis1j f(z) + Penf(ar) — (Pri+ Py + Pen) f(X0),

Ly = Piif(z;) + Pjp—1f(xj) + Penf(zr) — (Pri+ Pjg—1+ Pen) f(X2).

Our main result is given by the following theorem.
Theorem 2.2. Let [ be a convex function on 1, let x1, 29, 2, €1 (n > 4) be
such that
Ty S X < -or S Xy,
and let py,pa,- -+ ,pn be positive weights satisfying py + ps + -+ p, = 1. For

fized x;, x5, 2, (1 < i < j <k <mn), the best lower bound of Jensen’s difference
A (f,p,x) is

Py x; + Py o
Ll, fO?“ xjg 1,id4 kntk

Lp p(zi x5, 2p) = Pri+ Pin
L Prvi + Pyt
L27 fOT Ty Z
Pl,i + Pkm,
In addition, we have A, (f, p,x) = Ly for
Ty =To =" = Xj—1 = Ty,
Tip1 = Tig2 =« ° = Tj—1 = Ty,
Tjyl = Tjq2 = - = Tp—1 = X1,
Tk = Tk41 = " * = Tpn—1 = Tn,
and A, (f, p, ) = Ly for
Tl =Tg =" = Tj—1 = Ty,
Tiy1 = Tipe = -+ = Tj-1 = Xy,
Tj=Tj1 =" = Tp—2 = Tk-1,

T = Tk4+1 = """ = Tpn—1 = Tn-



120 V. CIRTOAJE

From Theorem 2.2, for the particular case

- Pz + Py
J — )
P+ Py

which implies
X1 = X2 =Ty

and

Pz, + Py o
Ly =Ly = Piif(xi) + P f(xx) — (Pri + Pen) f ( L ", k) ’

Pl,i + Pk,n

we get Theorem 1.1.
On the other hand, according to Jensen’s inequality, we have

Ly — Ly = (Pjx-1 — P ) f(25) + (Pri + Pigag + Pen) f(X0)
— (Pri+ Pjr1 + Pep) f(X2) 20
for Piy1; < Pjr—1, and
Ly — Ly = (Piy1j — Pjg—1)f(x)) + (Pri + Pjr—1 + Prn) f(X2)
— (Pri+ Pip1j + Pepn) f(X1) >0
for P11 ; > Pj—1. Thus, from Theorem 2.2, we obtain the following proposition.

Proposition 2.3. Let f be a convex function on 1, let x1, x5, -+ ,x, € I (n > 4)
such that

TS S S S S ST S Sy,

and let pi,pa, -+, pn be positive weights satisfying p1 + pa + - -+ + pn = 1.
(a) If Piy1j < Pjg-1, then
An(fa D, $> Z Lla
(0) If Piy1j = Pjg—1, then

An(f, D, $> > L2‘

Applying Theorem 2.2 and Proposition 2.3 for f(z) = e* and using the substi-
tutions a; = e*', ag = €™2,- -+ ,a, = "™, we obtain

Corollary 2.4. Let py,pa,--- ,pn (n > 4) be positive real numbers such that
pr+pe+ - +p, =1, and let

O<a1§...§ai§...Sa.§...<ak§...<a‘

Py i+ Py, Py Py,
(a) If a; " <a;'a," or Py < Pjj_q, then

pP1 P2
Pra1+paas + oo+ Puln — Ay ay’ - apt > Priai + Py jag + Prpay,

1
Pri Pit1,j Pen\ PLitPiy1,+Pen
— (Pri+ Py + Prn) <a’i a; ay, )
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with equality for

) = ag = - = Qj—1 = Gy,
Aj41 = Q42 =+ * = Q-1 = Gy,
1
Pri Pit1 Pen\ PritPit1,i+Prn
aj-‘rl:a/‘]“rQ:"':a’k—l:(az a] ak‘ y
Ap = Ap—1 = = Q41 = G,

Py i+ Py, Pi; Py,
(b) If a; " >a; " or Piyyj > Pig_q, then

p1 P2
pra1+peas + - 4 ppay, — ay'ay’ - -abt > Pya; + Pjgoia; + Pynag

1
Pii Pix_1 Pen\ Pri¥Pr 1¥P
— (Pri+ Pjj—1+ Pin) (w“w” 'a k‘") Lk R

7 7 k )

with equality for

a; = ag = = Gj—1 = Ay,
1
Pi; Pjr—1 Pen\P1itPjr—1tPen
ak—l :ak—2: . e :aj+1 :aj7
ap = Ap—1 = = k41 = Q-

Applying Theorem 2.2 and Proposition 2.3 for f(z) = —Inz, we obtain

Corollary 2.5. Let py,pa,--- ,pn (n > 4) be positive real numbers such that
pr+p2+-+p=1, let

O<a; <+ <y <o Sy <o Sy <o Sy

and let
Y Pz + Py oy + Prny X, — Py + P12 + Pypxi
1 — ) 2 — .
P+ P+ Py P+ P+ Py
Pz + Py pxy
(a) If v; < — : or Piy1; < Pjr_1, then
P+ Py
Py i+Pit1,j+Px,
P1T1 + P2Xo + -+ Ppp > X !
1'11)1$12)2 e — xf’l,ixf’iﬂ,jxpk,n !
i 7 k
with equality for
T =T =" =Tj—1 =Ty,
Tip1 = Tj42 = " = Tj—1 = Ty,
Tjp1 = Tjpp = -+ = Tp—1 = X1,
Tp = Tp-1 = " = Tk+1 = Tk,
Py + Py pxy
(b) If x; > Iz P or Piy1; > Pjr—1, then
10+t Lkn
Py i+ Pj g—1+Pr,
PIT1 + Pao + -+ ppry  Xg !
P1,.D2 D — P, Pip_1 P )
1'1 x2 xn" £B~1’Z$<]’k 1x k,n

i J k



122 V. CIRTOAJE

with equality for

Tl =Tg =" " =Tj—1 = Ty,
Tig1 = T2 = - = Tj-1 = Xy,
Tp—1 = Tk—2 = = Tj41 = Ty,

Tp = Tp—1 =" = Tkl = Tk

3. PROOF OF LEMMA 2.1

Let us denote

r1a1 + reae + r3as + r5as
rL+re+ 13+ 75

r1a1 + r3az + 1404 + T505
r1+7“3+7“4+r5 ’

Ry=ri+ryo+rs+rs, By =

R2:T1+T3+7’4+7’5, B2:
We have two cases to consider.

Case 1: (11 + r5)as < ray + rsas. We need to show that As(f,r,a) > Ay, that
is,

rof(ag) + raf(as) + Rif(Ar) > raf(as) + f(riar + reas + r3as + ryaq + rsas).
By Jensen’s inequality, we have
rof(as) + Rif(B1) > f(ria; + raas + ras + reay + rsas).
Thus, it suffices to show that
rof(ag) + Rif(A1) > raf(as) + Rif(By). (3.1)
From (r; + r5)as < ria; + rsas, it is easy to prove that
az, By € [ag, Aq].
In addition, we have
roas + R1 Ay = roas + Ry Bs.
Therefore, (3.1) is true according to Lemma 1.2.
Case 2: (r1 + r5)az > ria; + rsas. We can write the desired inequality as
rof(ag) +raf(as) + Rof (A2) > raf(as) + f(rian + reaz + r3as + raas + rsas).
Using Jensen’s inequality
rof(az) + Rof (Bs) > f(riay 4 reas + rsas + r4a4 + 1r505),
it suffices to show that
raf(as) + Raf(A2) = raf(as) + Raf (B2). (3.2)
From (ry + r5)as > ria; + rsas, we get
as, By € [Ay, ay].

Since
404 + R2A2 = rsas + RQBQ,
(3.2) follows by Lemma 1.2. Thus, the proof of Lemma 1.5 is completed.
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4. PROOF OF THEOREM 2.2

Let us denote

x.. = PiriTit + Pt
i P )
i+1,j—1

_ Din1%ip1 + o F Pr—1Tk—1

Pji1 k1

Yk

According to Lemmas 1.3, 1.4 and 1.5, we have

A, (fipx) 2 Au(fipyy), (4.1)
where
Vi =Y2=" =Y =Ty,
Yir1 = -+ = Yj—1 = Xyj,
Yj = Ty,
Yjt1 = = Yr—1 = Yji,
Ye = Yk+1 = = = Yn = Tk,
and hence

An(f,p,y) =Pif (zi) + Py f(Xi) + 05 f(75) + P f(Yie) + Penf(2r)
— f(Prx + Py j1Xij +pizy + Pipp—1 Y + Py ).

Case 1: (Py; + Py y)zr; < Pyx; + Py pxy. According to (4.1), it suffices to prove

that A, (f,p,y) > L1, which is equivalent to
Prirj-1f(Xij) + Pirg1f Vi) + (Pri + Pivrg1 + pj + Pep) f(X1) =
> P f(xg) + f(Privi + P j1 Xig + iy + Ppyig1 Yk + Pentr). (4.2)
Using the substitutions
™ = Pl,i; T2 = Pi+1,j717 r3s =Dpj, T4 = Pj+1,k717 s = Pk,m
m =Ty, a2 =Xy, a3 =75, @4 =Y, as= Ty,

the condition (P ; + Py)z; < Pix; + Py nxi, becomes (rq +rs5)as < riaq + 505,
while the inequality (4.2) turns into

rof(az) +raf(ag) + (ri +ro+13+75)f(A) >
Z Tgf(a3) + f(rlal -+ o209 + r3as + Tr4Qy4 + T5CL5), (43)

where

riar + (ra + r3)az + 1505
riotretrsdrs
The inequality (4.3) is equivalent to As(f,r,a) > A; in Lemma 2.1.

Ay =

that A, (f,p,y) > Lo, which is equivalent to

Py f(Xi) + Piip1f(Ye) + (Pri+pj + Pivig—1 + Pen) f(X2) >
> Pipip—1f(x)) + f(Privi + Piv1j1 X5 + pjwj + P g—1Yje + Penzy).  (44)

Case 2: (Py; + Pyy)x; > Pyx; + Py pxy. According to (4.1), it suffices to prove
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Using the same substitutions as the ones from the case 1, the condition (P ; +
Py )z > Pz + Py px becomes (11 + r5)as > riaq + rsas, while the inequality
(4.4) turns into

’I“gf((IQ) + 7"4f(CL4> + (7’1 + T3 + T4 + T5)f<A2) Z
> raf(as) + f(rian + raas + rsas + rias + rsas), (4.5)

where
r1a1 + (Tg + 7’4)@3 + T'sas
r+r3+ryet+rs )
Since (4.5) is equivalent to the inequality As(f,r,a) > Ay in Lemma 2.1, the
proof is completed.

AQI

5. APPLICATIONS

Proposition 5.1. If aj,aq, - ,a, (n > 3) are positive real numbers such that
ap < ag < -0 < ay,
then (see [3])

1

(@) artart o —nYa Ay > 22V = Vo Van)%
1

(b) a+a+--+a,—nYamay--a, > 5(2\/@ — an_1 — \/an)?

1
Proof. (a) In the case n > 4, we apply Corollary 2.4 for py =py = -+ =p, = —,
n
i1=1,7=n—1and k =n. We have
1 n—2 1 1
Pii=—, Py = v Pik-1=—, Ben=—
n n n n

Since Pji1; > Pj—1, by Corollary 2.4 we have

ar+as+ -+ a, —nJaazy--a, > ay + an_1 + a, — 3Fa1ap_1a,,.

Notice that this inequality is also true (as identity) for n = 3. Therefore, it
suffices to prove that

1
@1+ 1+ ap = 390010 > S(2V/a1 = VT — Van)’,
which is equivalent to
2(an—1+ an) + 4v/a1(Van—1 + an) — 2\/an_1a, — 9Yar1a,—1a, — ay > 0.
Taking into account that a,_1 + a, > 2\/a,_1a, and \/a,_1 + \/a, > 2¥a,_1a,,
it is enough to show that
2\/Gp_10y, + 8¢/ a3y _1a, — 91010, — a; > 0.

Since this inequality is homogeneous in a4, a,,_1 and a,,, without loss of generality,
assume that ay = 1, a, > a,_; > 1. In addition, using the notation x =
2a, 1a,, r > 1, we can write the inequality as

225 — 9zt + 823 —1 > 0.
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This is true since
225 — 92t +82% — 1 = (x — 1)3(22° + 622 + 3z + 1) > 0.
(b) If n = 3, then the inequality is equivalent to

2a1 + az + ag + 2v/azaz > 6/aiazas,

which is a consequence of the AM-GM inequality.

1
Consider now that n > 4, and apply Corollary 2.4 for p;y = po=--- =p, = —,
n
1=2,7=n—1and k=n. We have
2 n—3 1 1
Pii=—, Py = v Pik1=—, Ben=—
n n n n
By Corollary 2.4, since Py ; > Pj;_1, we have
ai+as + -+ ap —nYaiag - an > 203 + Ap_1 + Ay — 44/ 30, _10,.
Therefore, it suffices to prove that
1
202 + an1 + ay — 44/ adan_1a, > 52V — Van T - Van)?,
which is equivalent to the obvious inequality
(\/ Ap—1 — V an)2 + 4=\/ a?(\4/ Ap—1 — \4/ an)2
Both inequalities in (a) and (b) become equalities if and only if a; = a3 =+ =
.
O
Proposition 5.2. If aj,aq, - ,a, (n > 3) are positive real numbers such that
ap < ag < -0 < ap,
then
(a)  a;+as+- —nYajay - -a, > — (\/ +Vaz — 2v/an)?;
(b) a1+ as +---+a, —nYaay---a, > (\/ +ag — 2\/an_1)%
1
Proof. (a) In the case n > 4, we apply Corollary 2.4 for p; =py =--- =p, = —,
n
1=1,75=2and k =n. We have
1 1 n—2 1
Pii=— Pj=—, Pjra1= y Prn=—
n n n n

Since Piy1,; < Pjk—1, by Corollary 2.4 we have

ar+as+ -+ a, —nJaaz---a, > a, + as + a, — 3Yaia2a,.

Clearly, this inequality is also true (as identity) for n = 3. Then, it suffices to
prove that

ay + ag + ap — 3Ya aza, > (\/_ + Vag — 2v/a,)?,
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which is equivalent to

3(ay + as) + 4y/a, (Va1 + Vaz) — 2\/a1as — 12/arasa, > 0.
Taking into account that a; +as > 2,/a1as and /a; ++/as > 2¥/aas, it is enough

to show that
s + 23/araza? — 3z, > 0,
which follows by the AM-GM inequality.
(b) For n = 3, the inequality is equivalent to

a1 + as + 2a3 + 2v/a1as > 6-Faiaxa3,

which is a consequence of the AM-GM inequality.

1
For n > 4, we apply Corollary 2.4 for py =py=---=p, = —, 1 =1, 7 =2
n
and k =n — 1. We have
1 1 n—3 2
Pii=—, Pyj=— Ppa= S
n n n

By Corollary 2.4, since Pi1;; < Pj;_1, we have

ar+as+---4+a, —nYaias---a, > a1+ as + 26,1 — 4{‘/ alagai_l.
Therefore, it suffices to prove that

1
ay + ag + 2an_y — 44/ a1a2a’_| > 5(\/&_1 +Vag — 2\/a,1)?,

which is equivalent to the obvious inequality

(vVar = va2)* + dy/an =1 (Var — /az)* > 0.

Both inequalities in (a) and (b) become equalities if and only if a; = ay =--- =
Q.

]
Proposition 5.3. If aj,as, - ,a, (n > 4) are positive real numbers such that
ap < ag < -0 < ap,
then (see [3])
a1+a2+---+an—nm22(1—%) (Var — 2@ + /a3
Proof. Apply Corollary 2.4 for p; = py =--- =p, = l, i=1,j=2and k= 3.
We have ) . . " "9
Pi=—, P , Pip—1= e Py = -

By Corollary 2.4, we have

a;+ag + -+ a, —n/ajas---a, > a;+as+ (n—2)ag —nA/ alagag_Q. (5.1)

Therefore, it suffices to prove that

1
ay + ay + (n —2)ag — ni/ajaal? > 2 (1 — ﬁ) (Va1 — 2v/az + /az)?.
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Write this inequality as f(z) > 0, where 0 < x < a < b and

f(x):x+a+(n—2)b—nm—2(1—%> (Vz — 2v/a + Vb)2.

flr)=1-7 Zb:__f +2 (1 . E) (2\/3%\[ 1) .

Clearly, f'(x) increases when b decreases. Therefore, replacing b with a, we have
n—1 1
flle) <1— {2 +2(1——)(\/§—1).
xn n x

_:t2n7 tZL

We have

Substituting

we get f'(x) < g(t), where
n— 1 n
gty =1—1 2+2(1_H) (t" —1).
Since
g(t) = 2(n — " (1=

g(t) is decreasing, g(t) < g(1) =0, f'(z) < g(t) <0,
f(a). Thus, to show that f(x) 2 for 0<zr<a< b
f(a) > 0; that is,

2a+(n—2)b—nW—2(1——> (Vb — va)? >

<0
f(zx ) is decreasing, f(x) >
we only need to show that

Due to homogeneity, we may set @ = 1. In addition, substituting b = t>", t > 1,
we need to prove that h(t) > 0, where

h(t) =24 (n —2)t*" —nt** -2 <1 — l) (t" — 1)

n

We have
B (t) = 2t""hy(t), hi(t) = (n® —4n 4+ 2)t" —n(n — 2)t"* +2(n — 1).
For n = 4, we have hy(t) = 2(t* — 1) > 0, and for n > 4, we have
Ry (t) = nt"5[(n® — 4n + 2)t* — (n — 2)(n — 4)]
> nt"?[(n? —4n+2) — (n —2)(n — 4)] = 2n(n — 3)t"° >0,

hy(t) is increasing, hi(t) > hy(1) = 0. Thus, A'(t) > 0 for n > 4, h(t) is
increasing, h(t) > h(1) = 0. This completes the proof. Equality occurs if and
only if ay = ay =--- = a,.
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Proposition 5.4. If aj,as, - ,a, (n > 4) are positive real numbers such that
ar < ag < -0 < A,

then (see [3])

a1+a2+-~-+an—n”a1a2---anZg(1——)(3\/_ Vag — 2y/az)?.
Proof. According to (5.1), it suffices to prove that

ay + ay + (n — 2)ag — n{/ajazal? > g (1 — —) (3y/a1 — ag — 2y/az)*.
Write this inequality as f(x) > 0, where 0 < a < b < z and

fl@) =a+b+ (n—2)z—nVaban—2 — (1——)(3\/_—\/— 2v/7)%

NIl )

We have

. JJab\ 4 1\ (3va— b
f(m):(n—2)<1— P>+§(1—5)(T—2).

Clearly, f'(x) decreases when b increases. Therefore, replacing b with z, we have

fi(@) > (n—2) (1_ . §)+§(1—5) (3\/5\/—5\/_ 2)

o) 40D ()

a
- =", 0<t<1,
X

Substituting

we get f'(x) > g(t), where

g(t) = (n—2)(1 — 2) — % <1 _ l) (1— ).

n
Since
2 2 2(4 —n)t
g (t) =2t 2—n+§(n—1)t"21 <2t {2—n+§(n—1)] = (Tn) <0,
g(t) is decreasing, g(t) > g(1) =0, f'(x) > g(t) > 0, f(z) is increasing, f(z) >
f(b). Thus, to show that f(z) > 0 for z > b, we only need to show that f(b) >0

that is,

a+(n—1)b—nW—2(1——)(\/_—f)

Due to homogeneity, we may set a = 1. In addition, substituting b = >, ¢t > 1,
we need to prove that h(t) > 0, where

n

h(t) =1+ (n— 1)t —nt* 2 -2 (1 — l) (1 —t")2
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We have
R'(t) = 2(n — D)t" thy(t), hi(t) = (n —2)t" —nt" 2 + 2.
Since
R (t) = n(n — 2)t" 3 — 1) > 0,
hy(t) is increasing, hi(t) > hy(1) = 0. Thus, A'(t) > 0, h(t) is increasing,
h(t) > h(1) = 0. This completes the proof. Equality occurs if and only if
A = Qg = - = Qp.

O

Proposition 5.5. If aj,as, - ,a, (n > 4) are positive real numbers such that
ap < ag < <y,
then (see [1])
4
ap+az + -+ ay, —nifaraz - a 9(1——)(\/_+2\/_ 3v/az)’.

Proof. According to (5.1), it suffices to prove that

al+a2+(n—2)a3—n\"/a1a2a§_22g(1——)(\/_+2\/_—3\/_)

Write this inequality as f(z) > 0, where 0 < z < a < b and

f(z) :x+a+(n—2)b—n\/"ab”2x—g <1—%) (Vz 4 2v/a — 3Vb)>.

We have
Flay=1-1{ @—Z—l@—E)( MJ;M)

Clearly, f'(x) increases when b decreases. Therefore, replacing b with a, we have

s -4 (204

Substituting
=t t>1,
we get
4 2 2n — 2
/ <1_t2n2 = 1__ tn_1< tn_l_t2n_2_1
fix) < 5 ~) ( )< ——( ) —( )
tn_l tn—Q . 1 t2n—3 t2n—4 . 1
:2(n—1)(t—1)( LA S +2 ‘; il )go.
/rl/ p—

Therefore, f(x) is decreasing, and hence f(z) > f(a). To show that f(z) > 0 for
0 <z <a<b, we only need to show that f(a) > 0; that is,

20+ (n — 2)b — n Va2bn? - ( _%) (Vi VB? >



130 V. CIRTOAJE

Due to homogeneity, we may set a = 1. In addition, substituting b = 2, ¢t > 1,
we need to prove that h(t) > 0, where

h(t) =24 (n —2)t*" —nt** — 4 (1 - %) (t" —1)%

We have
R(t) = 2(n —2)t" 'hy(t), hi(t) = (n — 4" —nt"* + 4.
Since
Ri(t) = n(n — 4)t" (' - 1) > 0,
hy(t) is increasing, hi(t) > hy(1) = 0. Thus, A'(t) > 0, h(t) is increasing,
h(t) > h(1) = 0. This completes the proof. For n > 4, equality occurs if and

only if a1 = ay = --- = a,. If n =4, then equality holds for a; = as and a3 = ay.
O

Proposition 5.6. Let aj,as, -+ ,a, (n > 3) and m be positive real numbers such

that

ap < ag < -0 <y,
and
a1+ ax+ -+ a, =m3/araz - ay.
(a) If

i

ngmg(n—i)ﬁ, i€{2,3,---,n—1},

then a;_1, a;, a;x1 are the side-lengths of a degenerate or non-degenerate triangle

(see [5]);
(b) If ,
n<m<  max (n—i)ﬁ,
i€{2,3, n—1} 2
then among the numbers aq, as, - - - , a, there exist three which are the side-lengths

of a degenerate or non-degenerate triangle.

Proof. (a) The condition m > n follows by the AM-GM Inequality

a1+ az+ -+ ay = nifaraz - an.
For the sake of contradiction, assume that a;_1, a;, a;+1 are not the side-lengths of
a triangle; that is, a;_1 + a; < a;41. Setting py = ps = -+ = p, = — in Corollary
2.5 and replacing then ¢, 5,k by ¢+ — 1,4,7 4+ 1, respectively, we havg
A+ ap+ - an (i —Daj—1 +a; + (n —i)a;4q

- Y

nalaZ--.an

n/ i—1 n—i
a; 10,1
and hence
m > g(ai—1, a;, a;y1),
where ' .
(1 —1Daj—1+a; + (n—i)ai

nl i-1_  n—i
Q; 1G04

9(611'71, Qs ai+1) =
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Since a;11 > a;—1 + a; and

dg  (n—9)[(i — 1)(aip1 — ai—1) + aip1 — ag
= > 0,
a1

-1, n—i
i _1@ilyq

na;+1
we get
(n—1ai—1+ (n—1i+1)a;

Vaﬁjai(ai,l + a;)"
Due to homogeneity, we consider a;_; = 1. Denoting a; = =, * > 1, we have
m > h(z), where

m > g(ai717 A, Aj—1 + Cli) =

n—1+n—i+1)x
Va(l+ z)ri '

h(z) =
Since

n/an (14 2)ih () = (i — 1)(n—i+1Da®> —n+1

(i—1n—i+1)—n+1=(i—-2)(n—1) >0,

v

h(x) is increasing, h(z) > h(1)
is false.
(b) The conclusion follows immediately from (a).

(n— %) V/2i, and hence m > (n — %) V/2i, which
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