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Abstract. The study of operators satisfying Bishop’s property (β) is of sig-
nificant interest and is currently being done by a number of mathematicians
around the world. Recently Uchiyama and Tanahashi [Oper. Matrices 4 (2009),
517–524] showed that a paranormal operator has Bishop’s property (β). In
this paper we introduce a new class of operators which we call the class of k-
quasi-paranormal operators. An operator T is said to be a k-quasi-paranormal
operator if it satisfies ||T k+1x||2 ≤ ||T k+2x|||T kx|| for all x ∈ H where k is a
natural number. This class of operators contains the class of paranormal oper-
ators and the class of quasi-class A operators. We prove basic properties and
give a structure theorem of k-quasi-paranormal operators. We also show that
Bishop’s property (β) holds for this class of operators. Finally, we prove that
if E is the Riesz idempotent for a nonzero isolated point λ0 of the spectrum of
a k-quasi-paranormal operator T , then E is self-adjoint if and only if the null
space of T − λ0, ker(T − λ0) ⊆ ker(T ∗ − λ0).

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting on infinite
dimensional separable complex Hilbert space H. Let T be an operator in B(H).
An operator T is said to be positive (denoted T ≥ 0) if (Tx, x) ≥ 0 for all
x ∈ H. The operator T is said to be a p-hyponormal operator if and only if
(T ∗T )p ≥ (TT ∗)p for a positive number p. In [8], the class of log-hyponormal
operators is defined as follows: T is called log-hyponormal if it is invertible and
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satisfies log T ∗T ≥ log TT ∗. Class of p-hyponormal operators and class of log-
hyponormal operators were defined as extension class of hyponormal operators,
i.e., T ∗T ≥ TT ∗. It is well known that every p-hyponormal operator is a q-
hyponormal operator for p ≥ q > 0, by the Löwner-Heinz theorem ”A ≥ B ≥ 0
ensures Aα ≥ Bα for any α ∈ [0, 1]”, and every invertible p-hyponormal operator
is a log-hyponormal operator since log(·) is an operator monotone function. An
operator T is called paranormal if ||Tx||2 ≤ ||T 2x||‖x‖ for all x ∈ H. It is
also well known that there exists a hyponormal operator T such that T 2 is not
hyponormal (see [4]). In [2], Furuta, Ito and Yamazaki introduced the class A(k)
operators defined as follows: An operator T is called the A(k) class operator if(

T ∗|T |2kT
) 1

k+1 ≥ |T |2.
A(1) is called the class A, which includes the class of log-hyponormal operators
(see Theorem 2, in [2]) and is included in the class of paranormal operators (see
Theorem 1 in [2]). T ∈ B(H) is called the quasi-class A operator if T ∗|T 2|T ≥
T ∗|T |2T [5]. In general the following implications hold:

Hyponormal ⇒ p− Hyponormal ⇒ class A ⇒ paranormal;

Hyponormal ⇒ class A ⇒ quasi-class A.

It is shown [1] that T is paranormal if and only if

T ∗2T 2 − 2λT ∗T + λ2 ≥ 0 for all λ > 0.

In order to extend the class of paranormal operators and the class of quasi-class A
operators we introduce a new class of operators which we call k-quasi-paranormal
class of operators. An operator T is said to be a k-quasi-paranormal operator if
it satisfies the following inequality:

||T k+1x||2 ≤ ||T k+2x|||T kx||
for all x ∈ H where k is a natural number. A 1-Quasi-paranormal operator is
quasi-paranormal. It is shown that a quasi-class A operator is 1-quasi-paranormal
(see Proposition 2.3). By this we get the following implications:

Hyponormal ⇒ p− Hyponormal ⇒ class A ⇒ paranormal

⇒ quasi-paranormal ⇒ k − quasi-paranormal;

Hyponormal ⇒ class A ⇒ quasi-class A ⇒ quasi-paranormal

⇒ k − quasi-paranormal.

It is well known that a paranormal operator is normaloid. We give an example of a
k-quasi-paranormal operator which is not normaloid (see Section 3). An operator
T ∈ B(H) is said to have the single-valued extension property (or SVEP) if for
every open subset G of C and any analytic function f : G → H such that
(T − z)f(z) ≡ 0 on G, we have f(z) ≡ 0 on G. For T ∈ B(H) and x ∈ H,
the set ρT (x) is defined to consist of elements z0 ∈ C such that there exists an
analytic function f(z) defined in a neighborhood of z0, with values in H, which
verifies (T − z)f(z) = x, and it is called the local resolvent set of T at x. We
denote the complement of ρT (x) by σT (x), called the local spectrum of T at x,
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and define the local spectral subspace of T , HT (F ) = {x ∈ H : σT (x) ⊂ F} for
each subset F of C. An operator T ∈ B(H) is said to have the property (β) if for
every open subset G of C and every sequence fn : G → H of H-valued analytic
functions such that (T − z)fn(z) converges uniformly to 0 in norm on compact
subsets of G, fn(z) converges uniformly to 0 in norm on compact subsets of G.
An operator T ∈ B(H) is said to have Dunford’s property (C) if HT (F ) is closed
for each closed subset F of C. It is well known that

Property (β) ⇒ Dunford’s property(C) ⇒ SVEP.

Let µ ∈ isoσ(T ). Then the Riesz idempotent E of T with respect to µ is defined
by

E :=
1

2πi

∫
∂D

(µI − T )−1dµ,

where D is a closed disk centered at µ which contains no other points of the
spectrum of T . In [7], Stampfli showed that if T satisfies the growth condition
G1, then E is self-adjoint and E(H) = N(T − µ). Recently, Jeon and Kim
[5] and Uchiyama [10] obtained Stampfli’s result for quasi-class A operators and
paranormal operators. In general even though T is a paranormal operator, the
Riesz idempotent E of T with respect to µ ∈ isoσ(T ) is not necessary self-adjoint.
The study of operators satisfying Bishop’s property (β) is of significant interest
and is currently being done by a number of mathematicians around the world.
Recently in [9] the authors showed that a paranormal operator has Bishop’s
property (β). In this paper we prove basic properties and give a structure theorem
of k-quasi-paranormal operators and show that Bishop’s property (β) holds for
this class of operators. Finally we prove that if E is the Riesz idempotent for
a nonzero isolated point λ0 of the spectrum of a k-quasi-paranormal operator
T , then E is self-adjoint if and only if the null space of T − λ0, ker(T − λ0) ⊆
ker(T ∗ − λ0). Throughout this paper, let k be some natural number.

2. Main results

It is well known that for any operators A, B and C,

A∗A− 2λB∗B + λ2C∗C ≥ 0 for all λ > 0

⇐⇒ ||Bx||2 ≤ ||Ax||||Cx|| for all x ∈ H.

Thus we have the following proposition.

Proposition 2.1. An operator T ∈ B(H) is k-quasi-paranormal if and only if

T ∗k+2T k+2 − 2λT ∗k+1T k+1 + λ2T ∗kT k ≥ 0, for all λ > 0.

Proposition 2.2. Let M be a closed T -invariant subspace of H. Then the re-
striction T∣∣M of a k-quasi-paranormal operator T to M is a k-quasi-paranormal

operator.

Proof. Let

T =

(
A C
0 B

)
on H = M ⊕M⊥.
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Since T is k-quasi-paranormal, we have

T ∗k+2T k+2 − 2λT ∗k+1T k+1 + λ2T ∗kT k ≥ 0 for all λ > 0.

Hence(
A C
0 B

)∗k { (
A C
0 B

)∗2 (
A C
0 B

)2

− 2λ

(
A C
0 B

)∗(
A C
0 B

)
+ λ2

} (
A C
0 B

)k

≥ 0

for all λ > 0. Therefore(
A∗k(A∗2A2 − 2λA∗A + λ2)Ak E

F G

)
≥ 0,

for some operators E, F and G. Hence

A∗k(A∗2A2 − 2λA∗A + λ2)Ak ≥ 0,

for all λ > 0. This implies that A = T∣∣M is k-quasi-paranormal. �

Proposition 2.3. If T ∈ B(H) belongs to the quasi-class A, then T is 1-quasi-
paranormal.

Proof. Since T belongs to the quasi-class A, we have T ∗|T |2T ≤ T ∗|T 2|T . Let
x ∈ H. Then

||T 2x||2 = 〈T ∗T 2x, Tx〉 = 〈T ∗|T |2Tx, x〉
≤ 〈T ∗|T 2|Tx, x〉 ≤ |||T 2|Tx||||Tx|| = ||T 3x||||Tx||.

Therefore ||T 2x||2 ≤ ||T 3x|||Tx||. Hence T is 1-quasi-paranormal. �

For an operator T ∈ B(H), the closure of the range, the kernel and the spec-
trum of T are denoted by ranT , ker T and σ(T ), respectively.

Lemma 2.4. Let T ∈ B(H) be a k-quasi-paranormal operator, the range of T k

be not dense and

T =

(
T1 T2

0 T3

)
on H = ran T k ⊕ ker T ∗k.

Then T1 is paranormal, T k
3 = 0 and σ(T ) = σ(T1) ∪ {0}.

Proof. Let

T =

(
T1 T2

0 T3

)
on H = ran T k ⊕ ker T ∗k

and let P be the orthogonal projection onto ran T k. Since T is k-quasi-paranormal,
we have

P (T ∗2T 2 − 2λT ∗T + λ2)P ≥ 0 for all λ > 0.

Therefore

P (T ∗2T 2)P − 2λP (T ∗T )P + λ2 ≥ 0 for all λ > 0.

Hence T ∗21 T 2
1 − 2λT ∗1 T1 + λ2 ≥ 0 for all λ > 0. This shows that T1 is paranormal

on ran T k. Further, we have

〈T k
3 x2, y2〉 = 〈T k(I − P )x, (I − P )y〉 = 〈(I − P )x, T ∗k(I − P )y〉 = 0,
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for any x =

(
x1

x2

)
, y =

(
y1

y2

)
∈ H. Thus T ∗k3 = 0. Since σ(T3) = {0}, we have

σ(T ) = σ(T1) ∪ {0}.

�

As a consequence we obtain the following corollary.

Corollary 2.5. Let T ∈ B(H) be k-quasi-paranormal operator. If T1 is invertible,
then T is similar to a direct sum of a paranormal and a nilpotent operator.

Proof. Since by assumption 0 6∈ σ(T1), we have σ(T1) ∩ σ(T3) = ∅. Then there

exists an operator S such that T1S−ST3 = T2 [6]. Since

(
I S
0 I

)−1

=

(
I −S
0 I

)
,

hence

T =

(
T1 T2

0 T3

)
=

(
I S
0 I

)−1 (
T1 0
0 T3

) (
I S
0 I

)
.

�

Theorem 2.6. Let T ∈ B(H) be a k-quasi-paranormal operator. Then T has
Bishop’s property (β). Hence T has the single valued extension property.

Proof. If the range of T k is dense, then T is paranormal. Hence, T has Bishop’s
property (β) by [9]. So, we assume that the range of T k is not dense. By Lemma
2.1, we have

T =

(
T1 T2

0 T3

)
on H = ran T k ⊕ ker T ∗k.

Let D be an open subset of C and fn(z) be analytic functions on D to H. Assume
(T − z)fn(z) → 0 uniformly on every compact subset of D. Put fn(z) = fn1(z)⊕
fn2(z) on H = ran T k ⊕ ker T ∗k. Then we can write(

T1 − z T2

0 T3 − z

) (
fn1(z)
fn2(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
→ 0.

Since T3 is nilpotent, T3 has Bishop’s property (β). Hence fn2(z) → 0 uniformly
on every compact subset of D. Then (T1− z)fn1(z) → 0. Since T1 is paranormal,
T1 has Bishop’s property (β) by [9]. Hence fn1(z) → 0 uniformly on every compact
subset of D. Thus T has Bishop’s property (β). �

Theorem 2.7. Let T ∈ B(H) be k-quasi-paranormal operator. Write

T =

(
T1 T2

0 T3

)
on H = ran(T k)⊕ ker(T k∗). Then the following statements hold.

(1) σT3(x2) ⊂ σT (x1 ⊕ x2) and σT1(x1) = σT (x1 ⊕ 0) where x1 ⊕ x2 ∈ H.

(2) RT1(F )⊕ 0 ⊂ HT (F ) where RT1(F ) := {y ∈ ran(T k) : σT1(y) ⊂ F} for any
set F ⊂ C.
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Proof. Let T ∈ B(H) be k-quasi-paranormal. Write

T =

(
T1 T2

0 T3

)
on H = ran(T k)⊕ ker(T k∗), where T k = 0 and T1 is paranormal.

(1) Let x1 ⊕ x2 ∈ H = ran(T k) ⊕ ker(T k∗). If λ0 ∈ ρT (x1 ⊕ x2), then there
is an H-valued analytic function f defined on a neighborhood U of λ0 such that
(T − λ)f(λ) = x1 ⊕ x2 for all λ ∈ U . We can write f = f1 ⊕ f2 where f1 ∈
O(U, ran(T k)) and f2 ∈ O(U, ker(T k∗)), where O(U,H) denotes the Fréchet space
of H-valued analytic functions on U with respect to the uniform topology. Then
we get (

T1 − λ T2

0 T3 − λ

) (
f1(λ)
f2(λ)

)
≡

(
x1

x2

)
.

Thus (T3−λ)f2(λ) ≡ x2. Hence λ0 ∈ ρT3(x2). On the other hand, if λ0 ∈ ρT (x1⊕
0), then there is an H-valued analytic function g defined on a neighborhood U
of λ0 such that (T − λ)g(λ) = x1 ⊕ 0 for all λ ∈ U . If we set g = g1 ⊕ g2 where
g1 ∈ O(U, ran(T k)) and g2 ∈ O(U, ker(T k∗)), then we get(

T1 − λ T2

0 T3 − λ

) (
g1(λ)
g2(λ)

)
≡

(
x1

0

)
.

Thus (T1−λ)g1(λ)+T2g2(λ) ≡ x1 and (T3−λ)g2(λ) ≡ 0. Since T3 is nilpotent of
order k, it has the single-valued extension property, which implies that g2(λ) ≡ 0.
Thus (T1−λ)g1(λ) ≡ x1, and so λ0 ∈ ρT1(x1). Conversely, let λ0 ∈ ρT1(x1). Then

there exists a function g1 ∈ O(U, ran(T k)) for some neighborhood U of λ0 such
that (T1−λ)g1(λ) ≡ x1. Then (T −λ)g1(λ)⊕ 0 ≡ x1⊕ 0. Hence λ0 ∈ ρT (x1⊕ 0).

(2) If x1 ∈ RT1(F ), then σT1(x1) ⊂ F . Since σT1(x1) = σT (x1 ⊕ 0) by (1),
σT (x1 ⊕ 0) ⊂ F . Thus x1 ⊕ 0 ∈ HT (F ), and hence RT1(F )⊕ 0 ⊂ HT (F ). �

For T ∈ B(H), the smallest nonnegative integer p such that ker(T p) = ker(T p+1)
is called the ascent of T and denoted by p(T ). If no such integer exists, we set
p(T ) = ∞. The smallest nonnegative integer q such that ran(T q) = ran(T q+1)
is called the descent of T and denoted by q(T ). If no such integer exists, we
set q(T ) = ∞. In the following theorem we will give a necessary and sufficient
condition for the Riesz idempotent E of a k-quasi-paranormal operator to be
self-adjoint. For this we need the following lemma.

Lemma 2.8. Let T ∈ B(H) be k-quasi-paranormal. If µ is a non-zero isolated
point of σ(T ), then µ is a simple pole of the resolvent of T .

Proof. Assume that ran(T k) is dense. Then T is paranormal by Proposition 2.1
and [10] implies that µ is a simple pole of the resolvent of T . So we may assume
that T k does not have dense range. Then by Lemma 2.1 the operator T can be
decomposed as follows:

T =

(
A B
0 C

)
on H = ran(T k)⊕ ker(T ∗k),
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where A is paranormal and Ck = 0. Now if µ is a non-zero isolated point of σ(T ),
then µ ∈ isoσ(A) because σ(T ) = σ(A)∪{0}. Therefore µ is a simple pole of the
resolvent of A and the paranormal operator A can be written as follows:

A =

(
A1 0
0 A2

)
on ran(T k) = ker(A− µ)⊕ ran(A− µ),

where σ(A1) = {µ}. Therefore

T−µ =

0 0 B1

0 A2 − µ B2

0 0 C − µ

 =

(
0 D
0 F

)
on H = ker(A−µ)⊕ran(A−µ)⊕ker(T ∗k),

where F =

(
A2 − µ B2

0 C − µ

)
. We claim that F is an invertible operator on

ran(A− µ)⊕ ker(T ∗k). Indeed,
(1) A2 − µI is invertible, In fact, If not, then µ will be an isolated point in

σ(A2). Since A2 is paranormal, µ is an eigenvalue of A2 and so A2x = µx for
some non-zero vector x in ran(A− µI). On the other hand, Ax = A2x implying
x is in ker(A−µI). Hence x must be a zero vector. This contradicts leads to (1).

(2) F is invertible. Indeed, note that C − µI is invertible. Then by (1) and [4,
Problem 71], (A2 − µI)(C − µI) is invertible. It is easy to show that p(T − µ) =
q(T − µ) = 1. Hence µ is a simple pole of the resolvent of T . �

Theorem 2.9. Let T ∈ B(H) be k-quasi-paranormal. Assume 0 6= µ ∈ isoσ(T )
and E is the Riesz idempotent of T with respect to µ. Then E is self-adjoint if
and only if ker(T − µ) ⊆ ker(T ∗ − µ).

Proof. Since E is the Riesz idempotent of T with respect to µ and T is k-quasi-
paranormal, it results from Lemma 2.2 that

ran(E) = ker(T − µ) and ker(E) = ran(T − µ).

Assume that E is self-adjoint. Then E is an orthogonal projection. Hence
ran(E)⊥ = ker(E). Therefore we get ker(T−µ) ⊆ ker(T ∗−µ) by using the equal-
ity ran(T −µ) = ker(T ∗−µ)⊥. Conversely, assume that ker(T −µ) ⊆ ker(T ∗−µ).
Then ker(T − µ) and ran(T − µ) are orthogonal. Hence ran(E)⊥ = ker(E), and
so E is self-adjoint. �

Remark 2.10. It is well known that a paranormal operator is normaloid, that is,
||T || = r(T ) (spectral radius of T ). But a k-quasi-paranormal operator is not
normaloid. Indeed, Let T be the unilateral weighted shift operator defined on l2

by
Ten = αnen+1 for all n ≥ 0,

where {en}∞n=0 is the canonical orthonormal basis for l2. It is easy to see that T is
paranormal if and only if |α0| ≤ |α1| ≤ · · · and by a simple calculation we show
that T is a k-quasi-paranormal operator if and only if |αk+1| ≤ |αk+2| ≤ |αk+3| ≤
· · · , where α0, α1, ..., αk are arbitrary. Hence, if we take α0 = α1 = · · · = αk = 2
and αi = 1

2
for i ≥ k, then T is k-quasi-paranormal and ||T || = 2 6= 1 = r(T ).

Thus T is not normaloid.
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It is also well known that there exists a hyponormal operator T such that T 2 is
not a hyponormal operator (see [4]). In [3], Furuta showed that if T is paranormal,
then T n is also paranormal for every n ∈ N. The same property remains true for
k-quasi-paranormal operators. Indeed, Since T is k-quasi-paranormal, we have

||T k+1x||2 ≤ ||T k+2x||||T kx||.
Hence

||T k+1x||
||T kx||

≤ ||T k+2x||
||T k+1x||

≤ ||T k+3x||
||T k+2x||

≤ · · · .

Then
||T nk+1x||
||T nkx||

≤ ||T nk+2x||
||T nk+1x||

≤ · · · ≤ ||T nk+nx||
||T nk+n−1x||

≤ ||T nk+n+1x||
||T nk+nx||

≤ ||T nk+n+2x||
||T nk+n+1x||

≤ · · · ≤ ||T nk+2nx||
||T nk+2n−1x||

.

Hence
||T nk+1x||
||T nkx||

× ||T nk+2x||
||T nk+1x||

× · · · × ||T nk+nx||
||T nk+n−1x||

≤ ||T nk+n+1x||
||T nk+nx||

× ||T nk+n+2x||
||T nk+n+1x||

× · · · × ||T nk+2nx||
||T nk+2n−1x||

and
||T nk+nx||
||T nkx||

≤ ||T nk+2nx||
||T nk+nx||

.

This implies that T n is k-quasi-paranormal.
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