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Abstract. Let B(X,Y ) denote the set of all bounded linear operators from
Banach space X to Banach space Y . In this paper, we introduce the concepts
of left and right decomposably regular operators, left and right decomposably
Fredholm operators in the setting of B(X,Y ), and the corresponding holomor-
phic versions in the setting of B(X). By using Harte’s techniques, we obtain
various characterizations of these classes of operators. As the applications of
these characterizations, we can compute the topological interiors and closures
of them.

1. Introduction

Throughout this paper, denote the set of all bounded (resp. compact) linear
operators from Banach space X to Banach space Y by B(X, Y ) (resp. K(X, Y )),
and abbreviate B(X,X) and K(X,X) to B(X) and K(X), respectively. For
other classes of operators discussed below, we use similar abbreviations. For an
operator T ∈ B(X, Y ), let ker(T ) denote its null space, α(T ) its nullity, T (X) its
range and β(T ) its defect. We also denote classes of left invertible operators, right
invertible operators, invertible operators, left Fredholm operators, right Fredholm
operators and Fredholm operators from X to Y by Gl(X, Y ), Gr(X, Y ), G(X, Y ),
Φl(X, Y ), Φr(X, Y ) and Φ(X, Y ), respectively.
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We say that T ∈ B(X, Y ) is relatively regular, in symbol T ∈ R(X, Y ), pro-
vided that there exists some S ∈ B(Y,X) for which T = TST. In this case, S
is called an inner generalized inverse of T . It is well known that T ∈ B(X, Y )
is relatively regular if and only if ker(T ) and T (X), respectively, are closed and
complemented subspaces of X and Y . If S is an inner generalized inverse of T ,
it is well known that TS is the projection from Y onto T (X), and I − ST is the
projection from X onto ker(T ). Operators in sets Gl(X, Y ), Gr(X, Y ),Φl(X, Y )
and Φr(X, Y ) are all relatively regular operators. For a subset M of B(X, Y ), let
int(M) and M denote, respectively, the topological interior and closure of M .

An operator T ∈ B(X, Y ) is decomposably regular, in symbol T ∈ GR(X, Y ),
if there exists an invertible operator S ∈ G(Y,X) for which T = TST. If T = TST
for some S ∈ Φ(Y,X), then T is called a decomposably Fredholm operator, in
symbol T ∈ ΦR(X, Y ). For X = Y, Harte (resp. Rakočevič) obtained in [5]
(resp. [13]) an elegant characterization of decomposably regular operators (resp.
decomposably Fredholm operators), that is

GR(X) = R(X) ∩G(X); ΦR(X) = R(X) ∩ Φ(X).

Indeed, the above two results also hold in the case that X and Y are two different
Banach spaces (see Theorem 2.1(3) and Theorem 2.5(3) below), that is

GR(X, Y ) = R(X, Y ) ∩G(X, Y );

ΦR(X, Y ) = R(X, Y ) ∩ Φ(X, Y ). (1.1)

From (1.1), we can infer that

Φ(X, Y ) ⊆ ΦR(X, Y ). (1.2)

Evidently, every idempotent operator P (P 2 = P ) is decomposably regular, and
hence, is decomposably Fredholm, but may not be Fredholm. Consequently, the
inclusion (1.2) may be strict. However, we would get in Theorem 3.5(6) that

int(ΦR(X, Y )) = Φ(X, Y ),

which extends a result of Schmoeger [18, Theorem 2.2(2)] to the case that X and
Y are two different Banach spaces.

Decomposably regular operators can also be characterized “spatially” (see [6,
Theorem 3.8.6]):

T ∈ GR(X, Y )⇐⇒ T ∈ R(X, Y ) and ker(T ) ≈ Y/T (X). (1.3)

For T ∈ Φl(X, Y )∪Φr(X, Y ), the index of T is defined as ind(T ) = α(T )−β(T ).
If T ∈ Φ(X, Y ) and ind(T ) = 0, then T is said to be Weyl. If T ∈ Φl(X, Y ) and
ind(T ) ≤ 0, then T is said to be left Weyl. If T ∈ Φr(X, Y ) and ind(T ) ≥ 0, then
T is said to be right Weyl. From (1.3), it is easy to see that

{T ∈ Φ(X, Y ) : ind(T ) = 0} ⊆ GR(X, Y ). (1.4)

As we know, every idempotent operator is decomposably regular, but may not
be Weyl. Hence the inclusion (1.4) can be strict. More precisely, we can obtain
that (see Theorem 3.5(3) below)

int(GR(X, Y )) = {T ∈ Φ(X, Y ) : ind(T ) = 0},
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which extends Theorem 2.1 in [18] to the case that X and Y are two different
Banach spaces.

The following definition describes the classes of operators we will study.

Definition 1.1. (1) An operator T ∈ B(X, Y ) is said to be left decomposably
regular, in symbol T ∈ GlR(X, Y ), provided that there exists S ∈ Gr(Y,X) such
that TST = T ;

(2) An operator T ∈ B(X, Y ) is said to be right decomposably regular oper-
ators, in symbol T ∈ GrR(X, Y ), provided that there exists S ∈ Gl(Y,X) such
that TST = T ;

(3) An operator T ∈ B(X, Y ) is said to be left decomposably Fredholm, in
symbol T ∈ ΦlR(X, Y ), provided that there exists S ∈ Φr(Y,X) such that TST =
T ;

(4) An operator T ∈ B(X, Y ) is said to be right decomposably Fredholm,
in symbol T ∈ ΦrR(X, Y ), provided that there exists S ∈ Φl(Y,X) such that
TST = T .

Evidently Gl(X, Y ) ⊆ GlR(X, Y ) and Gr(X, Y ) ⊆ GrR(X, Y ). By (1.3), it is
easy to observe that left (right) decomposably regular operators are genuinely
more general than decomposably regular operators, and no surprise that the
unilateral right (left) shifts provide the examples.

The present paper focuses mainly on the above four classes of operators and
their holomorphical versions (see Definition 2.9), and is organized as follows. In
Section 2, by using Harte’s techniques, we characterize these classes of operators
in several ways. In Section 3, as the applications of these characterizations, we
compute the topological interiors and closures of them.

2. Various characterizations

Harte obtained in [5, Theorem 1.1] an elegant structure theorem of decompos-
ably regular elements in a Banach algebra A . Motivated by Harte’s techniques
therein, we will get in the following theorem the structures of left and right de-
composably regular operators in the setting of B(X, Y ).

Theorem 2.1. (1) GrR(X, Y ) = R(X, Y ) ∩Gr(X, Y );

(2) GlR(X, Y ) = R(X, Y ) ∩Gl(X, Y );

(3) GR(X, Y ) = R(X, Y ) ∩G(X, Y ).

Proof. (1) Let T ∈ GrR(X, Y ). Then T ∈ R(X, Y ) and there exists Sl ∈ Gl(Y,X)
such that TSlT = T. Since Sl ∈ Gl(Y,X), there exists Sr ∈ Gr(X, Y ) such that
SrSl = IY . It is easy to see that T = SrSlT and SlTSlT = SlT, and hence
T = SrP ∈ B(X, Y ), where P = SlT ∈ B(X) is an idempotent operator. Let
Tn = Sr(P + IX−P

n
) ∈ B(X, Y ), for all n ∈ N . It is easy to check that [P +n(IX−

P )][P + IX−P
n

] = [P + IX−P
n

][P + n(IX − P )] = IX , that is P + IX−P
n
∈ G(X).

Further, Tn[P +n(IX−P )]Sl = Sr[P + IX−P
n

][P +n(IX−P )]Sl = SrSl = IY , that

is Tn ∈ Gr(X, Y ) for all n ∈ N . Since Tn → T (n→∞), we have T ∈ Gr(X, Y ),

therefore GrR(X, Y ) ⊆ R(X, Y ) ∩Gr(X, Y ).
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Conversely, suppose that T ∈ R(X, Y ) ∩ Gr(X, Y ). Thus there exist S ∈
B(Y,X) and Br ∈ Gr(X, Y ) such that TST = T, STS = S and IY +(Br−T )S ∈
G(Y ). Since Br ∈ Gr(X, Y ), there exists Bl ∈ Gl(Y,X) such that BrBl = IY . Let
T ′ = S + (IX −ST )Bl(IY −TS) ∈ B(Y,X). It is not hard to see that T = TT ′T,
and so T ′ is an inner generalized inverse of T .

It remains only to show that T ′ ∈ Gl(Y,X). Since IY + (Br − T )S ∈ G(Y ),
there exists U ∈ G(Y ) such that [IY + (Br − T )S]U = U [IY + (Br − T )S] = IY .
Hence

[IX + S(Br − T )][IX − SU(Br − T )]

=IX − SU(Br − T ) + S(Br − T )− S(Br − T )SU(Br − T )

=IX − S[IY + (Br − T )S]U(Br − T ) + S(Br − T )

=IX − S(Br − T ) + S(Br − T )

=IX

and

[IX − SU(Br − T )][IX + S(Br − T )]

=IX − SU(Br − T ) + S(Br − T )− SU(Br − T )S(Br − T )

=IX − SU [IY + (Br − T )S](Br − T ) + S(Br − T )

=IX − S(Br − T ) + S(Br − T )

=IX .

Let V = IX −SU(Br−T ). From the above two equations, we know that V [IX +
S(Br − T )] = [IX + S(Br − T )]V = IX , that is V ∈ G(X). Furthermore,

[IY + (Br − T )S][IY − (Br − T )V S]

=IY − (Br − T )V S + (Br − T )S − (Br − T )S(Br − T )V S

=IY − (Br − T )[IX + S(Br − T )]V S + (Br − T )S

=IY − (Br − T )S + (Br − T )S

=IY

and

[IY − (Br − T )V S][IY + (Br − T )S]

=IY − (Br − T )V S + (Br − T )S − (Br − T )V S(Br − T )S

=IY − (Br − T )V [IX + S(Br − T )]S + (Br − T )S

=IY − (Br − T )S + (Br − T )S

=IY .

Hence, we get that U = IY − (Br − T )V S. Let P = ST ∈ B(X) and Q = TS ∈
B(Y ). Then P is the projection from X onto S(Y ) parallel to ker(T ) and Q is
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the projection from Y onto T (X) parallel to ker(S). Moreover,

UBrP =U(BrS)T

=U [IY + (Br − T )S + TS − IY ]T

=U [IY + (Br − T )S]T + U(TS − IY )T

=T

and

U(IY −Q) =[IY − (Br − T )V S](IY − TS)

=IY − (Br − T )V S − TS + (Br − T )V STS

=IY − (Br − T )V S − TS + (Br − T )V S

=IY − TS
=IY −Q.

Since UBrP = T, U(IY −Q) = IY −Q and BrBl = IY , we can get that

[T + (IY −Q)UBr(IX − P )]T ′

=[T + (IY −Q)UBr(IX − P )][S + (IX − ST )Bl(IY − TS)]

=TS + [(IY −Q)UBr(IX − P )][(IX − P )Bl(IY −Q)]

=TS + (IY −Q)UBr(IX − P )Bl(IY −Q)

=TS + (IY −Q)(UBr − UBrP )Bl(IY −Q)

=TS + (IY −Q)(UBr − T )Bl(IY −Q)

=TS + (IY −Q)UBrBl(IY −Q)− (IY −Q)TBl(IY −Q)

=TS + (IY −Q)UBrBl(IY −Q)

=TS + (IY −Q)U(IY −Q)

=TS + (IY −Q)(IY −Q)

=Q+ IY −Q
=IY .

That is, [T + (IY − Q)UBr(IX − P )]T ′ = IY . So T ′ ∈ Gl(Y,X), then T ∈
GrR(X, Y ), and this completes the whole proof of (1).

Parts (2) and (3) can be proved similarly. �

Sets of all invertible elements, left invertible elements, right invertible elements,
relatively regular elements, decomposably regular elements, left decomposably
regular elements and right decomposably regular elements in a complex Banach
algebra A with identity 1 are defined as follows respectively:

G(A ) := {a ∈ A : there exists some b ∈ A such that ab = ba = 1};

Gl(A ) := {a ∈ A : there exists some b ∈ A such that ba = 1};
Gr(A ) := {a ∈ A : there exists some b ∈ A such that ab = 1};

R(A ) := {a ∈ A : a ∈ aA a};
GR(A ) := {a ∈ A : a ∈ aG(A )a};
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GlR(A ) := {a ∈ A : a ∈ aGr(A )a};
GrR(A ) := {a ∈ A : a ∈ aGl(A )a}.

Now, [5, Theorem 1.1] should be represented as follows:

GR(A ) = R(A ) ∩G(A ).

Similar to the proof of Theorem 2.1, we can extend Theorem 2.1 to the Banach
algebra A .

Theorem 2.2. (1) GrR(A ) = R(A ) ∩Gr(A );

(2) GlR(A ) = R(A ) ∩Gl(A ).

Before providing the characterizations of left and right decomposably Fred-
holm operators in B(X, Y ), we give an example to illustrate that there exists
some operator which is left (right) decomposably Fredholm but not decompos-
ably Fredholm.

For any Hilbert space X, let dimHX denote the Hilbert dimension of X, that
is the cardinality of an orthonormal basis of X. We set nulH(T ) = dimH ker(T )
and defH(T ) = dimHT (X)⊥. For a separable Hilbert space X, Rakočevič has
proved the following:

Proposition 2.3. ([13,Theorem 5]) Let X be a separable Hilbert space. Then

R(X) ∩ Φ(X) = Φ(X) ∪ {T ∈ B(X) : nulH(T ) = defH(T ) and T (X) is closed}.

Example 2.4. Let H be the direct sum of countably many copies of l2(N), that
is,

H = {(xj)∞j=1 : xj ∈ l2(N) and
∞∑
i=1

‖ xj ‖<∞}.

(1) Let S : l2(N) −→ l2(N) be the unilateral right shift operator defined by

S(z1, z2, z3, · · · ) = (0, z1, z2, · · · ) for all (zn) ∈ l2(N).

The operator Ŝ on H is defined by

Ŝ(x1, x2, x3, · · · ) = (Sx1, Sx2, Sx3, · · · ) for all (xn) ∈ H.

Note that Ŝ(H) is closed, α(Ŝ) = 0 and β(Ŝ) =∞. Then Ŝ ∈ Gl(H) ⊆ GlR(H) ⊆
ΦlR(H). But since Ŝ 6∈ ΦR(H) by Proposition 2.3 and (1.1), we have ΦR(H) $
ΦlR(H).

(2) Let T : l2(N) −→ l2(N) be the unilateral left shift operator defined by

T (z1, z2, z3, · · · ) = (z2, z3, z4, · · · ) for all (zn) ∈ l2(N).

The operator T̂ on H is defined by

T̂ (x1, x2, x3, · · · ) = (Tx1, Tx2, Tx3, · · · ) for all (xn) ∈ H.

Noting that T̂ (H) is closed, α(T̂ ) = ∞ and β(T̂ ) = 0, we have T̂ ∈ Gr(H) ⊆
GrR(H) ⊆ ΦrR(H). But since T̂ 6∈ ΦR(H) by Proposition 2.3 and (1.1), we have
ΦR(H) $ ΦrR(H).
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Rakočevič [13, Theorem 3] adopted Harte’s technique used in [5, Theorem 1.1]
to prove that

ΦR(X) = R(X) ∩ Φ(X) = P(X)Φ(X),

where P(X) = {P ∈ B(X) : P 2 = P}. Next, we will prove that similar results
also hold for left and right decomposably Fredholm operators. It is remarked that
here we need to deal with compact perturbations.

Theorem 2.5. (1) ΦrR(X, Y ) = R(X, Y ) ∩ Φr(X, Y );

(2) ΦlR(X, Y ) = R(X, Y ) ∩ Φl(X, Y );

(3) ΦR(X, Y ) = R(X, Y ) ∩ Φ(X, Y ).

Proof. We will prove (2), omitting the similar proofs of (1) and (3).
(2) Let T ∈ ΦlR(X, Y ). Then T ∈ R(X, Y ) and there exists Sr ∈ Φr(Y,X)

for which TSrT = T. Since Sr ∈ Φr(Y,X), there exist Sl ∈ Φl(X, Y ) and K1 ∈
K(X) such that SrSl = IX + K1. It is easy to see that TSrSl = T + TK1 and
TSrTSr = TSr, and hence TSr(Sl − TK1) = T + TK1 − TSrTK1 = T , thus
T = PC ∈ B(X, Y ), where C = Sl − TK1 ∈ Φl(X, Y ) and P = TSr ∈ B(Y ) is
an idempotent operator. Let Tn = (P + IY −P

n
)C ∈ B(X, Y ) for all n ∈ N . It is

easy to check that[P + n(IY −P )][P + IY −P
n

] = [P + IY −P
n

][P + n(IY −P )] = IY ,

that is, P + IY −P
n
∈ G(Y ) for all n ∈ N . Further, Sr[P + n(IY − P )]Tn =

Sr[P + n(IY −P )][P + IY −P
n

]C = SrC = Sr(Sl− TK1) = IX +K1− SrTK1, that

is, Tn ∈ Φl(X, Y ) for all n ∈ N . Since Tn → T (n → ∞), T ∈ Φl(X, Y ). Thus

ΦlR(X, Y ) ⊆ R(X, Y ) ∩ Φl(X, Y ).

Conversely, suppose that T ∈ R(X, Y ) ∩ Φl(X, Y ). Then there exist S ∈
B(Y,X) and Bl ∈ Φl(X, Y ) for which TST = T, STS = S and IX +S(Bl− T ) ∈
G(X). Since Bl ∈ Φl(X, Y ), there exist Br ∈ Φr(Y,X) and K1 ∈ K(X) such that
BrBl = IX +K1. Let T ′ = S + (IX − ST )Br(IY − TS) ∈ B(Y,X). It is not hard
to see that T = TT ′T, and so T ′ is an inner generalized inverse of T .

It remains only to show that T ′ ∈ Φr(Y,X). Since IX + S(Bl − T ) ∈ G(X),
there exists U0 ∈ G(X) such that [IX +S(Bl−T )]U0 = U0[IX +S(Bl−T )] = IX .
Hence

[IY + (Bl − T )S][IY − (Bl − T )U0S]

=IY − (Bl − T )U0S + (Bl − T )S − (Bl − T )S(Bl − T )U0S

=IY − (Bl − T )[IX + S(Bl − T )]U0S + (Bl − T )S

=IY − (Bl − T )S + (Bl − T )S

=IY

and

[IY − (Bl − T )U0S][IY + (Bl − T )S]

=IY + (Bl − T )S − (Bl − T )U0S − (Bl − T )U0S(Bl − T )S

=IY + (Bl − T )S − (Bl − T )U0[IX + S(Bl − T )]S

=IY + (Bl − T )S − (Bl − T )S

=IY .
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Let V0 = IY − (Br − T )U0S. From the above equations, we know that V0[IY +
(Bl − T )S] = [IY + (Bl − T )S]V0 = IY , that is V0 ∈ G(Y ). Further,

[IX + S(Bl − T )][IX − SV0(Bl − T )]

=IX − SV0(Bl − T ) + S(Bl − T )− S(Bl − T )SV0(Bl − T )

=IX + S(Bl − T )− S[IY + (Bl − T )S]V0(Bl − T )

=IX + S(Bl − T )− S(Bl − T )

=IY

and

[IX − SV0(Bl − T )][IX + S(Bl − T )]

=IX + S(Bl − T )− SV0(Bl − T )− SV0(Bl − T )S(Bl − T )

=IX + S(Bl − T )− SV0[IY + (Bl − T )S](Bl − T )

=IX + S(Bl − T )− S(Bl − T )

=IX .

Hence, we get that U0 = IX − SV0(Bl − T ). Let P = ST ∈ B(X) and Q = TS ∈
B(Y ). Then P is the projection from X onto S(Y ) parallel to ker(T ) and Q is
the projection from Y onto T (X) parallel to ker(S). Moreover,

QBlU0 =T (SBl)U0

=T [IX + S(Bl − T ) + ST − IX ]U0

=T [IX + S(Bl − T )]U0 + T (ST − IX)U0

=T

and

(IX − P )U0 =(IX − ST )[IX − SV0(Bl − T )]

=IX − ST − SV0(Bl − T ) + STSV0(Bl − T )

=IX − ST − SV0(Bl − T ) + SV0(Bl − T )

=IX − ST
=IX − P.
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Since QBlU0 = T, (IX − P )U0 = IX − P and BrBl = IX +K1, we can get that

T ′[T + (IY −Q)BlU0(IX − P )]

=[S + (IX − ST )Br(IY − TS)][T + (IY −Q)BlU0(IX − P )]

=ST + [(IX − ST )Br(IY − TS)][(IY −Q)BlU0(IX − P )]

=ST + (IX − ST )Br(IY −Q)BlU0(IX − P )

=ST + (IX − P )Br(BlU0 −QBlU0)(IX − P )

=ST + (IX − P )Br(BlU0 − T )(IX − P )

=ST + (IX − P )BrBlU0(IX − P ) + (IX − P )BrT (IX − P )

=ST + (IX − P )BrBlU0(IX − P )

=ST + (IX − P )(IX +K1)U0(IX − P )

=ST + (IX − P )U0(IX − P ) + (IX − P )K1U0(IX − P )

=ST + (IX − P )(IX − P ) + (IX − P )K1U0(IX − P )

=P + IX − P + (IX − P )K1U0(IX − P )

=IX + (IX − P )K1U0(IX − P ).

That is, T ′[T + (IY − Q)BlU0(IX − P )] = IX + (IX − P )K1U0(IX − P ). So
T ′ ∈ Φr(Y,X), then T ∈ ΦlR(X, Y ), and this complete the whole proof of (2). �

Decomposably regular operators are characterized “spatially” as in (1.3). Our
next result extends it to left (right) decomposably regular operators. Before
this, the notions of embedded spaces, essentially embedded spaces and essentially
isomorphic spaces are needed.

Definition 2.6. Let X and Y be Banach spaces. We say that X can be embedded
in Y and write X � Y if there exists a left invertible operator J : X → Y. We say
that X can be essentially embedded in Y and write X �e Y if there exists a left
Fredholm operator F : X → Y. We say that X and Y are essentially isomorphic
and write X ≈e Y if Φ(X, Y ) 6= ∅.

The notion of embedded spaces and the notion similar to essentially embed-
ded spaces were introduced by Djordjević [4] to investigate the perturbations of
spectra of operator matrices. The notion of essentially isomorphic spaces was
introduced by González and Herrera [9]. Obviously, X � Y if and only if there
exists a right invertible operator J1 : Y → X; X �e Y if and only if there exists
a right Fredholm operator F1 : Y → X; X ≈e Y if and only if Y ≈e X.

Theorem 2.7. (1) T ∈ GlR(X, Y )⇐⇒ T ∈ R(X, Y ) and ker(T ) � Y/T (X);
(2) T ∈ GrR(X, Y )⇐⇒ T ∈ R(X, Y ) and Y/T (X) � ker(T ).
And these equivalences yield the following inclusions directly:

{T ∈ Φl(X, Y ) : ind(T ) ≤ 0} ⊆ GlR(X, Y ); (2.1)

{T ∈ Φr(X, Y ) : ind(T ) ≥ 0} ⊆ GrR(X, Y ). (2.2)

Proof. (1) Suppose that T ∈ GlR(X, Y ). Then T ∈ R(X, Y ) and there exists
S ∈ Gr(Y,X) such that TST = T. Since S ∈ Gr(Y,X), there exists L ∈ Gl(X, Y )
such that SL = IX .
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The operators U : ker(T ) −→ Y/T (X) and V : Y/T (X) −→ ker(T ) are defined
as follows respectively:

U(x) = L(x) + T (X), for all x ∈ ker(T );

V (y + T (X)) = (I − ST )S(I − TS)(y), for all y + T (X) ∈ Y/T (X).

For all x ∈ ker(T ), we can check that

V U(x) =V (L(x) + T (X))

=(I − ST )S(I − TS)(L(x))

=(S − STS)(L(x))

=(SL− STSL)(x)

=x− ST (x)

=x.

That is, V U = Iker(T ), hence U ∈ Gl(ker(T ), Y/T (X)). This proves ker(T ) �
Y/T (X).

Conversely, suppose that T ∈ R(X, Y ) and ker(T ) � Y/T (X). Then there
exists S ∈ B(Y,X) such that TST = T. Let P = TS ∈ B(Y ) and Q = ST ∈
B(X). Therefore P is the projection from Y onto T (X) and I−Q is the projection
from X onto ker(T ).

The operators T̂ : Q(X)→ P (Y ) and Ŝ : P (Y )→ Q(X) are defined as follows
respectively:

T̂ (Q(x)) = T (Q(x)), for all x ∈ X;

Ŝ(P (y)) = S(P (y)), for all y ∈ Y.

Since Y/T (X) = Y/P (Y ) ≈ ker(P ), there exists U0 ∈ Gl(ker(Q), ker(P )). Let
V0 ∈ Gr(ker(P ), ker(Q)) be a left inverse of U0.

The operator V : Y → X is defined by

V (y) = ŜP (y) + V0(I − P )(y), for all y ∈ Y.

Hence for all x ∈ X, we have

TV T (x) =T [ŜP (Tx) + V0(I − P )(Tx)]

=T ŜP (Tx)

=T ŜT (x)

=TST (x)

=T (x),

that is, TV T = T .
The operator W : X → Y is defined by

W (x) = T̂Q(x) + U0(I −Q)(x), for all x ∈ X.
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Then for all x ∈ X, we can obtain that

VW (x) =[ŜP + V0(I − P )][T̂Q+ U0(I −Q)](x)

=[ŜP T̂Q+ V0(I − P )U0(I −Q)](x)

=[ŜT̂Q+ V0U0(I −Q)](x)

=Q(x) + (I −Q)(x)

=x.

That is VW = IX , so V ∈ Gr(Y,X), and this induces that T ∈ GlR(X, Y ).
(2) Suppose that T ∈ GrR(X, Y ). Then T ∈ R(X, Y ) and there exists S ∈

Gl(Y,X) such that TST = T. Since S ∈ Gl(Y,X), there exists L ∈ Gr(X, Y )
such that LS = IY .

The operators U : ker(T ) −→ Y/T (X) and V : Y/T (X) −→ ker(T ) are defined
as follows respectively:

U(x) = L(x) + T (X), for all x ∈ ker(T );

V (y + T (X)) = (I − ST )S(I − TS)(y), for all y + T (X) ∈ Y/T (X).

For all y + T (X) ∈ Y/T (X), we can check that

UV (y + T (X)) =U(I − ST )S(I − TS)(y)

=U(S − STS)(y)

=L(S − STS)(y) + T (X)

=(LS − LSTS)(y) + T (X)

=y − TS(y) + T (X)

=y + T (X).

That is, UV = IY/T (X), hence U ∈ Gr(ker(T ), Y/T (X)). This proves Y/T (X) �
ker(T ).

Conversely, suppose that T ∈ R(X, Y ) and Y/T (X) � ker(T ). Then there
exists S ∈ B(Y,X) such that TST = T. Let P = TS ∈ B(Y ) and Q = ST ∈
B(X). Therefore P is the projection from Y onto T (X) and I−Q is the projection
from X onto ker(T ).

The operators T̂ : Q(X)→ P (Y ) and Ŝ : P (Y )→ Q(X) are defined as follows
respectively:

T̂ (Q(x)) = T (Q(x)), for all x ∈ X;

Ŝ(P (y)) = S(P (y)), for all y ∈ Y.

Since Y/T (X) = Y/P (Y ) ≈ ker(P ), there exists U0 ∈ Gr(ker(Q), ker(P )). Let
V0 ∈ Gl(ker(P ), ker(Q)) be a right inverse of U0.

The operator V : Y → X is defined by

V (y) = ŜP (y) + V0(I − P )(y), for all y ∈ Y.
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Hence for all x ∈ X, we have

TV T (x) =T [ŜP (Tx) + V0(I − P )(Tx)]

=T ŜP (Tx)

=T ŜT (x)

=TST (x)

=T (x),

that is TV T = T .
The operator W : X → Y is defined by

W (x) = T̂Q(x) + U0(I −Q)(x), for all x ∈ X.

Then for all x ∈ X, we can obtain that

WV (y) =[T̂Q+ U0(I −Q)][ŜP + V0(I − P )](y)

=[T̂QŜP + U0(I −Q)V0(I − P )](y)

=[T̂ ŜP + U0V0(I − P )](y)

=P (y) + (I − P )(y)

=y.

That is WV = IY , so V ∈ Gl(Y,X), and this induces that T ∈ GrR(X, Y ).
For T ∈ Φl(X, Y ) with ind(T ) ≤ 0, it is easy to know that T ∈ R(X, Y ) and

there exists a finite-dimensional subspace W of Y/T (X) such that ker(T ) ≈ W .
Let J1 : ker(T ) −→ W be the above isomorphic and J2 : W −→ Y/T (X) be the
naturally embedded operator. Hence U = J2J1 ∈ Gl(ker(T ), Y/T (X)), that is,
ker(T ) � Y/T (X), and this proves (2.1). Similarly, we can get (2.2). �

Similar to the proof of Theorem 2.7, we can show the following:

Theorem 2.8. (1) T ∈ ΦlR(X, Y )⇐⇒ T ∈ R(X, Y ) and ker(T ) �e Y/T (X).
(2) T ∈ ΦrR(X, Y )⇐⇒ T ∈ R(X, Y ) and Y/T (X) �e ker(T ).
(3) T ∈ ΦR(X, Y )⇐⇒ T ∈ R(X, Y ) and ker(T ) ≈e Y/T (X).

Next, we turn to the discussion of holomorphical versions.
For T ∈ B(X), we say that T is semi-regular, in symbol T ∈ S(X), if T (X)

is closed and ker(T ) ⊆ T n(X) for all n ∈ N. If T ∈ R(X) ∩ S(X), then T is
called an Saphar operator. This class of operators has been studied by Saphar
[14] (see also [3]). Operators in this class have an important property: T ∈ B(X)
is a Saphar operator if and only if there exist a neighborhood U ⊆ C of 0 and a
holomorphic function F : U −→ B(X) such that

(T − λI)F (λ)(T − λI) = T − λI, (2.3)

for all λ ∈ U . For its proof see [11, Théorème 2.6] or [15, Theorem 1.4]. If F (λ) ∈
G(X) for all λ ∈ U in (2.3), we say that T is holomorphically decomposably
regular, in symbol T ∈ HG(X). If F (λ) ∈ Φ(X) for all λ ∈ U in (2.3), we
say that T is holomorphically decomposably Fredholm, in symbol T ∈ HΦ(X).
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These two classes of operators are characterized in [18] and [2] (or [1]) as follows
respectively:

HG(X) = S(X) ∩GR(X) = S(X) ∩R(X) ∩G(X); (2.4)

HΦ(X) = S(X) ∩ ΦR(X) = S(X) ∩R(X) ∩ Φ(X). (2.5)

Another characterization can also be found in [18] and [1] respectively:

T ∈ HG(X) ⇐⇒ there exist some R ∈ G(X) and sequences

{Sn}∞n=1 ⊆ G(X), {Tn}∞n=1 ⊆ G(X) such that

(T − Sn)Tn(T − Sn) = (T − Sn), TSn = SnT

for all n ∈ N and lim
n→∞

(||Sn||+ ||Tn −R||) = 0; (2.6)

T ∈ HΦ(X) ⇐⇒ there exist some R ∈ Φ(X) and sequences

{Sn}∞n=1 ⊆ G(X), {Tn}∞n=1 ⊆ Φ(X) such that

(T − Sn)Tn(T − Sn) = (T − Sn), TSn = SnT

for all n ∈ N and lim
n→∞

(||Sn||+ ||Tn −R||) = 0. (2.7)

Definition 2.9. (1) An operator T ∈ B(X) is said to be holomorphically left
decomposably regular, in symbol T ∈ HGlR(X), if F (λ) ∈ Gr(X) for all λ ∈ U
in (2.3);

(2) An operator T ∈ B(X) is said to be holomorphically right decomposably
regular, in symbol T ∈ HGrR(X), if F (λ) ∈ Gl(X) for all λ ∈ U in (2.3);

(3) An operator T ∈ B(X) is said to be holomorphically left decomposably
Fredholm, in symbol T ∈ HΦlR(X), if F (λ) ∈ Φr(X) for all λ ∈ U in (2.3);

(4) An operator T ∈ B(X) is said to be holomorphically right decomposably
Fredholm, in symbol T ∈ HΦrR(X), if F (λ) ∈ Φl(X) for all λ ∈ U in (2.3).

The following theorem generalizes (2.4) to holomorphically left (right) decom-
posably regular operators.

Theorem 2.10. (1) HGl(X) = S(X) ∩GlR(X) = S(X) ∩R(X) ∩Gl(X).

(2) HGr(X) = S(X) ∩GrR(X) = S(X) ∩R(X) ∩Gr(X).

Proof. (1) If T ∈ HGl(X), then there exist a neighborhood U ⊆ C of 0 and
a holomorphic function F : U −→ B(X) such that F (λ) ∈ Gr(X) and (T −
λI)F (λ)(T − λI) = T − λI, for all λ ∈ U . Thus, we have that T ∈ GlR(X). By
(2.3), we get that T ∈ S(X).

Conversely, if T ∈ S(X) ∩ GlR(X), then there exists S ∈ Gr(X) such that
TST = T . An function F is defined by F (λ) = (I − λS)−1S for all |λ| < ||S||−1.
Therefore, F (λ) ∈ Gr(X) for all |λ| < ||S||−1. From Lemma 6 of [12, Chapter II,
Section 13], we get that (T −λI)F (λ)(T −λI) = T −λI for all |λ| < ||S||−1, and
this induces that T ∈ HGl(X).

Consequently, HGl(X) = S(X) ∩ GlR(X). By Theorem 2.1(2), we have that

S(X) ∩GlR(X) = S(X) ∩R(X) ∩Gl(X), and this completes the proof of (1).
(2) It can be proved similarly to (1). �
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The next theorem, whose proof is similar to Theorem 2.10, generalizes (2.5) to
holomorphically left (right) decomposably Fredholm operators.

Theorem 2.11. (1) HΦl(X) = S(X) ∩ ΦlR(X) = S(X) ∩R(X) ∩ Φl(X).

(2) HΦr(X) = S(X) ∩ ΦrR(X) = S(X) ∩R(X) ∩ Φr(X).

The following theorem generalizes (2.6) to holomorphically left (right) decom-
posably regular operators.

Theorem 2.12. (1) T ∈ HGl(X) ⇐⇒ there exist some R ∈ Gr(X) and
sequences {Sn}∞n=1 ⊆ G(X), {Tn}∞n=1 ⊆ Gr(X) such that TSn = SnT, (T − Sn)Tn
(T − Sn) = T − Sn for all n ∈ N and lim

n→∞
(||Sn||+ ||Tn −R||) = 0.

(2) T ∈ HGr(X) ⇐⇒ there exist some R ∈ Gl(X) and sequences {Sn}∞n=1 ⊆
G(X), {Tn}∞n=1 ⊆ Gl(X) such that TSn = SnT, (T − Sn)Tn(T − Sn) = T −
Sn for all n ∈ N and lim

n→∞
(||Sn||+ ||Tn −R||) = 0.

Proof. (1) If T ∈ HGl(X), then there exist an open disc D(0, r) ⊆ C and a
holomorphic function F : D(0, r) → B(X) such that F (λ) ∈ Gr(X) and (T −
λI)F (λ)(T − λI) = T − λI, for all λ ∈ D(0, r). Let {kn}∞n=1 be a sequence such
that 1

kn
< r for all n ∈ N and lim

n→∞
1
kn

= 0. Let R = F (0), Sn = 1
kn
I and

Tn = F ( 1
kn

) for all n ∈ N. It is easy to see that R ∈ Gr(X), {Sn}∞n=1 ⊆ G(X),

{Tn}∞n=1 ⊆ Gr(X), TSn = SnT and (T − Sn)Tn(T − Sn) = T − Sn. Since F is
continuous, we have that lim

n−→∞
(||Sn||+ ||Tn −R||) = 0.

Conversely, if there exist some R ∈ Gr(X) and sequences {Sn}∞n=1 ⊆ G(X),
{Tn}∞n=1 ⊆ Gr(X) such that TSn = SnT, (T − Sn)Tn(T − Sn) = T − Sn for all
n ∈ N and lim

n→∞
(||Sn|| + ||Tn − R||) = 0. Then it follows from Theorem 9 in [7]

that T ∈ R(X)∩S(X) ⊆ S(X). Since (T −Sn)Tn(T −Sn) = T −Sn for all n ∈ N
and lim

n→∞
(||Sn||+ ||Tn −R||) = 0, TRT = T . Further, we have that T ∈ GlR(X)

since R ∈ Gr(X). Hence by Theorem 2.10(1), we know that T ∈ HGl(X).
(2) It can be proved similarly to (1). �

The next theorem, whose proof is similar to Theorem 2.12, generalizes (2.7) to
holomorphically left (right) decomposably Fredholm operators.

Theorem 2.13. (1) T ∈ HΦl(X) ⇐⇒ there exist some R ∈ Φr(X) and
sequences {Sn}∞n=1 ⊆ G(X), {Tn}∞n=1 ⊆ Φr(X) such that TSn = SnT, (T − Sn)Tn
(T − Sn) = T − Sn for all n ∈ N and lim

n→∞
(||Sn||+ ||Tn −R||) = 0.

(2) T ∈ HΦr(X) ⇐⇒ there exist some R ∈ Φl(X) and sequences {Sn}∞n=1 ⊆
G(X), {Tn}∞n=1 ⊆ Φl(X) such that TSn = SnT, (T − Sn)Tn(T − Sn) = T −
Sn for all n ∈ N and lim

n→∞
(||Sn||+ ||Tn −R||) = 0.

3. Topological interiors and closures

As the direct applications of the characterizations obtained in the above section,
we can get the following:

Theorem 3.1. (1) GlR(X, Y ) = Gl(X, Y ).
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(2) GrR(X, Y ) = Gr(X, Y ).

(3) GR(X, Y ) = G(X, Y ).

(4) ΦlR(X, Y ) = Φl(X, Y ).

(5) ΦrR(X, Y ) = Φr(X, Y ).

(6) ΦR(X, Y ) = Φ(X, Y ).

Proof. Here we only prove (1), and the rest is similar.
(1) By Theorem 2.1(2), we have that

Gl(X, Y ) ⊆ GlR(X, Y ) = R(X, Y ) ∩Gl(X, Y ) ⊆ Gl(X, Y ),

which implies that GlR(X, Y ) = Gl(X, Y ). �

Theorem 3.2. (1) HGl(X) = Gl(X).

(2) HGr(X) = Gr(X).

(3) HG(X) = G(X).

(4) HΦl(X) = Φl(X).

(5) HΦr(X) = Φr(X).

(6) HΦ(X) = Φ(X).

Proof. Part (6) has been proved in [1, Theorem 2.2(2)], and parts (4) and (5) can
be proved similarly to it, so we omit the proofs of them here.

(1) From Theorem 2.10(1), we can get that

Gl(X) ⊆ HGl(X) = R(X) ∩ S(X) ∩Gl(X) ⊆ Gl(X),

which implies that HGl(X) = Gl(X).
Parts (2) and (3) can be proved similarly. �

Next, we compute the topological interiors of the classes of operators studied
in this paper. We begin by stating two lemmas which will be used repeatedly
throughout the sequel.

Lemma 3.3. Sets Gl(X, Y )\Gr(X, Y ) and Gr(X, Y )\Gl(X, Y ) are open.

Proof. Suppose that T ∈ Gl(X, Y )\Gr(X, Y ). Then there exists S ∈ Gr(Y,X)
such that ST = IX . For R ∈ B(X, Y ) such that ||R−T || < ||S||−1, we have that
||IX − SR|| ≤ ||S||||R− T || < 1, therefore U = SR ∈ G(X), so, U−1SR = IX . If
R ∈ G(X, Y ), then R(U−1S) = IY . Since U−1SR = IX , S(RU−1) = IX . Hence
RU−1 ∈ G(X, Y ). Since RU−1 = RU−1IX = RU−1ST = T , T ∈ G(X, Y ), a
contradiction. Hence Gl(X, Y )\Gr(X, Y ) is open.

We can prove similarly that Gr(X, Y )\Gl(X, Y ) is open. �

Lemma 3.4. Sets Φl(X, Y )\Φr(X, Y ) and Φr(X, Y )\Φl(X, Y ) are open.

Proof. Suppose that T ∈ Φl(X, Y )\Φr(X, Y ). Then there exist S ∈ Φr(Y,X) and
K1 ∈ K(X) such that ST = IX −K1. For R ∈ B(X, Y ) such that ||R − T || <
||S||−1, we have that ||IX − (SR + K1)|| ≤ ||S||||R − T || < 1, therefore U =
SR + K1 ∈ G(X), that is, U−1(SR + K1) = IX . Hence, U−1SR = IX − U−1K1,
thus R ∈ Φl(X, Y ). If R ∈ Φ(X, Y ), then there exists K2 ∈ K(Y ) such that
(RU−1)S = R(U−1S) = IY + K2. Since U−1SR = IX − U−1K1, S(RU−1) =
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IX − K1U
−1, hence RU−1 ∈ Φ(X, Y ). Since RU−1 = RU−1IX = RU−1(IX −

K1 +K1) = RU−1ST +RU−1K1 = (IY +K2)T +RU−1K1 = T +K2T +RU−1K1,
T ∈ Φ(X, Y ), a contradiction. Hence Φl(X, Y )\Φr(X, Y ) is open.

We can prove similarly that Φr(X, Y )\Φl(X, Y ) is open. �

By using a result of Goldberg [8, Theorem V.2.6], Schmoeger [16, Theorem 6]
proved that

int(R(X)) = Φl(X) ∪ Φr(X).

Moreover, noting that [8, Theorem V.2.6] also holds in the case that X and Y
are two different Banach spaces, we can get that

int(R(X, Y )) = Φl(X, Y ) ∪ Φr(X, Y ).

Parts (3) and (6) of the following theorem extend [18, Theorem 2.1] and [18,
Theorem 2.2(2)], respectively, to the case that X and Y are two different Banach
spaces.

Theorem 3.5. (1) int(GlR(X, Y )) = {T ∈ Φl(X, Y ) : ind(T ) ≤ 0}.
(2) int(GrR(X, Y )) = {T ∈ Φr(X, Y ) : ind(T ) ≥ 0}.
(3) int(GR(X, Y )) = {T ∈ Φ(X, Y ) : ind(T ) = 0}.
(4) int(ΦlR(X, Y )) = Φl(X, Y ).
(5) int(ΦrR(X, Y )) = Φr(X, Y ).
(6) int(ΦR(X, Y )) = Φ(X, Y ).

Proof. We will prove (1) and (4), omitting the similar proofs of the others.
(1) Since {T ∈ Φl(X, Y ) : ind(T ) ≤ 0} is open and {T ∈ Φl(X, Y ) : ind(T ) ≤

0} ⊆ GlR(X, Y ) (see (2.1)), we get that

{T ∈ Φl(X, Y ) : ind(T ) ≤ 0} ⊆ int(GlR(X, Y )).

For the converse inclusion, suppose that T ∈ int(GlR(X, Y )) = int(R(X, Y ) ∩
Gl(X, Y )), then T ∈ int(R(X, Y )) = Φl(X, Y ) ∪ Φr(X, Y ). Since T ∈ Gl(X, Y ),
there exists a sequence {Tn}∞n=1 ⊆ Gl(X, Y ) for which ||T − Tn|| → 0 (n → ∞).
We can claim that T ∈ Φl(X, Y ). If not, T /∈ Φl(X, Y ). Noting that T ∈
Φl(X, Y )∪Φr(X, Y ), we have T ∈ Φr(X, Y )\Φl(X, Y ). By Lemma 3.4, we know
that Tn ∈ Φr(X, Y )\Φl(X, Y ) for enough large n ∈ N, and this contradicts with
the fact that {Tn}∞n=1 ⊆ Gl(X, Y ) ⊆ Φl(X, Y ). From the continuation of the
index (cf. [10, Proposition 2.c.9]), we get that ind(T ) = ind(Tn) ≤ 0 for enough
large n ∈ N, therefore int(GlR(X, Y )) ⊆ {T ∈ Φl(X, Y ) : ind(T ) ≤ 0}.

Consequently, int(GlR(X, Y )) = {T ∈ Φl(X, Y ) : ind(T ) ≤ 0}.
(4) Since Φl(X, Y ) is open and Φl(X, Y ) ⊆ ΦlR(X, Y ), we get that Φl(X, Y ) ⊆

int(ΦlR(X, Y )).
For the converse inclusion, suppose that T ∈ int(ΦlR(X, Y )) = int(R(X, Y ) ∩

Φl(X, Y )). Then T ∈ int(R(X, Y )) = Φl(X, Y ) ∪ Φr(X, Y ). Since T ∈ Φl(X, Y ),
there exists a sequence {Tn}∞n=1 ⊆ Φl(X, Y ) such that ||T − Tn|| → 0 (n → ∞).
We can claim that T ∈ Φl(X, Y ). If not, T /∈ Φl(X, Y ). Noting that T ∈
Φl(X, Y )∪Φr(X, Y ), we have T ∈ Φr(X, Y )\Φl(X, Y ). By Lemma 3.4, we know
that Tn ∈ Φr(X, Y )\Φl(X, Y ) for enough large n ∈ N, and this contradicts with
the fact that {Tn}∞n=1 ⊆ Φl(X, Y ), therefore int(GlR(X, Y )) ⊆ Φl(X, Y ).

Consequently, int(ΦlR(X, Y )) = Φl(X, Y ). �
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Part (6) of the following theorem generalizes [1, Theorem 2.2(1)] by computing
precisely the topological interior of the class of the holomorphically decomposably
Fredholm operators.

Theorem 3.6. (1) int(HGl(X)) = Gl(X).
(2) int(HGr(X)) = Gr(X).
(3) int(HG(X)) = G(X).
(4) int(HΦl(X)) = (Gl(X) ∪Gr(X)) ∩ Φl(X).
(5) int(HΦr(X)) = (Gl(X) ∪Gr(X)) ∩ Φr(X).
(6) int(HΦ(X)) = (Gl(X) ∪Gr(X)) ∩ Φ(X).

Proof. We will prove (1) and (4), omitting the similar proofs of the others.
(1) SinceGl(X) is open andGl(X) ⊆ HGl(X), we get thatGl(X) ⊆ int(HGl(X)).
For the converse inclusion, suppose that T ∈ int(HGl(X)) = int(R(X)∩S(X)∩

Gl(X)). Then T ∈ int(R(X) ∩ S(X)) = Gl(X) ∪ Gr(X) by [17, Theorem 2(b)].

Since T ∈ Gl(X), there exists a sequence {Tn}∞n=1 ⊆ Gl(X) for which ||T−Tn|| →
0 (n → ∞). We can claim that T ∈ Gl(X). If not, T /∈ Gl(X). Noting that
T ∈ Gl(X) ∪Gr(X), we have T ∈ Gr(X)\Gl(X). By Lemma 3.3, we know that
Tn ∈ Gr(X)\Gl(X) for enough large n ∈ N, and this contradicts with the fact
that {Tn}∞n=1 ⊆ Gl(X), thus int(HGl(X)) ⊆ Gl(X).

Consequently, int(HGl(X)) = Gl(X).
(4) Since (Gl(X) ∪ Gr(X)) ∩ Φl(X) is open and (Gl(X) ∪ Gr(X)) ∩ Φl(X) ⊆

HΦl(X), we get that (Gl(X) ∪Gr(X)) ∩ Φl(X) ⊆ int(HΦl(X)).
For the converse inclusion, suppose that T ∈ int(HΦl(X)) = int(R(X)∩S(X)∩

Φl(X)). Then T ∈ int(R(X) ∩ S(X)) = Gl(X) ∪Gr(X). Since T ∈ Φl(X), there
exists a sequence {Tn}∞n=1 ⊆ Φl(X) for which ||Tn − T || → 0 (n → ∞). We can
claim that T ∈ Φl(X). If not, T /∈ Φl(X). Noting that T ∈ Gl(X) ∪ Gr(X) ⊆
Φl(X) ∪ Φr(X), we have T ∈ Φr(X)\Φl(X). By Lemma 3.4, we know that
Tn ∈ Φr(X)\Φl(X) for enough large n ∈ N, and this contradicts with the fact
that {Tn}∞n=1 ⊆ Φl(X), thus int(HΦl(X)) ⊆ (Gl(X) ∪Gr(X)) ∩ Φl(X).

Consequently, int(HΦl(X)) = (Gl(X) ∪Gr(X)) ∩ Φl(X). �
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