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VECTOR-VALUED LIPSCHITZ FUNCTION SPACES
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Communicated by K. Jarosz

Abstract. We give necessary and sufficient conditions for the boundedness
and compactness of weighted composition operators between spaces of vector-
valued Lipschitz functions. We then show that a bounded separating linear
operator between these spaces is indeed a weighted composition operator.

1. Introduction and preliminaries

Let (X, d) be a compact metric space, (E, ‖ · ‖) be a Banach space and α ∈ (0, 1].
The space of all functions f : X → E for which

pα(f) = sup

{
‖f(x)− f(y)‖

dα(x, y)
: x, y ∈ X, x 6= y

}
<∞,

is denoted by Lipα(X,E). The subspace of those functions f with

lim
d(x,y)→0

‖f(x)− f(y)‖
dα(x, y)

= 0,

is denoted by lipα(X,E). The spaces Lipα(X,E) and lipα(X,E) are Banach
spaces when equipped with the norm ‖f‖α = ‖f‖X + pα(f), where ‖f‖X =
sup{‖f(x)‖ : x ∈ X}. These are called vector-valued Lipschitz function spaces.
In the case where E is the scalar field of the complex numbers C, to simplify the
notation, we write Lipα(X) and lipα(X) instead of Lipα(X,C) and lipα(X,C),
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respectively. In this case, Lipα(X) and lipα(X) are Banach algebras which are
also called Lipschitz algebras. The scalar-valued Lipschitz functions were first
studied by de Leeuw [16] and Sherbert [17, 18]. The interested reader is also
referred to [3, 6, 19] for further details on the subject. The spaces Lipα(X,E)
and lipα(X,E) were first considered by Johnson [13]. Since then, there has been
an extensive study on this subject.

In this paper we shall study a class of operators between vector-valued Lips-
chitz function spaces known as weighted composition operators. Given X and
Y two compact Hausdorff spaces and given E and F two Banach spaces, let
S(X,E) be any subspace of C(X,E), the space of all continuous E-valued func-
tions on X. A weighted composition operator between vector-valued function
spaces is defined to be a linear operator T : S(X,E) → S(Y, F ) of the form
Tf(y) = Wy(f(ϕ(y))) for every f ∈ S(X,E) and y ∈ Y where Wy is a linear op-
erator from E into F and ϕ : Y → X is a function. In the scalar case, a weighted
composition operator is a composition operator followed by a multiplier. The
compactness of the weighted composition operators on C(X,C) has been charac-
terized by Kamowitz [14]. Kamowitz and Scheinberg also determined necessary
and sufficient conditions for composition operators on Lipα(X) and lipα(X) to be
compact [15]. Jamison and Rajagopalan provided a necessary and sufficient con-
dition for weighted composition operators on C(X,E) to be compact [7]. Chan
has improved their results and characterized the compact weighted composition
operators on the space of continuous functions defined on a locally compact Haus-
dorff space vanishing at infinity [4]. In section 2, we give necessary and sufficient
conditions for weighted composition operators between spaces of vector-valued
Lipschitz functions to be compact.

It is also interesting to determine which types of operators have the form of
weighted composition operators. We say that a linear operator T : S(X,E) →
S(Y, F ) has the disjoint support property or is separating, if ‖Tf(y)‖‖Tg(y)‖ = 0
for all y ∈ Y whenever f, g ∈ S(X,E) satisfy ‖f(x)‖‖g(x)‖ = 0 for all x ∈ X.
We say that T is biseparating if it is bijective and both T and T−1 are separat-
ing. Note that a typical example of separating operators between function spaces
are weighted composition operators and the standard problem is to determine
whether these are the canonical examples. The notion of separating operator
has been studied extensively. Separating linear maps between spaces of contin-
uous scalar-valued functions were studied by Beckenstein, et al. [2], Font and
Hernández [5], Jaroz [8] and Jeang and Wong [9]. Bounded separating linear op-
erators on the space C(X,E) were studied by Jamison and Rajagopalan [7] and
Chan [4]. The study of separating linear maps between spaces of scalar-valued
Lipschitz functions was initiated by Wu in [20]. Jiménez-Vargas in [10] obtained a
representation of separating linear maps between scalar-valued Lipschitz algebras
lipα(X) and lipα(Y ) when X and Y are compact and α ∈ (0, 1). Biseparating lin-
ear operators between spaces of vector-valued Lipschitz functions were studied by
Araujo and Dubarbie in [1] and Jimenéz-Vargas, et al. in [11] and [12]. In section
3, we shall show that bounded separating linear operators between vector-valued
Lipschitz function spaces are weighted composition operators.
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Given Banach spaces E and F , we denote by B(E,F ) and K(E,F ) the space
of all bounded linear operators and compact linear operators from E into F ,
respectively. The dual space of a Banach space E is denoted by E∗. In this note,
the linear operators which we have considered are nonzero.

2. Compact weighted composition operators

In this section, we provide necessary and sufficient conditions for weighted
composition operators between vector-valued Lipschitz spaces to be compact.

In what follows, we will assume that X and Y are compact metric spaces, E and
F are Banach spaces and α ∈ (0, 1]. It is interesting to note that Lip1(X,E) ⊆
lipα(X,E) ⊆ Lipα(X,E) for α ∈ (0, 1). For each scalar-valued function h on X
and E-valued function f on X, one can define the E-valued function hf on X by
(hf)(x) = h(x)f(x) for x ∈ X. If h ∈ Lip1(X) and f ∈ Lipα(X,E), then hf ∈
Lipα(X,E). Similarly, it is true for lipα(X,E). That is, both spaces Lipα(X,E)
and lipα(X,E) are Lip1(X)-modules. Moreover, Lipα(X,E) is a Lipα(X)-module
and lipα(X,E) is a lipα(X)-module.

Identifying each e ∈ E with the constant function 1e(x) = e for x ∈ X, the
Banach space E can be considered as a subspace of Lip1(X,E). Hence, given
e ∈ E and f ∈ Lipα(X), the function fe defined by fe(x) = f(x)e for x ∈ X
belongs to Lipα(X,E). Moreover, ‖fe‖X = ‖f‖X‖e‖, pα(fe) = pα(f)‖e‖ and
hence ‖fe‖α = ‖e‖‖f‖α.

Recall that a weighted composition operator T : S(X,E) → S(Y, F ) is of the
form Tf(y) = Wy(f(ϕ(y))) where Wy : E → F is a linear operator for each y ∈ Y
and ϕ : Y → X is a function. We denote by N the set of all y in Y for which Wy

is the zero operator. A map ϕ : Y → X is said to be a Lipschitz function on a
subset K of Y , if there exists a constant c > 0 such that d(ϕ(y), ϕ(y′)) ≤ cd(y, y′)
for all y, y′ in K.

We first characterize a bounded weighted composition operator between vector-
valued Lipschitz function spaces.

Proposition 2.1. Let S(X,E) ⊆ C(X,E) and S(Y, F ) ⊆ C(Y, F ) be two Banach
spaces such that the topology of pointwise convergence is weaker than their norm
topology. Suppose that T : S(X,E)→ S(Y, F ) is a weighted composition operator
of the form Tf(y) = Wy(f(ϕ(y))). If Wy ∈ B(E,F ) for each y ∈ Y , then T is
bounded.

Proof. Let (fn) be a sequence in S(X,E) that converges to zero and (Tfn) con-
verges to g in S(Y, F ). Then by the hypothesis fn(ϕ(y))→ 0 and Tfn(y)→ g(y)
for every y ∈ Y . The boundedness of each Wy implies that Wy(fn(ϕ(y))) → 0.
Therefore g = 0 and by the closed graph theorem, the map T is bounded. �

Remark 2.2. The definition of Lipschitz norm ‖·‖α asserts that ‖·‖α-convergence
implies pointwise convergence. Therefore one can conclude Proposition 2.1 for
Lipα(X,E) and lipα(X,E).

Theorem 2.3. Let T : Lipα(X,E)→ Lipα(Y, F ) be a nonzero bounded weighted
composition operator of the form Tf(y) = Wy(f(ϕ(y))). Then W ∈
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Lipα(Y,B(E,F )) and ϕ is continuous on Y \N and Lipschitz on every compact
subset of Y \N .

Proof. Let y ∈ Y . Then

‖Wy(e)‖ = ‖T1e(y)‖ ≤ ‖T1e‖Y ≤ ‖T1e‖α ≤ ‖T‖‖e‖,

for all e ∈ E. Hence Wy ∈ B(E,F ) and ‖Wy‖ ≤ ‖T‖. We now show that
W ∈ Lipα(Y,B(E,F )). To do this, let y1, y2 ∈ Y with y1 6= y2. Then

‖Wy1(e)−Wy2(e)‖
dα(y1, y2)

=
‖T1e(y1)− T1e(y2)‖

dα(y1, y2)
≤ pα(T1e) ≤ ‖T1e‖α ≤ ‖T‖‖e‖,

for all e ∈ E. It follows that

‖Wy1 −Wy2‖
dα(y1, y2)

= sup
‖e‖≤1

‖Wy1(e)−Wy2(e)‖
dα(y1, y2)

≤ ‖T‖,

and W ∈ Lipα(Y,B(E,F )) with pα(W ) ≤ ‖T‖.
To show the continuity of ϕ on Y \ N , we first prove for given f ∈ Lipα(X),

the scalar-valued map Ψf (y, e, u
∗) =< Tfe(y), u∗ > is continuous on Y ×E×F ∗.

Fix a nonzero function f ∈ Lipα(X) and (y0, e0, u
∗
0) ∈ Y ×E × F ∗. Given ε > 0,

by the continuity of Tfe0 at y0, there exists a neighborhood U1 of y0 in Y such
that ‖Tfe0(y) − Tfe0(y0)‖ < ε

3(1+‖u∗0‖)
for every y ∈ U1. If δ < ε

3(1+‖u∗0‖)‖T‖
, and

U2 := {e ∈ E : ‖e− e0‖ < δ
‖f‖α}, then

‖Tfe − Tfe0‖α ≤ ‖T‖‖fe − fe0‖α ≤ ‖T‖‖f‖α‖e− e0‖ <
ε

3(1 + ‖u∗0‖)
,

for every e ∈ U2. If U = U1×U2×U3 where U3 = {u∗ ∈ F ∗ : ‖u∗− u∗0‖ < r} and
r = ε

3
( ε

3(1+‖u∗0‖)
+ ‖Tfe0‖α)−1, then U is a neighborhood of (y0, e0, u

∗
0) and

|Ψf (y, e, u
∗)−Ψf (y0, e0, u

∗
0)| =| < Tfe(y), u∗ > − < Tfe0(y0), u∗0 > |
≤‖Tfe(y)‖‖u∗ − u∗0‖+ ‖u∗0‖‖Tfe(y)− Tfe0(y)‖

+ ‖u∗0‖‖Tfe0(y)− Tfe0(y0)‖

<‖u∗ − u∗0‖‖Tfe‖α + ‖u∗0‖‖Tfe − Tfe0‖α +
ε

3

<(
ε

3(1 + ‖u∗0‖)
+ ‖Tfe0‖α)‖u∗ − u∗0‖+

2ε

3
< ε,

for all (y, e, u∗) ∈ U .
Using the above result for the constant function f = 1, we conclude that the

map Ψ1(y, e, u∗) =< T1e(y), u∗ > is continuous on Y × E × F ∗ and therefore,

coz(Ψ1) = {(y, e, u∗) ∈ Y × E × F ∗ : Ψ1(y, e, u∗) 6= 0}
= {(y, e, u∗) ∈ Y × E × F ∗ :< T1e(y), u∗ >=< Wy(e), u

∗ >6= 0},

is an open set in Y × E × F ∗. One can write,

f(ϕ(y)) =
< Tfe(y), u∗ >

< Wy(e), u∗ >
=
< Tfe(y), u∗ >

< T1e(y), u∗ >
=

Ψf (y, e, u
∗)

Ψ1(y, e, u∗)
,
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for every (y, e, u∗) ∈ coz(Ψ1) and f ∈ Lipα(X). Therefore the continuity of Ψf

and Ψ1 implies that the map (y, e, u∗) 7→ f(ϕ(y)) is continuous on coz(Ψ1) for
given f ∈ Lipα(X).

Let y ∈ Y \ N . Then < Wy(e), u
∗ >6= 0 for some e ∈ E and u∗ ∈ F ∗. Hence

(y, e, u∗) ∈ coz(Ψ1). Suppose that (yn) is a sequence in Y \ N converging to
y. Then, (yn, e, u

∗) ∈ coz(Ψ1) for large enough n. If ϕ(yn) does not converge
to ϕ(y), there exists an open neighborhood V of ϕ(y) in X and a subsequence
(ynk) of (yn) such that ϕ(ynk) /∈ V for each k. On the other hand, considering
the function f(x) = dist(x,X \ V ), we note that f ∈ Lipα(X), then by the
above discussion the map (y, e, u∗) 7→ f(ϕ(y)) is continuous on coz(Ψ1). Hence
f(ϕ(ynk)) → f(ϕ(y)) as k → ∞. However, by the definition of f , f(ϕ(ynk)) = 0
for each k and f(ϕ(y)) 6= 0 which is a contradiction. Therefore ϕ is continuous
on Y \N .

To finish the proof, it remains to be shown that the function ϕ is Lipschitz on
every compact subset of Y \N . Let K be a compact subset of Y \N . For each
y ∈ Y , define fy(x) = dα(x, ϕ(y)) for all x ∈ X. Let e ∈ E be with ‖e‖ = 1.
Therefore, (fy)e ∈ Lipα(X,E) and ‖(fy)e‖α ≤ 1 + (diam(X))α for every y ∈ Y .
Let y1, y2 ∈ Y with y1 6= y2. Then

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
‖Wy2(e)‖ =

‖T (fy1)e(y1)− T (fy1)e(y2)‖
dα(y1, y2)

≤ pα(T (fy1)e) ≤ ‖T (fy1)e‖α ≤ c‖T‖,
for every e ∈ E with ‖e‖ = 1 where c = 1 + (diam(X))α. Therefore,

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
‖Wy2‖ =

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
sup
‖e‖=1

‖Wy2(e)‖ ≤ c‖T‖.

The continuity of y 7→ ‖Wy‖ implies that γ = inf{‖Wy‖ : y ∈ K} > 0. Then

d(ϕ(y1), ϕ(y2))

d(y1, y2)
≤

(
c‖T‖
γ

)1/α

,

for every y1, y2 ∈ K with y1 6= y2 which implies that ϕ is Lipschitz on K and the
proof of theorem is complete. �

Using the same argument as in the proof of Theorem 2.3, we can obtain the
similar result for lipα(X,E).

Theorem 2.4. Let α ∈ (0, 1) and let T : lipα(X,E) → lipα(Y, F ) be a nonzero
bounded weighted composition operator of the form Tf(y) = Wy(f(ϕ(y))). Then
W ∈ Lipα(Y,B(E,F )) and ϕ is continuous on Y \ N and Lipschitz on every
compact subset of Y \N .

Proof. Exactly the same as the proof of Theorem 2.3, one can show that W ∈
Lipα(Y,B(E,F )) and ϕ is continuous on Y \N . To show that ϕ is Lipschitz on
every compact subset K of Y \N , we employ the function

fy1,y2(x) = (d(x, ϕ(y2))+d(ϕ(y1), ϕ(y2)))α−dα(ϕ(y1), ϕ(y2)) (x ∈ X, y1, y2 ∈ Y ).

In general, if a > 0, the function g(t) = (t+a)α−aα, t ≥ 0 has bounded derivative.
Then for any b > 0, g ∈ Lip1([0, b]) ⊆ lipα([0, b]). Fix y1, y2 ∈ Y with y1 6= y2
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and set a = d(ϕ(y1), ϕ(y2)) and b = diam(X). Then fy1,y2(x) = g(d(x, ϕ(y2)))
for x ∈ X. Therefore, fy1,y2 ∈ Lip1(X) ⊆ lipα(X), ‖fy1,y2‖α ≤ 1 + (2 diam(X))α,
fy1,y2(ϕ(y2)) = 0 and fy1,y2(ϕ(y1)) = (2α − 1)dα(ϕ(y1), ϕ(y2)).

Let e ∈ E with ‖e‖ = 1. Therefore, we have (fy1,y2)e ∈ lipα(X,E) and

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
‖Wy1(e)‖ =

1

2α − 1

‖fy1,y2(ϕ(y1))Wy1(e)‖
dα(y1, y2)

=
1

2α − 1

‖T (fy1,y2)e(y1)− T (fy1,y2)e(y2)‖
dα(y1, y2)

≤ 1

2α − 1
pα(T (fy1,y2)e) ≤

1

2α − 1
‖T (fy1,y2)e‖α ≤ c‖T‖,

where c = 1
2α−1

(1 + (2 diam(X))α). Therefore,

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
‖Wy1‖ =

dα(ϕ(y1), ϕ(y2))

dα(y1, y2)
sup
‖e‖=1

‖Wy1(e)‖ ≤ c‖T‖.

The continuity of y 7→ ‖Wy‖ implies that γ = inf{‖Wy‖ : y ∈ K} > 0. Then

d(ϕ(y1), ϕ(y2))

d(y1, y2)
≤

(
c‖T‖
γ

)1/α

,

for every y1, y2 ∈ K with y1 6= y2 which implies that ϕ is Lipschitz on K. �

The following example shows that in Theorems 2.3 and 2.4, ϕ is not necessarily
Lipschitz on Y \N .

Example 2.5. Suppose X = [0,
√

2], Y = [−1, 1] and E is an arbitrary Banach
space. Define Wy(e) = (1 + y)e and ϕ(y) =

√
1 + y for every y ∈ [−1, 1] and

e ∈ E. Then N = {−1}. Let T : Lipα(X,E) → Lipα(Y,E) be the weighted
composition operator induced by W and ϕ. Clearly, ϕ is continuous on [−1, 1]
and it is not Lipschitz on (−1, 1]. However, ϕ is Lipschitz on [−1 + δ, 1] for each
δ ∈ (0, 2). Moreover, we have Tf(y) = (1+y)f(

√
1 + y) for every f ∈ Lipα(X,E)

and y ∈ [−1, 1] which is bounded.

To investigate the compactness of weighted composition operators between
spaces of vector-valued Lipschitz functions, we need the following results. The
first one is the generalized Arzela-Ascoli theorem for vector-valued continuous
functions.

Theorem 2.6. [4, Theorem A] A subset H of C(X,E) is relatively compact if
and only if the following conditions are satisfied:

(i) H is equicontinuous, and
(ii) H(x) = {f(x) : f ∈ H} is relatively compact for every x ∈ X.

The following definition and theorem are provided in [15].

Definition 2.7. A map ϕ : Y → X will be called a supercontraction on K ⊆ Y

if d(ϕ(y),ϕ(y′))
d(y,y′)

→ 0 whenever y, y′ ∈ K and d(y, y′)→ 0
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Theorem 2.8. [15, Theorem 1] Let T : Lipα(X) → Lipα(Y ) be a composition
operator of the form Tf(y) = f(ϕ(y)) for every f ∈ Lipα(X) and y ∈ Y where
ϕ : Y → X. Then T is compact if and only if ϕ is a supercontraction.

It was established in [3] that lipα(X)∗∗ = Lipα(X) for 0 < α < 1. As mentioned
in [15, page 260], using this fact the following corollary follows from the above
theorem.

Corollary 2.9. Let α ∈ (0, 1) and let T : lipα(X) → lipα(Y ) be a composition
operator of the form Tf(y) = f(ϕ(y)) for every f ∈ lipα(X) and y ∈ Y where
ϕ : Y → X. Then T is compact if and only if ϕ is a supercontraction.

Theorem 2.8 gives motivation to the following theorem which is our main result
of this section.

Theorem 2.10. Let T : Lipα(X,E)→ Lipα(Y, F ) be a nonzero weighted compo-
sition operator of the form Tf(y) = Wy(f(ϕ(y))).

(i) If T is compact, then W ∈ Lipα(Y,K(E,F )), and ϕ is continuous on
Y \N and a supercontraction on every compact subset of Y \N .

(ii) If W ∈ lipα(Y,K(E,F )) and ϕ is a supercontraction on Y \N , then T is
compact.

Proof. (i) By Theorem 2.3, W ∈ Lipα(Y,B(E,F )). Thus it is enough to show that
Wy ∈ K(E,F ) for each y ∈ Y . To do this, let (en) be a bounded sequence in E.
The sequence (1en) is bounded in Lipα(X,E). Since T is compact, there exists
a subsequence (enk) such that (T1enk ) converges in Lipα(Y, F ). In particular,
(Wy(enk)) converges in F that is Wy ∈ K(E,F ) for each y ∈ Y .

By Theorem 2.3, ϕ is continuous on Y \N . To show that ϕ is a supercontraction
on every compact subset of Y \ N , we first fix a point y0 ∈ Y \ N and e ∈ E
with ‖e‖ = 1 such that Wy0(e) 6= 0. The continuity of the function y 7→ Wy(e)
from Y into F implies that, there exists δ > 0 such that ‖Wy(e)‖ > 0 for every

y ∈ Y with d(y, y0) ≤ δ. Consider the compact subset ∆ = B(y0, δ) of Y where
B(y0, δ) = {y ∈ Y : d(y, y0) < δ}. Then γ = infy∈∆ ‖Wy(e)‖ > 0. Define
S : Lipα(X)→ Lipα(∆) by Sf = f ◦ϕ on ∆. We show that S is compact. To do
this, let (fn) be a sequence in Lipα(X) such that ‖fn‖α = 1. Thus (gn) = ((fn)e)
is a bounded sequence in Lipα(X,E). By the compactness of T , there exists a
subsequence (gnk) of (gn) such that (Tgnk) converges and hence it is a Cauchy
sequence in Lipα(Y, F ). By the definition of S, we have

|Sfnk(y)− Sfnl(y)| = |fnk(ϕ(y))− fnl(ϕ(y))|

=
‖fnk(ϕ(y))Wy(e)− fnl(ϕ(y))Wy(e)‖

‖Wy(e)‖

≤ ‖Tgnk(y)− Tgnl(y)‖
γ

≤ ‖Tgnk − Tgnl‖Y
γ

,

for every y ∈ ∆. Hence

‖Sfnk − Sfnl‖∆ ≤
1

γ
‖Tgnk − Tgnl‖Y . (2.1)
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Also, using the inequality pα(W ) ≤ ‖T‖, we obtain

|S(fnk − fnl)(y)− S(fnk − fnl)(y′)|
dα(y, y′)

=
‖(fnk − fnl)(ϕ(y))Wy(e)− (fnk − fnl)(ϕ(y′))Wy(e)‖

‖Wy(e)‖dα(y, y′)

≤ ‖T (gnk − gnl)(y)− T (gnk − gnl)(y′)‖
‖Wy(e)‖dα(y, y′)

+
‖(Wy −Wy′)(e)‖
‖Wy(e)‖dα(y, y′)

|(fnk − fnl)(ϕ(y′))|

≤ 1

γ
pα(T (gnk − gnl)) +

1

γ
pα(W )‖Sfnk − Sfnl‖∆

≤ 1

γ
pα(T (gnk − gnl)) +

1

γ2
‖T‖‖Tgnk − Tgnl‖Y ,

for every y, y′ ∈ ∆ with y 6= y′. Therefore,

pα(Sfnk − Sfnl) ≤
1

γ
pα(T (gnk − gnl)) +

1

γ2
‖T‖‖Tgnk − Tgnl‖Y . (2.2)

From (2.1) and (2.2), we conclude that (Sfnk) is a Cauchy and then a convergent
sequence in Lipα(∆). It implies that S is compact. By Theorem 2.8, ϕ|∆ is a
supercontraction.

We have shown that for every y ∈ Y \ N there exists some δ > 0 such that

ϕ is a supercontraction on B(y, δ). We now assume that K is a compact subset
of Y \N . Then there exist y1, . . . , yn in K and positive numbers δ1, . . . , δn such

that {B(yi,
δi
2

)}ni=1 covers K and ϕ is a supercontraction on each B(yi, δi). Then

for any ε > 0, one can choose a positive number δ < min{ δ1
2
, . . . , δn

2
} such that

d(ϕ(y),ϕ(y′))
d(y,y′)

< ε for every y, y′ ∈ K with 0 < d(y, y′) < δ. This completes the proof

of (i).
(ii) Using Proposition 2.1 and Remark 2.2, one can say that T is bounded. For

compactness of T , we assume that (fn) is a bounded sequence in Lipα(X,E) with
‖fn‖α ≤ 1. Then boundedness of T and the fact that Tfn ∈ Lipα(Y, F ) for all
n ∈ N imply that (Tfn) is an equicontinuous subset of C(Y, F ), and compactness
of each Wy (y ∈ Y ) implies that (Tfn(y)) is relatively compact for each y ∈ Y .
Therefore, by Theorem 2.6, (Tfn) is relatively compact in C(Y, F ). Hence there
exists a subsequence (fnk) of (fn) such that (Tfnk) converges in C(Y, F ) and
then it is a Cauchy sequence in C(Y, F ). We will show that (Tfnk) is a Cauchy
sequence in Lipα(Y, F ). Given ε > 0, there exists a δ > 0 such that

d(ϕ(y), ϕ(y′))

d(y, y′)
< (

ε

3‖W‖α
)1/α, (2.3)

for every y, y′ ∈ Y \N with 0 < d(y, y′) < δ,

‖Wy −Wy′‖
dα(y, y′)

<
ε

6
, (2.4)
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for every y, y′ ∈ Y with 0 < d(y, y′) < δ, and

sup
y∈Y
‖Tfnk(y)− Tfnl(y)‖ < 1

2
δαε, (2.5)

for large enough k, l, since ϕ is a supercontraction on Y \N , the weight W is in
lipα(Y,K(E,F )) and (Tfnk) is a Cauchy sequence in C(Y, F ), respectively.

Let y, y′ ∈ Y and k, l be large enough. We consider three cases.
Case 1. If d(y, y′) ≥ δ, using (2.5) we obtain

‖Tfnk(y)− Tfnl(y)− Tfnk(y′) + Tfnl(y
′)‖

dα(y, y′)
≤ 2

δα
sup
y∈Y
‖Tfnk(y)− Tfnl(y)‖ < ε.

Case 2. If y, y′ ∈ Y \ N with 0 < d(y, y′) < δ and ϕ(y) 6= ϕ(y′), then applying
(2.3) and (2.4) we get

‖Tfnk(y)− Tfnl(y)− Tfnk(y′) + Tfnl(y
′)‖

dα(y, y′)

=
‖Wy(fnk(ϕ(y)))−Wy(fnl(ϕ(y)))−Wy′(fnk(ϕ(y′))) +Wy′(fnl(ϕ(y′)))‖

dα(y, y′)

≤‖Wy‖‖fnk(ϕ(y))− fnk(ϕ(y′))‖
dα(y, y′)

+
‖Wy −Wy′‖‖fnk(ϕ(y′))− fnl(ϕ(y′))‖

dα(y, y′)

+
‖Wy‖‖fnl(ϕ(y′))− fnl(ϕ(y))‖

dα(y, y′)

≤‖W‖Y pα(fnk)
dα(ϕ(y), ϕ(y′))

dα(y, y′)
+
ε

6
(‖fnk‖X + ‖fnl‖X)

+ ‖W‖Y pα(fnl)
dα(ϕ(y), ϕ(y′))

dα(y, y′)

<2‖W‖α ·
ε

3‖W‖α
+ 2

ε

6
= ε.

Case 3. If y ∈ Y \N and y′ ∈ N with 0 < d(y, y′) < δ, applying (2.4), we obtain

‖Tfnk(y)− Tfnl(y)− Tfnk(y′) + Tfnl(y
′)‖

dα(y, y′)
=
‖Tfnk(y)− Tfnl(y)‖

dα(y, y′)

≤‖Wy‖‖fnk(ϕ(y))− fnl(ϕ(y))‖
dα(y, y′)

≤2
‖Wy −Wy′‖
dα(y, y′)

<
ε

3
< ε.

Therefore, (Tfnk) is a Cauchy sequence in Lipα(Y, F ) from which we have T is
compact. �

Using Corollary 2.9, similar to the proof of Theorem 2.10, one can conclude
the following results for vector-valued little Lipschitz function spaces lipα(X,E).

Theorem 2.11. Let α ∈ (0, 1) and let T : lipα(X,E)→ lipα(Y, F ) be a nonzero
weighted composition operator of the form Tf(y) = Wy(f(ϕ(y))).
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(i) If T is compact, then W ∈ Lipα(Y,K(E,F )) and ϕ is a supercontraction
on every compact subset of Y \N .

(ii) If W ∈ lipα(Y,K(E,F )) and ϕ is a supercontraction on Y \N , then T is
compact.

3. The separating operators from lipα(X,E) into lipα(Y, F )

In this section, we characterize the representation of bounded separating linear
operators between spaces of vector-valued little Lipschitz functions on compact
metric spaces. For this, we need the following result which is a modified version
of Theorem 2.2 in [10]. In fact, by imposing an extra assumption on T to be
bounded, we provide a simpler statement of the mentioned theorem that serves
our purpose in the present paper.

In what follows, we will assume that X and Y are compact metric spaces, E
and F are Banach spaces and α ∈ (0, 1). For each y ∈ Y , let δy be the linear
functional on lipα(Y ) defined by δy(f) = f(y).

Theorem 3.1. [10, Theorem 2.2] Let α ∈ (0, 1) and let T be a bounded separating
linear operator from lipα(X) into lipα(Y ). If Y0 = {y ∈ Y : δy ◦ T = 0} and Y c

0

is the complement of Y0, then there exist a continuous map ϕ : Y c
0 → X, and

a non-vanishing function h ∈ lipα(Y c
0 ) such that Tf(y) = h(y)f(ϕ(y)) for every

y ∈ Y c
0 and f ∈ lipα(X), and Tf(y) = 0 for every y ∈ Y0 and f ∈ lipα(X).

First, using Theorem 3.1 and a similar argument as in [7, Theorem 1], we
show that a bounded separating linear operator T : lipα(X,E)→ lipα(Y, F ) is a
weighted composition operator on the span{fe : f ∈ lipα(X), e ∈ E}. Then we
generalized this fact.

Theorem 3.2. Let α ∈ (0, 1) and let T : lipα(X,E) → lipα(Y, F ) be a nonzero
bounded separating linear operator. Then there exist a function W : Y → B(E,F )
and a map ϕ : Y → X continuous on Y \N such that

Tfe(y) = Wy(fe(ϕ(y)))

for every f ∈ lipα(X), e ∈ E and y ∈ Y where N = {y ∈ Y : Wy = 0} is
the kernel of W . Moreover, W ∈ Lipα(Y,B(E,F )) and ϕ is Lipschitz on every
compact subset of Y \N .

Proof. Given a fixed e ∈ E and u∗ ∈ F ∗, consider the map Te,u∗ : lipα(X) →
lipα(Y ) by Te,u∗f(y) =< Tfe(y), u∗ >. Then Te,u∗ is a bounded linear map and
‖Te,u∗‖ ≤ 2‖u∗‖‖T‖‖e‖. We show that Te,u∗ is a separating map. To do this, let
f, g ∈ lipα(X) with fg = 0 on X. Then ‖fe(x)‖‖ge(x)‖ = |f(x)||g(x)|‖e‖2 = 0 for
every x ∈ X. Hence, due to the separating property of T , ‖Tfe(y)‖‖Tge(y)‖ = 0
for every y ∈ Y . Therefore,

|Te,u∗f(y)Te,u∗g(y)| = | < Tfe(y), u∗ > || < Tge(y), u∗ > |
≤ ‖u∗‖2‖Tfe(y)‖‖Tge(y)‖ = 0,

for every y ∈ Y . That is, Te,u∗ is a bounded separating linear map from lipα(X)
into lipα(Y ). Thus, Theorem 3.1 ensures the existence of a map ϕe,u∗ : Y c

0 → X
and a non-vanishing function he,u∗ : Y c

0 → C with Te,u∗f(y) = he,u∗(y)f(ϕe,u∗(y))
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for every y ∈ Y c
0 and f ∈ lipα(X), and Te,u∗f = 0 on Y0 for every f ∈ lipα(X).

Note that Y0 depends on e and u∗. In fact, Y0 = {y ∈ Y : δy ◦Te,u∗ = 0}. Extend-
ing he,u∗ to Y by defining zero on Y0, one can say Te,u∗f(y) = he,u∗(y)f(ϕe,u∗(y))
for every f ∈ lipα(X), y ∈ Y and any extension of ϕe,u∗ to Y . Take f = 1,
the constant function in lipα(X). Then he,u∗(y) = Te,u∗1(y) =< T1e(y), u∗ > for
every y ∈ Y . We now define W : Y → B(E,F ), by Wy(e) = T1e(y) for every
y ∈ Y and e ∈ E. It is easy to see that W is well-defined, ‖Wy‖ ≤ ‖T‖ for
every y ∈ Y . Similar to the proof of Theorem 2.3, W ∈ Lipα(Y,B(E,F )). By
the definition of W , one can write he,u∗(y) =< Wy(e), u

∗ > and then

< Tfe(y), u∗ > =< Wy(e), u
∗ > f(ϕe,u∗(y))

=< f(ϕe,u∗(y))Wy(e), u
∗ >=< Wy(fe(ϕe,u∗(y))), u∗ >,

for every (e, u∗, y) ∈ E × F ∗ × Y and f ∈ lipα(X).
We now show that ϕe,u∗ is independent of e and u∗ on Y \N where N = {y ∈

Y : Wy = 0}. Given y0 ∈ Y \N , choose e ∈ E whit Wy0(e) = T1e(y0) 6= 0. Then
there exists u∗ ∈ F ∗ such that < T1e(y0), u∗ >6= 0. We claim that for every t∗ in
F ∗ with < T1e(y0), t∗ >6= 0, we have ϕe,u∗(y0) = ϕe,t∗(y0). To prove this claim, let
x1 = ϕe,u∗(y0) and x2 = ϕe,t∗(y0). If x1 6= x2, then there exist open neighborhoods
U1 of x1 and U2 of x2 such that U1 ∩ U2 = ∅. Define fi(x) = dist(x,X \ Ui) and
note that fi ∈ lipα(X) and fi(xi) 6= 0 for each i = 1, 2. Moreover, f1(x)f2(x) = 0
for every x ∈ X. Hence,

‖(f1)e(x)‖‖(f2)e(x)‖ = |f1(x)||f2(x)|‖e‖2 = 0,

for all x ∈ X. Thus, by the separating property of T ,

‖T (f1)e(y)‖‖T (f2)e(y)‖ = 0,

for all y ∈ Y . On the other hand,

< T (f1)e(y0), u∗ >=< T1e(y0), u∗ > f1(ϕe,u∗(y0)) =< T1e(y0), u∗ > f1(x1) 6= 0,

and

< T (f2)e(y0), t∗ >=< T1e(y0), t∗ > f2(ϕe,t∗(y0)) =< T1e(y0), t∗ > f2(x2) 6= 0.

Therefore,

0 < | < T (f1)e(y0), u∗ > || < T (f2)e(y0), t∗ > |
≤ ‖u∗‖‖t∗‖‖T (f1)e(y0)‖‖T (f2)e(y0)‖ = 0,

which is a contradiction. Hence if Wy(e) = (T1e)(y) 6= 0, then < T1e(y), u∗ >6= 0
for some u∗ ∈ F ∗ and ϕe,u∗(y) = ϕe,t∗(y) for every t∗ in {t∗ ∈ F ∗ :< T1e(y), t∗ >6=
0}. Thus, for a fixed e ∈ E, one can define ϕe on {y ∈ Y : Wy(e) = T1e(y) 6= 0}
by ϕe(y) = ϕe,u∗(y) where < T1e(y), u∗ >6= 0. Similarly, one can show that ϕe(y)
does not depend on e for every y ∈ Y \N , that is, if y ∈ Y and e1, e2 ∈ E such that
Wy(e1) 6= 0 and Wy(e2) 6= 0, then ϕe1(y) = ϕe2(y). We are then able to define
the function ϕ : Y \N → X by ϕ(y) = ϕe(y) where Wy(e) = T1e(y) 6= 0 for some
e ∈ E. Hence, Tfe(y) = Wy(fe(ϕ(y))) if y ∈ Y \N and Tfe(y) = 0 if y ∈ N , for
every f ∈ lipα(X) and e ∈ E. Therefore, one can write Tfe(y) = Wy(fe(ϕ(y)))
for every y ∈ Y , f ∈ lipα(X), e ∈ E and any extension of ϕ to Y .
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Similar to the proof of Theorem 2.3, one can show that ϕ is continuous on
Y \N and Lipschitz on every compact subset of Y \N . �

As an immediate application of Theorem 3.2, we provide the following result
which characterizes the general form of a bounded separating linear operator
T : lipα(X,E)→ lipα(Y, F ) under certain conditions on X and E.

Corollary 3.3. Let X be a compact metric space, E be a Banach space and
α ∈ (0, 1). Suppose that the linear span of {fe : f ∈ lipα(X), e ∈ E} is dense
in lipα(X,E). Then every bounded separating linear operator T : lipα(X,E) →
lipα(Y, F ) is a weighted composition operator Tf(y) = Wy(f(ϕ(y))) for every
f ∈ lipα(X,E) and y ∈ Y , where ϕ and W are the same as found in Theorem
3.2.

Note that the density of the linear span of {fe : f ∈ lipα(X), e ∈ E} in
lipα(X,E) is not very restrictive and there are many cases with such property.
For instance, as follows from [13, page 167 and Cor. 5.17], if X is an infinite
compact set in Rn and E is a dual space of a Banach space, then the linear span
of {fe : f ∈ lipα(X), e ∈ E} is dense in lipα(X,E).

To characterize a bounded separating linear operator T : lipα(X,E)→ lipα(Y, F )
in the general case, we need the following lemma.

Lemma 3.4. Let z ∈ X and set

Jz = {f ∈ lipα(X,E) : z /∈ coz(f) = supp(f)},

Mz = {f ∈ lipα(X,E) : f(z) = 0}.

Then Jz is a dense subspace of Mz.

Proof. Let f ∈ Mz and ε > 0. By the definition of lipα(X,E), there exists δ ∈
(0, 1) such that ‖f(x1)−f(x2)‖ < εdα(x1, x2) for every x1, x2 ∈ X with d(x1, x2) <
δ. Let U = B(z, δ

4
) and V = B(z, δ

2
). Define h(x) = min{4

δ
dist(x, U), 1} and

g = hf . Note that h ∈ Lip1(X), 0 ≤ h ≤ 1, h = 0 on U , h = 1 on X \ V and
‖1 − h‖X = 1. Then g ∈ lipα(X,E) since lipα(X,E) is a Lip1(X)-module, and
g ∈ Jz since g = 0 on U . Also f = g on X \ V and

‖f(x)‖ = ‖f(x)− f(z)‖ < εdα(x, z) < ε(
δ

2
)α,

for every x ∈ V . Therefore,

‖f − g‖X = sup
x∈V
‖f(x)− g(x)‖ = sup

x∈V
‖f(x)‖|1− h(x)| < ε(

δ

2
)α < ε.

Next we show that pα(f − g) ≤ 5ε. Let x1, x2 ∈ X with x1 6= x2.
If x1, x2 ∈ V , then by [19, Proposition 1.5.5], we have

|h(x1)− h(x2)|
dα(x1, x2)

≤ p1(h)(diam(V ))1−α ≤ 4

δ
δ1−α =

4

δα
,
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which implies

‖(f − g)(x1)− (f − g)(x2)‖
dα(x1, x2)

≤‖f(x1)‖|h(x1)− h(x2)|
dα(x1, x2)

+
|1− h(x2)|‖f(x1)− f(x2)‖

dα(x1, x2)

<ε(
δ

2
)α · 4

δα
+ ε < 5ε.

If x1 ∈ X \ V and x2 ∈ V , then d(x1, x2) ≥ δ
2
− d(x2, z) and

‖(f − g)(x1)− (f − g)(x2)‖
dα(x1, x2)

=
‖f(x2)‖(1− 4

δ
dist(x2, U))

dα(x1, x2)

≤ ε(
δ

2
)α

2− 4
δ
d(x2, z)

( δ
2
− d(x2, z))α

= 2ε(
δ − 2d(x2, z)

δ
)1−α ≤ 2ε.

Therefore, pα(f − g) ≤ 5ε. Thus ‖f − g‖α = ‖f − g‖X + pα(f − g) ≤ 6ε. �

Theorem 3.5. Let α ∈ (0, 1) and let T : lipα(X,E) → lipα(Y, F ) be a nonzero
bounded separating linear operator. Then T is a weighted composition operator
Tf(y) = Wy(f(ϕ(y))) for every f ∈ lipα(X,E) and y ∈ Y \ N , where ϕ and W
are defined as in Theorem 3.2.

Proof. In the proof of Theorem 3.2, we have shown that Tfe(y) = Wy(fe(ϕ(y)))
for every f ∈ lipα(X), e ∈ E and y ∈ Y . We now show that this still holds for
every f ∈ lipα(X,E) and y ∈ Y \N .

Fix y ∈ Y \ N . Let f ∈ Jϕ(y). Then there exists δ > 0 with B(ϕ(y), δ) ∩
coz(f) = ∅. We choose e ∈ E with ‖e‖ = 1 such that Wy(e) 6= 0. Define g(x) =
1
δ

dist(x,X \B(ϕ(y), δ)) for x ∈ X. Then ge ∈ lipα(X,E) and ‖f(x)‖‖ge(x)‖ = 0
for every x ∈ X. The separating property of T implies that, ‖Tf(z)‖‖Tge(z)‖ = 0
for every z ∈ Y . In particular, ‖Tf(y)‖‖Tge(y)‖ = 0. On the other hand, by
what we have proved in Theorem 3.2, Tge(y) = g(ϕ(y))Wy(e) = Wy(e) 6= 0.
Therefore, ‖Tf(y)‖ = 0 and Tf(y) = 0.

We now assume that f ∈ Mϕ(y). By Lemma 3.4, there exists a sequence (fn)
in Jϕ(y) converging to f in lipα(X,E). Then the sequence (Tfn) converges to Tf
in lipα(Y, F ). In particular, Tf(y) = limTfn(y). Therefore, Tf(y) = 0.

Finally, let f ∈ lipα(X,E) and e = f(ϕ(y)). Then g = f − 1e is in Mϕ(y) and
hence Tf(y)− T1e(y) = Tg(y) = 0. Therefore,

Tf(y) = T1e(y) = Wy(e) = Wy(f(ϕ(y))).

This completes the proof of the theorem. �

Remark 3.6. By imposing certain conditions on T , the kernel N of W will be
empty. In this case, the operator T in Theorem 3.5, will be weighted composition
of the form Tf(y) = Wy(f(ϕ(y))) for every y ∈ Y , and ϕ will be continuous on Y .
For instance, N = ∅, if either T1e = 1u for some nonzero elements e ∈ E, u ∈ F
or if the family {T1e : e ∈ E} vanishes at no point of Y .
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