L^{1}-CONVERGENCE OF GREEDY ALGORITHM BY GENERALIZED WALSH SYSTEM

SERGO A. EPISKOPOSIAN

Communicated by P. E. Jorgensen

Abstract

In this paper we consider the generalized Walsh system and a problem L^{1} - convergence of greedy algorithm of functions after changing the values on small set.

1. Introduction and preliminaries

Let a denote a fixed integer, $a \geq 2$ and put $\omega_{a}=e^{\frac{2 \pi i}{a}}$. Now we will give the definitions of generalized Rademacher and Walsh systems [2].

Definition 1.1. The Rademacher system of order a is defined by

$$
\varphi_{0}(x)=\omega_{a}^{k} \quad \text { if } \quad x \in\left[\frac{k}{a}, \frac{k+1}{a}\right), \quad k=0,1, \cdots, a-1, \quad x \in[0,1)
$$

and for $n \geq 0$

$$
\varphi_{n}(x+1)=\varphi_{n}(x)=\varphi_{0}\left(a^{n} x\right) .
$$

Definition 1.2. The generalized Walsh system of order a is defined by

$$
\psi_{0}(x)=1,
$$

and if $n=\alpha_{1} a^{n_{1}}+\cdots+\alpha_{s} a^{n_{s}}$ where $n_{1}>\cdots>n_{s}$, then

$$
\psi_{n}(x)=\varphi_{n_{1}}^{\alpha_{1}}(x) \cdots \cdots \varphi_{n_{s}}^{\alpha_{s}}(x) .
$$

Date: Received: 27 September 2011; Accepted: 22 November 2011.
2010 Mathematics Subject Classification. Primary 42A65; Secondary 42A20.
Key words and phrases. generalized Walsh system, monotonic coefficients, greedy algorithm.

Let's denote the generalized Walsh system of order a by Ψ_{a}.
Note that Ψ_{2} is the classical Walsh system.
The basic properties of the generalized Walsh system of order a are obtained by Chrestenson, Pely, Fine, Young, Vatari, Vilenkin and others (see [2, 14, 15, 17]).

In this paper we consider L^{1} - convergence of greedy algorithm with respect to Ψ_{a} system. Now we present the definition of greedy algorithm.

Let X be a Banach space with a norm $\|\cdot\|=\|\cdot\|_{X}$ and a basis $\Phi=\left\{\phi_{k}\right\}_{k=1}^{\infty}$, $\left\|\phi_{k}\right\|_{X}=1, k=1,2, .$.

For a function $f \in X$ we consider the expansion

$$
f=\sum_{k=1}^{\infty} a_{k}(f) \phi_{k}
$$

Definition 1.3. Let an element $f \in X$ be given. Then the m-th greedy approximant of the function f with regard to the basis Φ is given by

$$
G_{m}(f, \phi)=\sum_{k \in \Lambda} a_{k}(f) \phi_{k},
$$

where $\Lambda \subset\{1,2, \cdots\}$ is a set of cardinality m such that

$$
\left|a_{n}(f)\right| \geq\left|a_{k}(f)\right|, \quad n \in \Lambda, \quad k \notin \Lambda
$$

In particular we'll say that the greedy approximant of $f \in L^{p}[0,1], p \geq 0$ converges with regard to the Ψ_{a}, if the sequence $G_{m}(x, f)$ converges to $f(t)$ in L^{p} norm. This new and very important direction invaded many mathematician's attention (see [3]-[6], [8, 9, 16]).

Körner [9] constructed an L^{2} function (then a continuous function) whose greedy algorithm with respect to trigonometric systems diverges almost everywhere.

Temlyakov in [16] constructed a function f that belongs to all $L^{p}, 1 \leq p<2$ (respectively $p>2$), whose greedy algorithm concerning trigonometric systems divergence in measure (respectively in $L^{p}, p>2$), e.i. the trigonometric system are not a quasi-greedy basis for L^{p} if $1<p<\infty$.

In [6] Gribonval and Nielsen proved that for any $1<p<\infty$ there exits a function $f(x) \in L^{p}[0,1)$ whose greedy algorithm with respect to $\Psi_{2^{-}}$classical Walsh system diverges in $L^{p}[0,1]$. Moreover, similar result for Ψ_{a} system follows from Corollary 2.3. (see [6]). Note also that in [4] and [5] this result was proved for $L^{1}[0,1]$.

The following question arises naturally: is it possible to change the values of any function f of class L^{1} on small set, so that a greedy algorithm of new modified function concerning Ψ_{a} system converges in the L^{1} norm?

The classical C-property of Luzin is well-known, according to which every measurable function can be converted into a continuous one be changing it on a set of arbitrarily small measure. This famous result of Luzin [10] dates back to 1912.

Note that Luzin's idea of modification of a function improving its properties was substantially developed later on.

In 1939, Men'shov [11] proved the following fundamental theorem.

Theorem (Men'shov's C-strong property). Let $f(x)$ be an a.e. finite measurable function on $[0,2 \pi]$. Then for each $\varepsilon>0$ one can define a continuous function $g(x)$ coinciding with $f(x)$ on a subset E of measure $|E|>2 \pi-\varepsilon$ such that its Fourier series with respect to the trigonometric system converges uniformly on [$0,2 \pi]$.

Further interesting results in this direction were obtained by many famous mathematicians (see for example [1, 12, 13]).

Particulary in 1991 Grigorian obtain the following result [7]:
Theorem (L^{1}-strong property). For each $\varepsilon>0$ there exits a measurable set $E \subset[0,2 \pi]$ of measure $|E|>2 \pi-\varepsilon$ such that for any function $f(x) \in L^{1}[0,2 \pi]$ one can find a function $g(x) \in L^{1}[0,2 \pi]$ coinciding with $f(x)$ on E so that its Fourier series with respect to the trigonometric system converges to $g(x)$ in the metric of $L^{1}[0,2 \pi]$.

In this paper we prove the following:
Theorem 1.4. For any $\varepsilon \in(0,1)$ and for any function $f \in L^{1}[0,1)$ there is a function $g \in L^{1}[0,1)$, with mes $\{x \in[0,1) ; g \neq f\}<\varepsilon$, such that the nonzero fourier coefficients by absolute values monotonically decreasing.

Theorem 1.5. For any $0<\varepsilon<1$ and each function $f \in L^{1}[0,1)$ one can find a function $g \in L^{1}[0,1)$, mes $\{x \in[0,1) ; g \neq f\}<\varepsilon$, such that its fourier series by Ψ_{a} system L^{1} convergence to $g(x)$ and the nonzero fourier coefficients by absolute values monotonically decreasing, i.e. the greedy algorithm by Ψ_{a} system L^{1}-convergence.

The Theorems 1.1 and 1.2 follows from next more general Theorem 1.3, which in itself is interesting:

Theorem 1.6. For any $0<\varepsilon<1$ there exists a measurable set $E \subset[0,1)$ with $|E|>1-\varepsilon$ and a series by Ψ_{a} system of the form

$$
\sum_{i=1}^{\infty} c_{i} \psi_{i}(x), \quad\left|c_{i}\right| \downarrow 0
$$

such that for any function $f \in L^{1}[0,1)$ one can find a function $g \in L^{1}[0,1)$,

$$
g(x)=f(x) ; \quad \text { if } \quad x \in E
$$

and the series of the form

$$
\sum_{n=1}^{\infty} \delta_{n} c_{n} \psi_{n}(x), \quad \text { where } \delta_{n}=0 \text { or } 1
$$

which convergence to $g(x)$ in $L^{1}[0,1)$ metric and

$$
\| \sum_{n=1}^{m} \delta_{n} c_{n} \psi_{n}\left(x\left\|_{1} \leq 12 \cdot\right\| f \|_{1}, \quad \forall m \geq 1\right.
$$

Remark 1.7. Theorems 1.6 for classical Walsh system Ψ_{2} was proved by Grigorian [8].

Remark 1.8. From Theorem 1.5 follows that generalized Walsh system Ψ_{a} has L^{1}-strong property.

2. BASIC LEMMAS

First we present some properties of Ψ_{a} system (see Definition 1.2).
Property 1. Each nth Rademacher function has period $\frac{1}{a^{n}}$ and

$$
\begin{equation*}
\varphi_{n}(x)=\text { const } \in \Omega_{a}=\left\{1, \omega_{a}, \omega_{a}^{2}, \cdots ., \omega_{a}^{a-1}\right\} \tag{2.1}
\end{equation*}
$$

if $x \in \Delta_{n+1}^{(k)}=\left[\frac{k}{a^{n+1}}, \frac{k+1}{a^{n+1}}\right), k=0, \cdots, a^{n+1}-1, n=1,2, \cdots .$.
It is also easily verified, that

$$
\left(\varphi_{n}(x)\right)^{k}=\left(\varphi_{n}(x)\right)^{m}, \quad \forall n, k \in \mathcal{N}, \text { where } m=k(\bmod a)
$$

Property 2. It is clear, that for any integer n the Walsh function $\psi_{n}(x)$ consists of a finite product of Rademacher functions and accepts values from Ω_{a}.

Property 3. Let $\omega_{a}=e^{\frac{2 \pi i}{a}}$. Then for any natural number m we have

$$
\sum_{k=0}^{a-1} \omega_{a}^{k \cdot m}=\left\{\begin{array}{l}
a, \text { if } m \equiv 0(\bmod a) \tag{2.2}\\
0, \text { if } m \neq 0(\bmod a)
\end{array}\right.
$$

Property 4. The generalized Walsh system $\Psi_{a}, a \geq 2$ is a complete orthonormal system in $L^{2}[0,1)$ and basis in $\left.L^{p}[0,1), p>1[14]\right)$.
Property 5. From definition 2 we have

$$
\psi_{i}(x) \cdot \psi_{j}\left(a^{s} x\right)=\psi_{j \cdot a^{s}+i}(x), \text { where } 0 \leq i, j<a^{s}
$$

and particulary

$$
\begin{equation*}
\psi_{a^{k}+j}(x)=\varphi_{k}(x) \cdot \psi_{j}(x), \quad \text { if } \quad 0 \leq j \leq a^{k}-1 \tag{2.3}
\end{equation*}
$$

Now for any $m=1,2, \cdots$ and $1 \leq k \leq a^{m}$ we put $\Delta_{m}^{(k)}=\left[\frac{k-1}{a^{m}}, \frac{k}{a^{m}}\right)$ and consider the following function

$$
I_{m}^{(k)}(x)=\left\{\begin{array}{l}
1, \text { if } x \in[0,1) \backslash \Delta_{m}^{(k)} \\
1-a^{m}, \text { if } x \in \Delta_{m}^{(k)}
\end{array}\right.
$$

and periodically extend these functions on R^{1} with period 1 .
By $\chi_{E}(x)$ we denote the characteristic function of the set E, i.e.

$$
\chi_{E}(x)= \begin{cases}1, & \text { if } x \in E \tag{2.4}\\ 0, & \text { if } x \notin E\end{cases}
$$

Then, clearly

$$
\begin{equation*}
I_{m}^{(k)}(x)=\psi_{0}(x)-a^{m} \cdot \chi_{\Delta_{m}^{(k)}}(x) \tag{2.5}
\end{equation*}
$$

and for the natural numbers $m \geq 1$ and $1 \leq i \leq a^{m}$

$$
\begin{gather*}
a_{i}\left(\chi_{\Delta_{m}^{(k)}}\right)=\int_{0}^{1} \chi_{\Delta_{m}^{(k)}}(x) \cdot \overline{\psi_{i}}(x) d x=\mathcal{A} \cdot \frac{1}{a^{m}}, \quad 0 \leq i<a^{m} . \tag{2.6}\\
b_{i}\left(I_{m}^{(k)}\right)=\int_{0}^{1} I_{m}^{(k)}(x) \overline{\psi_{i}}(x) d x=\left\{\begin{array}{l}
0, \text { if } i=0 \text { and } i \geq a^{k} \\
-\mathcal{A}, \text { if } 1 \leq i<a^{k}
\end{array}\right.
\end{gather*}
$$

where $\mathcal{A}=$ const $\in \Omega_{a}$ and $|\mathcal{A}|=1$.
Hence

$$
\begin{align*}
\chi_{\Delta_{m}^{(k)}}(x) & =\sum_{i=0}^{a^{k}-1} b_{i}\left(\chi_{\Delta_{m}^{(k)}}\right) \psi_{i}(x), \\
I_{m}^{(k)}(x) & =\sum_{i=1}^{a^{k}-1} a_{i}\left(I_{m}^{(k)}\right) \psi_{i}(x) \tag{2.7}
\end{align*}
$$

Lemma 2.1. For any numbers $\gamma \neq 0, N_{0}>1, \varepsilon \in(0,1)$ and interval by order a $\Delta=\Delta_{m}^{(k)}=\left[\frac{k-1}{a^{m}}, \frac{k}{a^{m}}\right), \quad i=1, \cdots, a^{m}$ there exists a measurable set $E \subset \Delta$ and a polynomial $P(x)$ by Ψ_{a} system of the form

$$
P(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{k}(x)
$$

which satisfy the conditions:

1) coefficients $\left\{c_{k}\right\}_{k=N_{0}}^{N}$ equal 0 or $-\mathcal{K} \cdot \gamma \cdot|\Delta|$, where $\mathcal{K}=$ const $\in \Omega_{a},|\mathcal{K}|=1$,

$$
|E|>(1-\varepsilon) \cdot|\Delta|
$$

$$
\begin{gather*}
P(x)= \begin{cases}\gamma, & \text { if } x \in E ; \\
0, & \text { if } x \notin \Delta .\end{cases} \\
\frac{1}{2} \cdot|\gamma| \cdot|\Delta|<\int_{0}^{1}|P(x)| d x<2 \cdot|\gamma| \cdot|\Delta| . \\
\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{k}(x)\right|<a \cdot|\gamma| \cdot \sqrt{\frac{|\Delta|}{\varepsilon}} .
\end{gather*}
$$

Proof. We take a natural numbers $\nu_{0} s$ so that

$$
\begin{equation*}
\nu_{0}=\left[\log _{a} \frac{1}{\varepsilon}\right]+1 ; \quad s=\left[\log _{a} N_{0}\right]+m \tag{2.8}
\end{equation*}
$$

Define the coefficients c_{n}, a_{i}, b_{j} and the function $P(x)$ in the following way:

$$
\begin{gather*}
P(x)=\gamma \cdot \chi_{\Delta_{m}^{(k)}}(x) \cdot I_{\nu_{0}}^{(1)}\left(a^{s} x\right), \quad x \in[0,1], \tag{2.9}\\
c_{n}=c_{n}(P)=\int_{0}^{1} P(x) \overline{\psi_{n}}(x) d x, \forall n \geq 0
\end{gather*}
$$

$$
a_{i}=a_{i}\left(\chi_{\Delta_{m}^{(k)}}\right), 0 \leq i<a^{m}, \quad b_{j}=b_{j}\left(I_{\nu_{0}}^{(1)}\right), 1 \leq j<a^{\nu_{0}} .
$$

Taking into account (2.1)-(2.2), (2.3)-(2.4), (2.6)-(2.7) for $P(x)$ we obtain

$$
\begin{aligned}
& P(x)=\gamma \cdot \sum_{i=0}^{a^{m}-1} a_{i} \psi_{i}(x) \cdot \sum_{j=1}^{a^{\nu_{0}}-1} b_{j} \psi_{j}\left(a^{s} x\right)= \\
= & \gamma \cdot \sum_{j=1}^{a^{\nu_{0}-1}} b_{j} \cdot \sum_{i=0}^{a^{m}-1} a_{i} \psi_{j \cdot a^{s}+i}(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{k}(x),
\end{aligned}
$$

where

$$
\begin{align*}
& c_{k}=c_{k}(P)=\left\{\begin{array}{l}
-\mathcal{K} \cdot \frac{\gamma}{a^{m}} \text { or } 0, \text { if } k \in\left[N_{0}, N\right] \\
0, \quad \text { if } k \notin\left[N_{0}, N\right],
\end{array}\right. \tag{2.10}\\
& \mathcal{K} \in \Omega_{a}, \quad|\mathcal{K}|=1, \quad N=a^{s+\nu_{0}}+a^{m}-a^{s}-1 . \tag{2.11}
\end{align*}
$$

Set

$$
E=\{x \in \Delta: P(x)=\gamma\}
$$

By (2.4), (2.5) and (2.9) we have

$$
\begin{aligned}
|E| & =a^{-m}\left(1-a^{-\nu_{0}}\right)>(1-\epsilon)|\Delta|, \\
P(x) & =\left\{\begin{array}{l}
\gamma, \text { if } x \in E, \\
\gamma\left(1-a^{\nu_{0}}\right), \text { if } x \in \Delta \backslash E, \\
0, \text { if } x \notin \Delta .
\end{array}\right.
\end{aligned}
$$

Hence and from (2.8) we get

$$
\int_{0}^{1}|P(x)| d x=2 \cdot|\gamma||\Delta| \cdot\left(1-a^{-\nu_{0}}\right)
$$

and taking into account that $a \geq 2$ we have

$$
\frac{1}{2} \cdot|\gamma| \cdot|\Delta|<\int_{0}^{1}|P(x)| d x<2 \cdot|\gamma| \cdot|\Delta| .
$$

From relations (2.8), (2.10) and (2.11) we obtain

$$
\begin{aligned}
& \max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{k}(x)\right| d x \\
< & {\left[\int_{0}^{1}|P(x)|^{2} d x\right]^{\frac{1}{2}} } \\
\leq & {\left[\sum_{k=N_{0}}^{N} c_{k}^{2}\right]^{\frac{1}{2}}=|\gamma| \cdot|\Delta| \cdot \sqrt{a^{\nu_{0}+s}+a^{m}}=|\gamma| \cdot \sqrt{|\Delta|} \cdot \sqrt{a^{\nu_{0}+1}} } \\
< & |\gamma| \cdot \sqrt{|\Delta|} \cdot \sqrt{\frac{a}{\varepsilon}} \\
< & a \cdot|\gamma| \cdot \sqrt{\frac{|\Delta|}{\varepsilon}} .
\end{aligned}
$$

Lemma 2.2. For any given numbers $N_{0}>1$, $\left(N_{0} \in \mathcal{N}\right), \varepsilon \in(0,1)$ and each function $f(x) \in L^{1}[0,1),\|f\|_{1}>0$ there exists a measurable set $E \subset[0,1)$, function $g(x) \in L^{1}[0,1)$ and a polynomial by Ψ_{a} system of the form

$$
P(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{n_{k}}(x), \quad n_{k} \uparrow
$$

satisfying the following conditions:
1)

$$
|E|>1-\varepsilon
$$

$$
\frac{1}{2} \int_{0}^{1}|f(x)| d x<\int_{0}^{1}|g(x)| d x<3 \int_{0}^{1}|f(x)| d x
$$

4)

$$
f(x)=g(x), \quad x \in E
$$

$$
\int_{0}^{1}|P(x)-g(x)| d x<\varepsilon
$$

$$
\varepsilon>\left|c_{k}\right| \geq\left|c_{k+1}\right|>0
$$

6)

$$
\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{n_{k}}(x)\right| d x<3 \int_{0}^{1}|f(x)| d x
$$

Proof. Consider the step function

$$
\begin{equation*}
\varphi(x)=\sum_{\nu=1}^{\nu_{0}} \gamma_{\nu} \cdot \chi_{\Delta_{\nu}}(x) \tag{2.12}
\end{equation*}
$$

where Δ_{ν} are a-dyadic, not crosse intervals of the form $\Delta_{m}^{(k)}=\left[\frac{k-1}{a^{m}}, \frac{k}{a^{m}}\right), k=$ $1,2, \cdots, a^{m}$ so that

$$
\begin{gather*}
0<\left|\gamma_{\nu}\right|^{2}\left|\Delta_{\nu}\right|<\frac{\varepsilon^{3}}{16 a^{2}} \cdot\left(\int_{0}^{1}|f(x)| d x\right)^{2} \tag{2.13}\\
0<\left|\gamma_{1}\right|\left|\Delta_{1}\right|<\cdots<\left|\gamma_{\nu}\right|\left|\Delta_{\nu}\right|<\cdots<\left|\gamma_{\nu_{0}}\right|\left|\Delta_{\nu_{0}}\right|<\frac{\varepsilon}{2} \\
\int_{0}^{1}|f(x)-\varphi(x)| d x<\min \left\{\frac{\varepsilon}{4} ; \frac{\varepsilon}{4} \int_{0}^{1}|f(x)| d x\right\} . \tag{2.14}
\end{gather*}
$$

Applying Lemma 2.1 successively, we can find the sets $E_{\nu} \subset[0,1)$ and a polynomial

$$
P_{\nu}(x)=\sum_{k=N_{\nu-1}}^{N_{\nu}-1} c_{k} \psi_{n_{k}}(x), \quad 1 \leq \nu \leq \nu_{0}
$$

which, for all $1 \leq \nu \leq \nu_{0}$, satisfy the following conditions:

$$
\begin{equation*}
\left|c_{k}\right|=\left|\gamma_{\nu}\right| \cdot\left|\Delta_{\nu}\right|, \quad k \in\left[N_{\nu-1}, N_{\nu}\right) \tag{2.15}
\end{equation*}
$$

$$
\begin{gather*}
\left|E_{\nu}\right|>(1-\varepsilon) \cdot\left|\Delta_{\nu}\right|, \tag{2.16}\\
P_{\nu}(x)=\left\{\begin{array}{ll}
\gamma_{\nu}: & x \in E_{\nu} \\
0 & : \\
\hline
\end{array}\right\} \Delta_{\nu}, \\
\frac{1}{2}\left|\gamma_{\nu}\right| \cdot\left|\Delta_{\nu}\right|<\int_{0}^{1}\left|P_{\nu}(x)\right| d x<2\left|\gamma_{\nu}\right| \cdot\left|\Delta_{\nu}\right| . \tag{2.17}\\
\max _{N_{\nu-1} \leq m \leq N_{\nu}} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{n_{k}}(x)\right|<a \cdot\left|\gamma_{\nu}\right| \cdot \sqrt{\frac{\left|\Delta_{\nu}\right|}{\varepsilon}} \tag{2.18}
\end{gather*}
$$

Define a set E, a function $g(x)$ and a polynomial $P(x)$ in the following away:

$$
\begin{gather*}
P(x)=\sum_{\nu=1}^{\nu_{0}} P_{\nu}(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{n_{k}}(x), \quad N=N_{\nu_{0}}-1 . \tag{2.19}\\
g(x)=P(x)+f(x)-\varphi(x) \tag{2.20}\\
E=\bigcup_{\nu=1}^{\nu_{0}} E_{\nu} \tag{2.21}
\end{gather*}
$$

From (2.12), (2.14), (2.16)-(2.17), (2.19)-(2.21) we have

$$
\begin{gathered}
|E|>1-\varepsilon \\
f(x)=g(x), \quad \text { for } x \in E \\
\frac{1}{2} \int_{0}^{1}|f(x)| d x<\int_{0}^{1}|g(x)| d x<3 \int_{0}^{1}|f(x)| d x .
\end{gathered}
$$

By (2), (2.14), (2.15) and (2.20) we get

$$
\begin{aligned}
& \int_{0}^{1}|P(x)-g(x)| d x=\int_{0}^{1}|f(x)-\varphi(x)| d x<\varepsilon \\
\varepsilon> & \left|c_{k}\right| \geq\left|c_{k+1}\right|>0, \text { for } k=N_{0}, N_{0}+1, \cdots, N-1
\end{aligned}
$$

That is, assertions 1)-5) of Lemma 2.2 actually hold. We now verify assertion 6). For any number $m, N_{0} \leq m \leq N$ we can find $j, 1 \leq j \leq \nu_{0}$ such that $N_{j-1}<m \leq N_{j}$. then by (2.24) and (2.30) we have

$$
\sum_{k=N_{0}}^{m} c_{k} \psi_{n_{k}}(x)=\sum_{n=1}^{j-1} P_{n}(x)+\sum_{k=N_{j-1}}^{m} c_{k} \psi_{n_{k}}(x)
$$

hence and from relations (2.13), (2.14), (2.17), (2.18) we obtain

$$
\begin{aligned}
& \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{n_{k}}(x)\right| d x \\
\leq & \sum_{\nu=1}^{\nu_{0}} \int_{0}^{1}\left|P_{\nu}(x)\right| d x+\int_{0}^{1}\left|\sum_{k=N_{j-1}}^{m} c_{k} \psi_{n_{k}}(x)\right| d x \\
< & 2 \int_{0}^{1}|\varphi(x)| d x+a \cdot\left|\gamma_{j}\right| \cdot \sqrt{\frac{\left|\Delta_{j}\right|}{\varepsilon}} \\
< & 3 \int_{0}^{1}|f(x)| d x
\end{aligned}
$$

3. Main Results

Proof. Let

$$
\begin{equation*}
\left\{f_{n}(x)\right\}_{n=1}^{\infty} \tag{3.1}
\end{equation*}
$$

be a sequence of all step functions, values and constancy interval endpoints of which are rational numbers. Applying Lemma 2.2 consecutively, we can find a sequences of functions $\left\{\bar{g}_{n}(x)\right\}$ of sets $\left\{E_{n}\right\}$ and a sequence of polynomials

$$
\bar{P}_{n}(x)=\sum_{k=N_{n-1}}^{N_{n}-1} c_{m_{k}} \psi_{m_{k}}(x), \quad N_{0}=1, \quad\left|c_{m_{k}}\right|>0
$$

which satisfy the conditions:

$$
\begin{gather*}
\left|E_{n}\right|>1-\varepsilon \cdot 4^{-8(n+2)} \tag{3.2}\\
f_{n}(x)=\bar{g}_{n}(x), \text { for all } x \in E_{n}, \tag{3.3}\\
\frac{1}{2} \int_{0}^{1}\left|f_{n}(x)\right| d x<\int_{0}^{1}\left|\bar{g}_{n}(x)\right| d x<3 \int_{0}^{1}\left|f_{n}(x)\right| d x . \tag{3.4}\\
\int_{0}^{1}\left|\bar{P}_{n}(x)-\bar{g}_{n}(x)\right| d x<4^{-8(n+2)} . \\
\max _{N_{n-1} \leq M \leq N_{n}} \int_{0}^{1}\left|\sum_{k=N_{n-1}}^{M} c_{m_{k}} \psi_{m_{k}}(x)\right| d x<3 \int_{0}^{1}\left|f_{n}(x)\right| d x . \tag{3.5}\\
\frac{1}{n}>\left|c_{m_{k}}\right|>\left|c_{m_{k+1}}\right|>\left|c_{m_{N_{n}}}\right|>0 . \tag{3.6}
\end{gather*}
$$

Set

$$
\sum_{k=1}^{\infty} c_{m_{k}} \psi_{m_{k}}(x)=\sum_{n=1}^{\infty} \bar{P}_{n}(x)=\sum_{n=1}^{\infty} \sum_{k=N_{n-1}}^{N_{n}-1} c_{m_{k}} \psi_{m_{k}}(x)
$$

and

$$
\begin{equation*}
E=\bigcap_{n=1}^{\infty} E_{n} . \tag{3.7}
\end{equation*}
$$

It is easy to see that (see (3.2)), $|E|>1-\varepsilon$.
Now we consider a series

$$
\sum_{i=1}^{\infty} c_{i} \psi_{i}(x)
$$

where $c_{i}=c_{m_{k}} \quad i \in\left[m_{k}, m_{k+1}\right)$. From (3.6) it follows that $\left|c_{i}\right| \downarrow 0$.
Let given any function $f(x) \in L^{1}[0,1)$ then we can choose a subsequence $\left\{f_{s_{n}}(x)\right\}_{n=1}^{\infty}$ from (3.1) such that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \int_{0}^{1}\left|\sum_{n=1}^{N} f_{s_{n}}(x)-f(x)\right| d x=0 \tag{3.8}\\
& \int_{0}^{1}\left|f_{s_{n}}(x)\right| d x \leq \epsilon \cdot 4^{-8(n+2)}, n \geq 2
\end{align*}
$$

where

$$
\begin{equation*}
\epsilon=\min \left\{\frac{\varepsilon}{2}, \int_{E}|f(x)| d x\right\} \tag{3.9}
\end{equation*}
$$

We set

$$
\begin{equation*}
g_{1}(x)=\bar{g}_{s_{1}}(x), \quad P_{1}(x)=\bar{P}_{s_{1}}(x)=\sum_{k=N_{s_{1}-1}}^{N_{s_{1}}-1} c_{m_{k}} \psi_{m_{k}}(x) \tag{3.10}
\end{equation*}
$$

It is easy to see that

$$
\int_{0}^{1}\left|f(x)-f_{k_{1}}(x)\right|<\frac{\epsilon}{2}
$$

Taking into account (3.4), (3.5) and (3.10) we have

$$
\max _{N_{s_{1}-1} \leq M \leq N_{s_{1}}} \int_{0}^{1}\left|\sum_{k=N_{s_{1}-1}}^{M} c_{m_{k}} \psi_{m_{k}}(x)\right| d x<3 \int_{0}^{1}\left|f_{s_{1}}(x)\right| d x<6 \int_{0}^{1}\left|g_{1}(x)\right| d x
$$

Then assume that numbers $\nu_{1}, \nu_{2}, \cdots, \nu_{q-1}\left(\nu_{1}=s_{1}\right)$, functions $g_{n}(x), f_{\nu_{n}}(x)$, $n=1,2, \cdots, q-1$ and polynomials

$$
P_{n}(x)=\sum_{k=M_{n}}^{\bar{M}_{n}} c_{m_{k}} \psi_{m_{k}}(x), \quad M_{n}=N_{\nu_{n}-1}, \quad \bar{M}_{n}=N_{\nu_{n}}-1
$$

are chosen in such a way that the following condition is satisfied:

$$
\begin{gather*}
g_{n}(x)=f_{s_{n}}(x), \quad x \in E_{\nu_{n}}, \quad 1 \leq n \leq q-1 \tag{3.11}\\
\int_{0}^{1}\left|g_{n}(x)\right| d x<4^{-3 n} \epsilon, \quad 1 \leq n \leq q-1 \\
\int_{0}^{1}\left|\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right| d x<4^{-8(n+1)} \epsilon, \quad 1 \leq n \leq q-1 \tag{3.12}
\end{gather*}
$$

$$
\begin{equation*}
\max _{M_{n} \leq M \leq \bar{M}_{n}} \int_{0}^{1}\left|\sum_{k=M_{n}}^{M} c_{m_{k}} \psi_{m_{k}}(x)\right| d x<4^{-3 n} \epsilon, \quad 1 \leq n \leq q-1 . \tag{3.13}
\end{equation*}
$$

We choose a function $f_{\nu_{q}}(x)$ from the sequence (3.1) such that

$$
\begin{equation*}
\int_{0}^{1}\left|f_{\nu_{q}}(x)-\left[f_{s_{q}}(x)-\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right]\right| d x<4^{-8(q+2)} \epsilon \tag{3.14}
\end{equation*}
$$

This with (3.8) imply

$$
\int_{0}^{1}\left|f_{\nu_{q}}(x)-\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right| d x<4^{-8 q-1} \epsilon
$$

and taking into account relation (3.14) we get

$$
\int_{0}^{1}\left|f_{\nu_{q}}(x)\right| d x<4^{-8 q} \epsilon
$$

We set

$$
\begin{equation*}
P_{q}(x)=\bar{P}_{\nu_{q}}(x)=\sum_{k=M_{q}}^{\bar{M}_{q}} c_{m_{k}} \psi_{m_{k}}(x), \tag{3.15}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{q}=N_{\nu_{q}-1}, \quad \bar{M}_{q}=N_{\nu_{q}}-1, \\
g_{q}(x)=f_{s_{q}}(x)+\left[\bar{g}_{\nu_{q}}(x)-f_{\nu_{q}}(x)\right] \tag{3.16}
\end{gather*}
$$

By (3.3)-(3.5), (3.12)-(3.16) we have

$$
\begin{align*}
& g_{q}(x)=f_{s_{q}}(x), \quad x \in E_{\nu_{q}} \tag{3.17}\\
& \int_{0}^{1}\left|g_{q}(x)\right| d x \tag{3.18}\\
& \leq \int_{0}^{1}\left|f_{\nu_{q}}(x)-\left[f_{s_{q}}(x)-\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right]\right| d x \\
&+\int_{0}^{1}\left|\bar{g}_{\nu_{q}}(x)\right| d x+\int_{0}^{1}\left|\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right| d x \\
&< 4^{-3 n} \epsilon
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{1}\left|\sum_{k=2}^{q}\left(P_{k}(x)-g_{k}(x)\right)\right| d x \\
\leq & \int_{0}^{1}\left|f_{\nu_{q}}(x)-\left[f_{s_{q}}(x)-\sum_{k=2}^{n}\left(P_{k}(x)-g_{k}(x)\right)\right]\right| d x \\
& \left.+\int_{0}^{1} \mid \bar{P}_{\nu_{q}}(x)-\bar{g}_{\nu_{q}}(x)\right) \mid d x \\
< & 4^{-8(n+1)} \epsilon \\
\max _{M_{q} \leq M \leq \bar{M}_{q}} & \int_{0}^{1}\left|\sum_{k=M_{q}}^{M} c_{m_{k}} \psi_{m_{k}}(x)\right| d x \leq 3 \int_{0}^{1}\left|f_{\nu_{q}}(x)\right| d x<4^{-3 n} \epsilon . \tag{3.19}
\end{align*}
$$

Thus, by induction we can choose the sequences of sets $\left\{E_{q}\right\}$, functions $\left\{g_{q}(x)\right\}$ and polynomials $\left\{P_{q}(x)\right\}$ such that conditions (3.17) - (3.19) are satisfied for all $q \geq 1$. Define a function $g(x)$ and a series in the following away:

$$
\begin{gather*}
g(x)=\sum_{n=1}^{\infty} g_{n}(x), \tag{3.20}\\
\sum_{n=1}^{\infty} \delta_{n} c_{n} \psi_{n}(x)=\sum_{n=1}^{\infty}\left[\sum_{k=M_{n}}^{\bar{M}_{n}} c_{m_{k}} \psi_{m_{k}}(x)\right], \tag{3.21}
\end{gather*}
$$

where

$$
\delta_{n}=\left\{\begin{array}{l}
1, \text { if } i=m_{k}, \quad \text { where } k \in \bigcup_{q=1}^{\infty}\left[M_{q}, \bar{M}_{q}\right] \\
0, \text { in the other case } .
\end{array}\right.
$$

Hence and from relations (3.4), (3.7), (3.11), (3.20),

$$
\begin{gather*}
g(x)=f(x), \quad x \in E, \quad g(x) \in L^{1}[0,1) \\
\frac{1}{2} \int_{0}^{1}|f(x)| d x<\int_{0}^{1}|g(x)| d x<4 \int_{0}^{1}|f(x)| d x \tag{3.22}
\end{gather*}
$$

Taking into account (3.15), (3.18)-(3.21) we obtain that the series (3.21) convergence to $g(x)$ in $L^{1}[0,1)$ metric and consequently is its Fourier series by Ψ_{a} system, $a \geq 2$.

From Definition 1.3, and from relations (3.9), (3.13), (3.22) for any natural number m there is N_{m} so that

$$
\begin{aligned}
\left\|G_{m}(g)\right\|_{1}=\left\|S_{m}(g)\right\|_{1} & =\int_{0}^{1}\left|\sum_{n=1}^{\infty} \delta_{n} c_{n} \psi_{n}(x)\right| d x \\
& \leq 4 \int_{0}^{1}|f(x)| d x \\
& \leq \sum_{n=1}^{\infty}\left(\max _{M_{n} \leq M \leq \bar{M}_{n}} \int_{0}^{1}\left|\sum_{k=M_{n}}^{M} c_{m_{k}} \psi_{m_{k}}(x)\right| d x\right) \\
& \leq 2 \int_{0}^{1}\left|g_{1}(x)\right| d x+\epsilon \cdot \sum_{n=2}^{\infty} 4^{-n} \\
& \leq 3 \int_{0}^{1}|g(x)| d x \leq 12 \int_{0}^{1}|f(x)| d x=12\|f\|_{1} .
\end{aligned}
$$

Acknowledgement. The author thanks Professor M.G. Grigorian for his attention to this paper.

References

1. F.G. Arutyunyan, On series in the Haar system (in Russian), Dokl. Akad. Nauk Arm. SSR 42 (1966), 134-140 .
2. H.E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 45 (1955), 17-31.
3. R.A. DeVore and V.N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1996), no. 2-3, 173-187.
4. S.A. Episkoposian, On the divergence of Greedy algorithms with respect to Walsh subsystems in L^{1}, Nonlinear Anal. 66 (2007), no. 8, 1782-1787.
5. S.A. Episkoposian, On greedy algorithms with respect to generalized Walsh system, Glob. J. Pure Appl. Math. 3 (2007), no. 1, $77-86$.
6. R. Gribonval and M. Nielsen, On the quasi-greedy property and uniformly bounded orthonormal systems, http://www.math.auc.dk/research/reports/R-2003-09.pdf.
7. M.G. Grigorian, On the convergence of Fourier series in the metric of L^{1}, Anal. Math. 17 (1991), no. 3, 211-237.
8. M.G. Grigorian, On the $L^{1}-$ greedy strong property of Walsh system, Russian Mathematics (Izvestiya VUZ. Matematika) 5 (2008), 26-37.
9. T.W. Körner,Divergence of decreasing rearranged Fourier series, Ann. of Math. 144 (1996), 167-180.
10. N. N. Luzin, On the fundamental theorem of the integral calculus(in Russian), Mat. Sb. 28 (1912), 266-294.
11. D.E. Menchoff, Sur la representation des fonctions measurables des series trigonometriques, Rec. Math. [Mat. Sbornik] N. S. 9(51) (1941), 667-692.
12. D.E. Menchoff, On Fourier series of integrable functions, Trudy Moskov. Mat. Obshch. 1 (1952), 5-38.
13. A.M. Olevskii, Modifikation of functions and Fourier series, (Russian) Uspekhi Mat. Nauk 40 (1985), no. 3 (243),157-193. (in Russian); Russian Math. Serveys, 40(1985), 187-224 (English transliation).
14. R.E.A.C. Paley, A remarkable set of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
15. J.J. Price, Walsh series and adjustment of functions on small sets, Illinois J. Math. 13 (1969), 131-136.
16. V.N. Temlyakov,Nonlinear Methods of Approximation, Found. Comput. Math. 3 (2003), no. 1, 33-107.
17. W. Young, Mean convergence of generalized Walsh - Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311-320.

Faculty of Applied Mathematics, State Engeniering University of Armenia, Yerevan, Teryan st.105, 375049, Armenia.

E-mail address: sergoep@ysu.am

