

Banach J. Math. Anal. 6 (2012), no. 1, 147–154

 ${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

BISHOP'S PROPERTY (β) AND RIESZ IDEMPOTENT FOR k-QUASI-PARANORMAL OPERATORS

SALAH MECHERI

Communicated by M. Fujii

ABSTRACT. The study of operators satisfying Bishop's property (β) is of significant interest and is currently being done by a number of mathematicians around the world. Recently Uchiyama and Tanahashi [Oper. Matrices 4 (2009), 517–524] showed that a paranormal operator has Bishop's property (β) . In this paper we introduce a new class of operators which we call the class of k-quasi-paranormal operators. An operator T is said to be a k-quasi-paranormal operator if it satisfies $||T^{k+1}x||^2 \leq ||T^{k+2}x|||T^kx||$ for all $x \in H$ where k is a natural number. This class of operators contains the class of paranormal operators and the class of quasi-class A operators. We prove basic properties and give a structure theorem of k-quasi-paranormal operators. We also show that Bishop's property (β) holds for this class of operators. Finally, we prove that if E is the Riesz idempotent for a nonzero isolated point λ_0 of the spectrum of a k-quasi-paranormal operator T, then E is self-adjoint if and only if the null space of $T - \lambda_0$, $\ker(T - \lambda_0) \subseteq \ker(T^* - \overline{\lambda_0})$.

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting on infinite dimensional separable complex Hilbert space H. Let T be an operator in B(H). An operator T is said to be positive (denoted $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in H$. The operator T is said to be a p-hyponormal operator if and only if $(T^*T)^p \geq (TT^*)^p$ for a positive number p. In [8], the class of log-hyponormal operators is defined as follows: T is called log-hyponormal if it is invertible and

Date: Received: 6 August 2011: Accepted: 10 November 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47; Secondary 47B30, 47B20.

Key words and phrases. k-quasi-paranormal operator, paranormal operator, Riesz idempotent, Bishop's property (β) ,.

148 S. MECHERI

satisfies $\log T^*T \geq \log TT^*$. Class of p-hyponormal operators and class of loghyponormal operators were defined as extension class of hyponormal operators, i.e., $T^*T \geq TT^*$. It is well known that every p-hyponormal operator is a q-hyponormal operator for $p \geq q > 0$, by the Löwner-Heinz theorem " $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in [0,1]$ ", and every invertible p-hyponormal operator is a log-hyponormal operator since $\log(\cdot)$ is an operator monotone function. An operator T is called paranormal if $||Tx||^2 \leq ||T^2x|| ||x||$ for all $x \in H$. It is also well known that there exists a hyponormal operator T such that T^2 is not hyponormal (see [4]). In [2], Furuta, Ito and Yamazaki introduced the class A(k) operators defined as follows: An operator T is called the A(k) class operator if

$$(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T|^2.$$

A(1) is called the class A, which includes the class of log-hyponormal operators (see Theorem 2, in [2]) and is included in the class of paranormal operators (see Theorem 1 in [2]). $T \in B(H)$ is called the quasi-class A operator if $T^*|T^2|T \geq T^*|T|^2T$ [5]. In general the following implications hold:

Hyponormal $\Rightarrow p$ – Hyponormal \Rightarrow class $A \Rightarrow$ paranormal; Hyponormal \Rightarrow class $A \Rightarrow$ quasi-class A.

It is shown [1] that T is paranormal if and only if

$$T^{*2}T^2 - 2\lambda T^*T + \lambda^2 \ge 0$$
 for all $\lambda > 0$.

In order to extend the class of paranormal operators and the class of quasi-class A operators we introduce a new class of operators which we call k-quasi-paranormal class of operators. An operator T is said to be a k-quasi-paranormal operator if it satisfies the following inequality:

$$||T^{k+1}x||^2 \le ||T^{k+2}x|||T^kx||$$

for all $x \in H$ where k is a natural number. A 1-Quasi-paranormal operator is quasi-paranormal. It is shown that a quasi-class A operator is 1-quasi-paranormal (see Proposition 2.3). By this we get the following implications:

It is well known that a paranormal operator is normaloid. We give an example of a k-quasi-paranormal operator which is not normaloid (see Section 3). An operator $T \in B(H)$ is said to have the single-valued extension property (or SVEP) if for every open subset G of $\mathbb C$ and any analytic function $f: G \to H$ such that $(T-z)f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on G. For $T \in B(H)$ and $x \in H$, the set $\rho_T(x)$ is defined to consist of elements $z_0 \in \mathbb C$ such that there exists an analytic function f(z) defined in a neighborhood of z_0 , with values in H, which verifies (T-z)f(z) = x, and it is called the local resolvent set of T at x. We denote the complement of $\rho_T(x)$ by $\sigma_T(x)$, called the local spectrum of T at x,

and define the local spectral subspace of T, $H_T(F) = \{x \in H : \sigma_T(x) \subset F\}$ for each subset F of \mathbb{C} . An operator $T \in B(H)$ is said to have the property (β) if for every open subset G of \mathbb{C} and every sequence $f_n : G \to H$ of H-valued analytic functions such that $(T-z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of G, $f_n(z)$ converges uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have Dunford's property (C) if $H_T(F)$ is closed for each closed subset F of \mathbb{C} . It is well known that

Property $(\beta) \Rightarrow \text{Dunford's property}(C) \Rightarrow \text{SVEP}.$

Let $\mu \in iso\sigma(T)$. Then the Riesz idempotent E of T with respect to μ is defined by

$$E := \frac{1}{2\pi i} \int_{\partial D} (\mu I - T)^{-1} d\mu,$$

where D is a closed disk centered at μ which contains no other points of the spectrum of T. In [7], Stampfli showed that if T satisfies the growth condition G_1 , then E is self-adjoint and $E(H) = N(T - \mu)$. Recently, Jeon and Kim [5] and Uchiyama [10] obtained Stampfli's result for quasi-class A operators and paranormal operators. In general even though T is a paranormal operator, the Riesz idempotent E of T with respect to $\mu \in \text{iso}\sigma(T)$ is not necessary self-adjoint. The study of operators satisfying Bishop's property (β) is of significant interest and is currently being done by a number of mathematicians around the world. Recently in [9] the authors showed that a paranormal operator has Bishop's property (β) . In this paper we prove basic properties and give a structure theorem of k-quasi-paranormal operators and show that Bishop's property (β) holds for this class of operators. Finally we prove that if E is the Riesz idempotent for a nonzero isolated point λ_0 of the spectrum of a k-quasi-paranormal operator T, then E is self-adjoint if and only if the null space of $T - \lambda_0$, $\ker(T - \lambda_0) \subseteq \ker(T^* - \overline{\lambda_0})$. Throughout this paper, let k be some natural number.

2. Main results

It is well known that for any operators A, B and C,

$$A^*A - 2\lambda B^*B + \lambda^2 C^*C \ge 0$$
 for all $\lambda > 0$
 $\iff ||Bx||^2 \le ||Ax|| ||Cx||$ for all $x \in H$.

Thus we have the following proposition.

Proposition 2.1. An operator $T \in B(H)$ is k-quasi-paranormal if and only if $T^{*k+2}T^{k+2} - 2\lambda T^{*k+1}T^{k+1} + \lambda^2 T^{*k}T^k \ge 0$, for all $\lambda > 0$.

Proposition 2.2. Let M be a closed T-invariant subspace of H. Then the restriction $T_{\mid M}$ of a k-quasi-paranormal operator T to M is a k-quasi-paranormal operator.

Proof. Let

$$T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$
 on $H = M \oplus M^{\perp}$.

S. MECHERI

Since T is k-quasi-paranormal, we have

$$T^{*k+2}T^{k+2} - 2\lambda T^{*k+1}T^{k+1} + \lambda^2 T^{*k}T^k \ge 0$$
 for all $\lambda > 0$.

Hence

150

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{*k} \left\{ \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{*2} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^2 - 2\lambda \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^* \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} + \lambda^2 \right\} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^k \ge 0$$

for all $\lambda > 0$. Therefore

$$\begin{pmatrix} A^{*k}(A^{*2}A^2 - 2\lambda A^*A + \lambda^2)A^k & E \\ F & G \end{pmatrix} \ge 0,$$

for some operators E, F and G. Hence

$$A^{*k}(A^{*2}A^2 - 2\lambda A^*A + \lambda^2)A^k \ge 0,$$

for all $\lambda > 0$. This implies that $A = T_{|_M}$ is k-quasi-paranormal. \square

Proposition 2.3. If $T \in B(H)$ belongs to the quasi-class A, then T is 1-quasi-paranormal.

Proof. Since T belongs to the quasi-class A, we have $T^*|T|^2T \leq T^*|T^2|T$. Let $x \in H$. Then

$$\begin{split} ||T^2x||^2 &= \langle T^*T^2x, Tx \rangle = \langle T^*|T|^2Tx, x \rangle \\ &\leq \langle T^*|T^2|Tx, x \rangle \leq |||T^2|Tx||||Tx|| = ||T^3x||||Tx||. \end{split}$$

Therefore $||T^2x||^2 \le ||T^3x|||Tx||$. Hence T is 1-quasi-paranormal.

For an operator $T \in B(\underline{H})$, the closure of the range, the kernel and the spectrum of T are denoted by $\overline{\operatorname{ran} T}$, ker T and $\sigma(T)$, respectively.

Lemma 2.4. Let $T \in B(H)$ be a k-quasi-paranormal operator, the range of T^k be not dense and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{\operatorname{ran} T^k} \oplus \ker T^{*k}$.

Then T_1 is paranormal, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Let

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{\operatorname{ran} T^k} \oplus \ker T^{*k}$

and let P be the orthogonal projection onto $\overline{\operatorname{ran}\,T^k}$. Since T is k-quasi-paranormal, we have

$$P(T^{*2}T^2 - 2\lambda T^*T + \lambda^2)P \ge 0$$
 for all $\lambda > 0$.

Therefore

$$P(T^{*2}T^2)P - 2\lambda P(T^*T)P + \lambda^2 \ge 0$$
 for all $\lambda > 0$.

Hence $T_1^{*2}T_1^2 - 2\lambda T_1^*T_1 + \lambda^2 \ge 0$ for all $\lambda > 0$. This shows that T_1 is paranormal on $\overline{\operatorname{ran} T^k}$. Further, we have

$$\langle T_3^k x_2, y_2 \rangle = \langle T^k (I - P) x, (I - P) y \rangle = \langle (I - P) x, T^{*k} (I - P) y \rangle = 0,$$

for any
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in H$. Thus $T_3^{*k} = 0$. Since $\sigma(T_3) = \{0\}$, we have
$$\sigma(T) = \sigma(T_1) \cup \{0\}.$$

As a consequence we obtain the following corollary.

Corollary 2.5. Let $T \in B(H)$ be k-quasi-paranormal operator. If T_1 is invertible, then T is similar to a direct sum of a paranormal and a nilpotent operator.

Proof. Since by assumption $0 \notin \sigma(T_1)$, we have $\sigma(T_1) \cap \sigma(T_3) = \emptyset$. Then there exists an operator S such that $T_1S - ST_3 = T_2$ [6]. Since $\begin{pmatrix} I & S \\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} I & -S \\ 0 & I \end{pmatrix}$, hence

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} = \begin{pmatrix} I & S \\ 0 & I \end{pmatrix}^{-1} \begin{pmatrix} T_1 & 0 \\ 0 & T_3 \end{pmatrix} \begin{pmatrix} I & S \\ 0 & I \end{pmatrix}.$$

Theorem 2.6. Let $T \in B(H)$ be a k-quasi-paranormal operator. Then T has Bishop's property (β) . Hence T has the single valued extension property.

Proof. If the range of T^k is dense, then T is paranormal. Hence, T has Bishop's property (β) by [9]. So, we assume that the range of T^k is not dense. By Lemma 2.1, we have

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{\operatorname{ran} T^k} \oplus \ker T^{*k}$.

Let D be an open subset of \mathbb{C} and $f_n(z)$ be analytic functions on D to H. Assume $(T-z)f_n(z) \to 0$ uniformly on every compact subset of D. Put $f_n(z) = f_{n1}(z) \oplus f_{n2}(z)$ on $H = \overline{\operatorname{ran} T^k} \oplus \ker T^{*k}$. Then we can write

$$\begin{pmatrix} T_1 - z & T_2 \\ 0 & T_3 - z \end{pmatrix} \begin{pmatrix} f_{n1}(z) \\ f_{n2}(z) \end{pmatrix} = \begin{pmatrix} (T_1 - z)f_{n1}(z) + T_2f_{n2}(z) \\ (T_3 - z)f_{n2}(z) \end{pmatrix} \to 0.$$

Since T_3 is nilpotent, T_3 has Bishop's property (β) . Hence $f_{n2}(z) \to 0$ uniformly on every compact subset of D. Then $(T_1 - z)f_{n1}(z) \to 0$. Since T_1 is paranormal, T_1 has Bishop's property (β) by [9]. Hence $f_{n1}(z) \to 0$ uniformly on every compact subset of D. Thus T has Bishop's property (β) .

Theorem 2.7. Let $T \in B(H)$ be k-quasi-paranormal operator. Write

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$

on $H = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{k*})$. Then the following statements hold.

- (1) $\sigma_{T_3}(x_2) \subset \sigma_T(x_1 \oplus x_2)$ and $\sigma_{T_1}(x_1) = \sigma_T(x_1 \oplus 0)$ where $x_1 \oplus x_2 \in H$.
- (2) $R_{T_1}(F) \oplus 0 \subset H_T(F)$ where $R_{T_1}(F) := \{ y \in \overline{\operatorname{ran}(T^k)} : \sigma_{T_1}(y) \subset F \}$ for any set $F \subset \mathbb{C}$.

Proof. Let $T \in B(H)$ be k-quasi-paranormal. Write

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$

on $H = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{k*})$, where $T^k = 0$ and T_1 is paranormal.

(1) Let $x_1 \oplus x_2 \in H = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{k*})$. If $\lambda_0 \in \rho_T(x_1 \oplus x_2)$, then there is an H-valued analytic function f defined on a neighborhood U of λ_0 such that $(T - \underline{\lambda})f(\underline{\lambda}) = x_1 \oplus x_2$ for all $\lambda \in U$. We can write $f = f_1 \oplus f_2$ where $f_1 \in O(U, \overline{\operatorname{ran}(T^k)})$ and $f_2 \in O(U, \ker(T^{k*}))$, where O(U, H) denotes the Fréchet space of H-valued analytic functions on U with respect to the uniform topology. Then we get

$$\begin{pmatrix} T_1 - \lambda & T_2 \\ 0 & T_3 - \lambda \end{pmatrix} \begin{pmatrix} f_1(\lambda) \\ f_2(\lambda) \end{pmatrix} \equiv \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Thus $(T_3 - \lambda)f_2(\lambda) \equiv x_2$. Hence $\lambda_0 \in \rho_{T_3}(x_2)$. On the other hand, if $\lambda_0 \in \rho_T(x_1 \oplus 0)$, then there is an H-valued analytic function g defined on a neighborhood U of λ_0 such that $(T - \lambda)g(\lambda) = x_1 \oplus 0$ for all $\lambda \in U$. If we set $g = g_1 \oplus g_2$ where $g_1 \in O(U, \operatorname{ran}(T^k))$ and $g_2 \in O(U, \ker(T^{k*}))$, then we get

$$\begin{pmatrix} T_1 - \lambda & T_2 \\ 0 & T_3 - \lambda \end{pmatrix} \begin{pmatrix} g_1(\lambda) \\ g_2(\lambda) \end{pmatrix} \equiv \begin{pmatrix} x_1 \\ 0 \end{pmatrix}.$$

Thus $(T_1 - \lambda)g_1(\lambda) + T_2g_2(\lambda) \equiv x_1$ and $(T_3 - \lambda)g_2(\lambda) \equiv 0$. Since T_3 is nilpotent of order k, it has the single-valued extension property, which implies that $g_2(\lambda) \equiv 0$. Thus $(T_1 - \lambda)g_1(\lambda) \equiv x_1$, and so $\lambda_0 \in \rho_{T_1}(x_1)$. Conversely, let $\lambda_0 \in \rho_{T_1}(x_1)$. Then there exists a function $g_1 \in O(U, \overline{\operatorname{ran}(T^k)})$ for some neighborhood U of λ_0 such that $(T_1 - \lambda)g_1(\lambda) \equiv x_1$. Then $(T - \lambda)g_1(\lambda) \oplus 0 \equiv x_1 \oplus 0$. Hence $\lambda_0 \in \rho_T(x_1 \oplus 0)$.

(2) If $x_1 \in R_{T_1}(F)$, then $\sigma_{T_1}(x_1) \subset F$. Since $\sigma_{T_1}(x_1) = \sigma_T(x_1 \oplus 0)$ by (1), $\sigma_T(x_1 \oplus 0) \subset F$. Thus $x_1 \oplus 0 \in H_T(F)$, and hence $R_{T_1}(F) \oplus 0 \subset H_T(F)$.

For $T \in B(H)$, the smallest nonnegative integer p such that $\ker(T^p) = \ker(T^{p+1})$ is called the ascent of T and denoted by p(T). If no such integer exists, we set $p(T) = \infty$. The smallest nonnegative integer q such that $\operatorname{ran}(T^q) = \operatorname{ran}(T^{q+1})$ is called the descent of T and denoted by q(T). If no such integer exists, we set $q(T) = \infty$. In the following theorem we will give a necessary and sufficient condition for the Riesz idempotent E of a k-quasi-paranormal operator to be self-adjoint. For this we need the following lemma.

Lemma 2.8. Let $T \in B(H)$ be k-quasi-paranormal. If μ is a non-zero isolated point of $\sigma(T)$, then μ is a simple pole of the resolvent of T.

Proof. Assume that $ran(T^k)$ is dense. Then T is paranormal by Proposition 2.1 and [10] implies that μ is a simple pole of the resolvent of T. So we may assume that T^k does not have dense range. Then by Lemma 2.1 the operator T can be decomposed as follows:

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $H = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k})$,

where A is paranormal and $C^k = 0$. Now if μ is a non-zero isolated point of $\sigma(T)$, then $\mu \in \text{iso}\sigma(A)$ because $\sigma(T) = \sigma(A) \cup \{0\}$. Therefore μ is a simple pole of the resolvent of A and the paranormal operator A can be written as follows:

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$
 on $\overline{\operatorname{ran}(T^k)} = \ker(A - \mu) \oplus \operatorname{ran}(A - \mu)$,

where $\sigma(A_1) = {\mu}$. Therefore

$$T - \mu = \begin{pmatrix} 0 & 0 & B_1 \\ 0 & A_2 - \mu & B_2 \\ 0 & 0 & C - \mu \end{pmatrix} = \begin{pmatrix} 0 & D \\ 0 & F \end{pmatrix} \text{ on } H = \ker(A - \mu) \oplus \operatorname{ran}(A - \mu) \oplus \ker(T^{*k}),$$

where $F = \begin{pmatrix} A_2 - \mu & B_2 \\ 0 & C - \mu \end{pmatrix}$. We claim that F is an invertible operator on $\operatorname{ran}(A - \mu) \oplus \ker(T^{*k})$. Indeed,

- (1) $A_2 \mu I$ is invertible, In fact, If not, then μ will be an isolated point in $\sigma(A_2)$. Since A_2 is paranormal, μ is an eigenvalue of A_2 and so $A_2x = \mu x$ for some non-zero vector x in $\operatorname{ran}(A \mu I)$. On the other hand, $Ax = A_2x$ implying x is in $\ker(A \mu I)$. Hence x must be a zero vector. This contradicts leads to (1).
- (2) F is invertible. Indeed, note that $C \mu I$ is invertible. Then by (1) and [4, Problem 71], $(A_2 \mu I)(C \mu I)$ is invertible. It is easy to show that $p(T \mu) = q(T \mu) = 1$. Hence μ is a simple pole of the resolvent of T.

Theorem 2.9. Let $T \in B(H)$ be k-quasi-paranormal. Assume $0 \neq \mu \in \text{iso}\sigma(T)$ and E is the Riesz idempotent of T with respect to μ . Then E is self-adjoint if and only if $\ker(T - \mu) \subseteq \ker(T^* - \overline{\mu})$.

Proof. Since E is the Riesz idempotent of T with respect to μ and T is k-quasi-paranormal, it results from Lemma 2.2 that

$$ran(E) = ker(T - \mu)$$
 and $ker(E) = ran(T - \mu)$.

Assume that E is self-adjoint. Then E is an orthogonal projection. Hence $\operatorname{ran}(E)^{\perp} = \ker(E)$. Therefore we get $\ker(T - \mu) \subseteq \ker(T^* - \overline{\mu})$ by using the equality $\operatorname{ran}(T - \mu) = \ker(T^* - \overline{\mu})^{\perp}$. Conversely, assume that $\ker(T - \mu) \subseteq \ker(T^* - \overline{\mu})$. Then $\ker(T - \mu)$ and $\operatorname{ran}(T - \mu)$ are orthogonal. Hence $\operatorname{ran}(E)^{\perp} = \ker(E)$, and so E is self-adjoint.

Remark 2.10. It is well known that a paranormal operator is normaloid, that is, ||T|| = r(T) (spectral radius of T). But a k-quasi-paranormal operator is not normaloid. Indeed, Let T be the unilateral weighted shift operator defined on l^2 by

$$Te_n = \alpha_n e_{n+1}$$
 for all $n \ge 0$,

where $\{e_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis for l^2 . It is easy to see that T is paranormal if and only if $|\alpha_0| \leq |\alpha_1| \leq \cdots$ and by a simple calculation we show that T is a k-quasi-paranormal operator if and only if $|\alpha_{k+1}| \leq |\alpha_{k+2}| \leq |\alpha_{k+3}| \leq \cdots$, where $\alpha_0, \alpha_1, ..., \alpha_k$ are arbitrary. Hence, if we take $\alpha_0 = \alpha_1 = \cdots = \alpha_k = 2$ and $\alpha_i = \frac{1}{2}$ for $i \geq k$, then T is k-quasi-paranormal and $||T|| = 2 \neq 1 = r(T)$. Thus T is not normaloid.

It is also well known that there exists a hyponormal operator T such that T^2 is not a hyponormal operator (see [4]). In [3], Furuta showed that if T is paranormal, then T^n is also paranormal for every $n \in \mathbb{N}$. The same property remains true for k-quasi-paranormal operators. Indeed, Since T is k-quasi-paranormal, we have

$$||T^{k+1}x||^2 \le ||T^{k+2}x|| ||T^kx||.$$

$$||T^{k+1}x|| \leq \frac{||T^{k+2}x||}{||T^{k+1}x||} \leq \frac{||T^{k+3}x||}{||T^{k+2}x||} \leq \cdots$$
 Then
$$\frac{||T^{nk+1}x||}{||T^{nk}x||} \leq \frac{||T^{nk+2}x||}{||T^{nk+1}x||} \leq \cdots \leq \frac{||T^{nk+n}x||}{||T^{nk+n-1}x||}$$

$$\leq \frac{||T^{nk+n+1}x||}{||T^{nk+n+1}x||} \leq \frac{||T^{nk+n+2}x||}{||T^{nk+n+2}x||} \leq \cdots \leq \frac{||T^{nk+2n}x||}{||T^{nk+2n}x||}$$
 Hence
$$\frac{||T^{nk+1}x||}{||T^{nk}x||} \times \frac{||T^{nk+2}x||}{||T^{nk+n+1}x||} \times \cdots \times \frac{||T^{nk+n}x||}{||T^{nk+n-1}x||}$$

$$\leq \frac{||T^{nk+n}x||}{||T^{nk+n+1}x||} \times \frac{||T^{nk+n+2}x||}{||T^{nk+n+2}x||} \times \cdots \times \frac{||T^{nk+2n}x||}{||T^{nk+2n-1}x||}$$
 and
$$\frac{||T^{nk+n}x||}{||T^{nk+n}x||} \leq \frac{||T^{nk+2n}x||}{||T^{nk+2n}x||} .$$

This implies that T^n is k-quasi-paranormal.

Acknowledgments. The authors wish to thank the referee for a careful reading and valuable comments for the original draft.

References

- 1. T. Ando, Operators with a norm conditions, Acta. Sci. Math (Szeged). 33 (1972), 169–178.
- T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), 389–403.
- 3. T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598.
- 4. P.R. Halmos, textit A Hilbert space problem book, Van Nostrand, Princeton. 1967.
- 5. In Ho Jean and In Hyoum Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl. 418(2006), 854–862.
- 6. M.A. Rosenblum, On the operator equation BX XA = Q, Duke Math. J. **23** (1956), 263–269.
- J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476.
- 8. K. Tanahashi, *Putnam's Inequality for* log-hyponormal operators, Integral Equations Operator Theory **43** (2004), 364–372.
- 9. A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 4 (2009), 517–524.
- 10. A. Uchiyama, On isolated points of the spectrum of paranomal operators, Integral Equations and Operator Theory. **55**(2006), 145–151.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, TAIBAH UNIVERSITY, P. O. BOX 30002, AL MADINAH AL MUNAWARAH, SAUDI ARABIA.

 $E ext{-}mail\ address: mecherisalah@hotmail.com}$