
Banach J. Math. Anal. 6 (2012), no. 1, 139–146

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)
www.emis.de/journals/BJMA/

AN EXTENSION OF KY FAN’S DOMINANCE THEOREM
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Abstract. We prove that for a separable Hilbert space H with an orthonor-
mal basis {ei}∞i=1, the equality ‖ · ‖ = ‖

∑∞
i=1 si(·)ei⊗ei‖ holds for all unitarily

invariant norms on B(H) and Ky Fan’s dominance theorem remains valid on
B(H).

1. Introduction

There has been a great interest in studying unitarily invariant norms and sym-
metric norm ideals on B(H) in the last few decades (see, e.g., [1]-[4],[5],[7],[9]-[12]
and the references therein). A norm ‖ · ‖ on a non-zero ideal J of B(H) is called
unitarily invariant if ‖UTV ‖ = ‖T‖ for all unitary operators U, V ∈ B(H) and
T ∈ J . The ith s-number of an operator T on H is displayed by si(T ) and is
given by

si(T ) = inf{‖T − F‖op : F ∈ B(H) has rank < i},
where ‖ · ‖op denotes the usual operator norm on B(H). Note that every finite
rank operator belongs to any non-zero ideal of B(H).

Typical examples of unitarily invariant norms on B(H) are Ky Fan k-norms
that are defined by Nk(·) = s1(·) + · · · + sk(·) [3], see also [10]. We say that a
norm ‖ · ‖ on J , satisfies Ky Fan’s dominance theorem, if for every T,R ∈ J ,
with Nk(T ) ≤ Nk(R) for all k ∈ N, the inequality ‖T‖ ≤ ‖R‖ holds. Ky Fan’s
dominance theorem holds for J if it holds for all unitarily invariant norms on J .
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In the finite dimensional case, owing to the presence of the singular value
decomposition (SVD), there is a nice representation of unitarily invariant norms
as symmetric gauge functions [2, Theorem 3.5.18], which plays a major role in
solving problems and proving theorems in the finite dimensional case. In fact
using SVD, we conclude that for every matrix A ∈ Mn(C) the equality ‖A‖ =
‖diag(s1(A), · · · , sn(A))‖ is satisfied for all unitarily invariant norms on Mn(C),
where Mn(C) is the algebra of all n× n matrices with the entries in C.

In this paper we prove an alternative equality in the infinite dimensional case.
In fact, we show if H is a separable Hilbert space with an orthonormal basis
{ei}∞i=1, the equality ‖ · ‖ = ‖

∑∞
i=1 si(·)ei ⊗ ei‖ holds for all unitarily invariant

norms on B(H), where (si(·)ei ⊗ ei)(h) = si(·) < h, ei > ei, for all h ∈ H. As a
corollary we conclude that for a separable Hilbert space H, Ky Fan’s dominance
theorem remains valid on B(H).

2. Unitarily invariant norms on B(H)

Thought this section, when we say J is a non-zero ideal of B(H), it is possible
for J to be equal the whole B(H). Also ‖·‖ will be an arbitrary unitarily invariant
norm on B(H). We say that a norm ‖| · ‖| on J is symmetric if ‖|T1ST2‖| ≤
‖T1‖op‖|S‖|‖T2‖op for all T1, T2 ∈ B(H) and S ∈ J .

Lemma 2.1. Every unitarily invariant norm ‖ · ‖ on a non-zero ideal J of B(H)
is symmetric.

Proof. Let T ∈ B(H), S ∈ J and consider a real number α > 1. By [8], there are
unitary elements U1, · · · , Un in B(H) such that T

α‖T‖op
= U1+···+Un

n
. Hence

‖TS‖ = α‖T‖op

∥∥∥∥ T

α‖T‖op
S

∥∥∥∥ = α‖T‖op

∥∥∥∥U1 + · · ·+ Un

n
S

∥∥∥∥ ≤ α‖T‖op ‖S‖.

Since α > 1 is arbitrary, the inequality ‖TS‖ ≤ ‖T‖op‖S‖ holds. Similarly we can
show that ‖ST‖ ≤ ‖S‖ ‖T‖op. �

Corollary 2.2. Let ‖ · ‖ be a unitarily invariant norm on a non-zero ideal J of
B(H) and T, S ∈ J . Then

(i) ‖T‖ = ‖ |T | ‖.
(ii) ‖T‖ = ‖T ∗‖.
(iii) ‖p‖ = ‖q‖, for any equivalent projections p and q in J .
(iv) If T ≥ S ≥ 0, then ‖T‖ ≥ ‖S‖.

Proof. The polar decomposition T = u|T | of T implies that |T | = u∗T , T ∗ = |T |u∗
and |T | = T ∗u. Also, if p and q are equivalent then p = vv∗ and q = v∗v, for
some partial isometry v in B(H) and hence we have v∗pv = q and vqv∗ = p. If
T ≥ S ≥ 0, there is an operator R with ‖R‖op ≤ 1 such that S = RT . These
arguments together with Lemma 2.1 imply (i)-(iv). �

Lemma 2.3. Let J be a non-zero ideal of B(H), T ∈ J and P be a projection
of rank one. For every unitarily invariant norm ‖ · ‖ on J the inequality ‖T‖ ≥
‖P‖ ‖T‖op holds.
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Proof. Suppose T 6= 0 and consider a sequence {xn}∞n=1 in H such that ‖xn‖ = 1,
for all n and limn→∞ ‖T (xn)‖ = ‖T‖op. Without loss of generality we can suppose

that T (xn) 6= 0, for all n ∈ N. Let Un be a unitary operator that Un( T (xn)
‖T (xn)‖) = xn.

Setting Pn = xn ⊗ xn we have

‖T‖ = ‖Pn‖op‖T‖ ≥ ‖TPn‖ =

∥∥∥∥ T (xn)

‖T (xn)‖
⊗ xn

∥∥∥∥ ‖T (xn)‖

=

∥∥∥∥Un

(
T (xn)

‖T (xn)‖
⊗ xn

)∥∥∥∥ ‖T (xn)‖

= ‖xn ⊗ xn‖ ‖T (xn)‖
= ‖Pn‖ ‖T (xn)‖
= ‖P‖ ‖T (xn)‖,

where the last equality has resulted from (iii) of Corollary 2.2. Now if n → ∞
we get the desired result. �

Corollary 2.4. If P is a projection of rank one in B(H) then

‖P‖ ‖T‖op ≤ ‖T‖ ≤ ‖I‖ ‖T‖op (T ∈ B(H)),

where I is the identity operator on H. Therefore, all unitarily invariant norms
on B(H) are equivalent to the operator norm.

Corollary 2.5. If P is a projection of rank one in B(H) and ‖P‖ = ‖I‖, then
‖ · ‖ is a multiple of the operator norm.

Lemma 2.6. Suppose {ei}∞i=1 is an orthonormal sequence in H. For positive
diagonal operator T =

∑∞
i=1 λiei ⊗ ei (λi ≥ 0), let E = {λi | i = 1, 2, · · · }. Then

(i) s1(T ) = ‖T‖op = supj∈Nλj.
(ii) If there exist k − 1 distinct positive integers n1, · · ·, nk−1 such that si(T ) =
λni

(1 ≤ i ≤ k − 1), then sk(T ) = supj /∈{n1,···,nk−1}λj. Also, if sk(T ) is a limit

point of E, then for every i ∈ N, we have sk+i(T ) = sk(T ).
(iii) If there is no s-number of T that is a limit point of E, then there are distinct
positive integers n1, n2, . . . such that si(T ) = λni

, i ∈ N. Otherwise there is
positive integer k and k−1 distinct natural numbers n1, . . . , nk−1 such that si(T ) =
λni

, 1 ≤ i ≤ k − 1 and sk(T ) = sk+1(T ) = · · · . In both cases, for every positive
integer i, we have si(T ) = supλj≤si(T )λj.

Proof. (i) This is a well known fact [6, Problem 63].
(ii) If k = 1 the equality is resulted from (i). Otherwise setting

F =
k−1∑
i=1

λni
eni

⊗ eni
,

we have rank(F ) < k and so

sk(T ) ≤ ‖T − F‖op = supj /∈{n1,···,nk−1}λj.
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On the other hand if for every j ∈ N \ {n1, · · ·, nk−1}, setting

Rj =
k−1∑
i=1

λni
eni

⊗ eni
+ λjej ⊗ ej,

we have Rj ≤ T . Since Ky Fan norms are unitarily invariant, using (iv) of
Corollary 2.2, we have Nk(Rj) ≤ Nk(T ). Therefore λj ≤ sk(T ) and hence sk(T ) =
supj /∈{n1,···,nk−1}λj.

If sk(T ) is a limit point of E, then for every ε > 0 and i ∈ N, there exist
distinct positive integers m1, · · ·, mi+1 ∈ N \ {n1, · · ·, nk−1} such that

sk(T )− ε

i + 1
< λmj

≤ sk(T ), (1 ≤ j ≤ i + 1).

Setting

S =
i+1∑
j=1

λmj
emj

⊗ emj
+

k−1∑
j=1

λnj
enj

⊗ enj
,

we have 0 ≤ S ≤ T and so Nk+i(S) ≤ Nk+i(T ). This implies that

i+1∑
j=1

(sk(T )− ε

i + 1
) ≤ sk(T ) + · · ·+ sk+i(T )

≤ sk(T ) + · · ·+ sk(T )︸ ︷︷ ︸
i times

+sk+i(T ).

Therefore sk(T )− ε ≤ sk+i(T ) and so sk(T ) ≤ sk+i(T ). Hence, sk(T ) = sk+i(T ).
(iii) By (i) we have s1(T ) = supj∈Nλj. If s1(T ) is a limit point of E, then by
the second part of (ii), we have s1(T ) = s2(T ) = · · · . Otherwise there is n1 ∈ N
such that s1(T ) = λn1 and by the first part of (ii) we have s2(T ) = supj /∈{n1}λj.
Now if s2(T ) is a limit point of E, then again by the second part of (ii), we have
s2(T ) = s3(T ) = · · · . Otherwise there is n2 ∈ N−{n1} such that s2(T ) = λn2 and
by the first part of (ii), we have s3(T ) = supj /∈{n1,n2}λj. Continuing this process
we get desired results.

�

In particular, the following corollary follows from the previous lemma.

Corollary 2.7. Suppose {ei}∞i=1 is an orthonormal sequence in H. For positive
diagonal operator T =

∑∞
i=1 λiei ⊗ ei, let s = inf{si(T ) | i ∈ N}, E = {λi | i =

1, 2, · · · }. Then
(i) for every ε > 0, there exist distinct positive integers n1, n2, · · · such that

0 ≤ si(T ) < λni
+ ε.

(ii) for every ε > 0, A = {i | λi > s + ε} is a finite set. In fact, A is empty or
there exist distinct positive integers n1, · · ·nN0, such that A = {ni : 1 ≤ i ≤ N0}
and λni

= si(T ) (1 ≤ i ≤ N0).

Lemma 2.8. Suppose {ei}∞i=1 is an orthonormal sequence inH and T =
∑∞

i=1 λiei⊗
ei (λi ≥ 0) is a positive diagonal operator in B(H). Then
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(i) for every ε > 0 there exists a unitary element U ∈ B(H) such that

UTU∗ ≤
∞∑
i=1

(si(T ) + ε)ei ⊗ ei,

(ii) for every ε > 0 there exists a partial isometry U ∈ B(H) such that
∞∑
i=1

(si(T )− ε)ei ⊗ ei ≤ UTU∗,

(iii) ‖T‖ = ‖
∑∞

i=1 si(T )ei ⊗ ei‖.

Proof. Let ε > 0, s = inf{si(T ) | i ∈ N} and A = {i | λi > s + ε}. The
previous corollary implies that A is empty or there exist distinct positive integers
n1, · · ·nN0 , such that A = {ni : 1 ≤ i ≤ N0} and λni

= si(T ) (1 ≤ i ≤ N0).
If A is empty, we set U = I, otherwise we consider U as a unitary operator

that maps {en}∞n=1 onto {en}∞n=1 and U(eni
) = ei for i = 1, · · · , N0. Therefore

UTU∗ =

N0∑
i=1

si(T )ei ⊗ ei +
∞∑

i=N0+1

µiei ⊗ ei,

where µi ∈ {λj : j 6= ni, for all 1 ≤ i ≤ N0}. Since for all i ≥ N0 we have
µi ≤ s + ε, then UTU∗ ≤

∑∞
i=1(si(T ) + ε)ei ⊗ ei.

For proving (ii), we recall that there exist distinct positive integers n1, n2, · · ·
such that 0 ≤ si(T ) < λni

+ ε. Now consider a partial isometry U which satisfies

U(ej) =

{
ei j = ni, for some i ∈ N,
0 otherwise.

We have

UTU∗ =
∞∑
i=1

λni
ei ⊗ ei

≥
∞∑
i=1

(si(T )− ε)ei ⊗ ei.

Finally (iii) follows from (i),(ii) and (iv) of Corollary 2.2. �

Lemma 2.9. Let H be a separable Hilbert space and T be a positive operator in
B(H). For every ε > 0, there exists a diagonal operator Tε such that

|si(T )− si(Tε)| < ε, for all i ∈ N.

Proof. By [11] there exist a diagonal operator Tε and a compact operator Kε such
that T = Tε + Kε and the Hilbert-Schmidt norm of Kε is less than ε. Hence for
every finite rank operator F , the following inequalities hold

‖Tε − F‖op − ε ≤ ‖T − F‖op ≤ ‖Tε − F‖op + ε.

Taking infimum over F with rank(F ) < i, we get the desired result. �

Theorem 2.10. Let H be a separable Hilbert space and T ∈ B(H). The equality
‖T‖ = ‖

∑∞
i=1 si(T )ei ⊗ ei‖ holds, for all orthonormal sequence {ei}i∈N in H.
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Proof. Since ‖T‖ = ‖ |T | ‖ and si(T ) = si(|T |), we can suppose that T is a
positive operator. Let ε > 0 and Tε =

∑∞
i=1 λiei ⊗ ei be the diagonal operator of

the previous lemma. We have by Lemmas 2.1 and 2.8

‖T‖ ≤ ‖Tε‖+ ‖Kε‖ ≤ ‖Tε‖+ ‖I‖‖Kε‖op

≤

∥∥∥∥∥
∞∑
i=1

si(Tε)ei ⊗ ei

∥∥∥∥∥+ ε‖I‖

≤

∥∥∥∥∥
∞∑
i=1

si(T )ei ⊗ ei

∥∥∥∥∥+ 2ε‖I‖.

Similarly We have∥∥∥∥∥
∞∑
i=1

si(T )ei ⊗ ei

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑
i=1

si(Tε)ei ⊗ ei

∥∥∥∥∥+ ε‖I‖

= ‖Tε‖+ ε‖I‖
≤ ‖T‖+ 2ε‖I‖.

�

Lemma 2.11. Suppose {ei}i∈N is an orthonormal sequence in H and D1 =∑∞
i=1 λiei ⊗ ei, D2 =

∑∞
i=1 µiei ⊗ ei (λi, µi ≥ 0), are positive diagonal opera-

tors in B(H). Assume moreover that there exists N ∈ N such that λk = µk for all
k > N and sk(D1) = λk, sk(D2) = µk for all 1 ≤ k ≤ N . If Nk(D1) ≤ Nk(D2)
for all 1 ≤ k ≤ N , then ‖D1‖ ≤ ‖D2‖.

Proof. Let X1 =
∑N

i=1 λiei ⊗ ei and X2 =
∑N

i=1 µiei ⊗ ei. We have
∑k

i=1 λi ≤∑k
i=1 µi, for every 1 ≤ k ≤ N and so, there are unitary matrices U1, · · · , U2NN ! in

MN(C) and non-negative numbers c1, · · · , c2NN ! such that X1 =
∑2NN !

j=1 cjUjX2U
∗
j

and
∑2NN !

j=1 cj = 1 [2, II.2.10]. Now, we can choose unitary operators Ũ1, · · · , Ũ2NN !

in B(H) such that

N∑
i=1

λiei ⊗ ei =
2NN !∑
j=1

cjŨj

(
N∑

i=1

µiei ⊗ ei

)
Ũ∗

j ,

and Ũj(ei) = ei, for every 1 ≤ j ≤ 2NN ! and i > N . A direct computation shows

that D1 =
∑2NN !

j=1 cjŨjD2Ũ
∗
j , and so ‖D1‖ ≤ ‖D2‖. �

Now, we can show that Ky Fan’s dominance theorem is valid on B(H), where
H is a separable Hilbert space.

Theorem 2.12. Let H be a separable Hilbert space and T,R ∈ B(H). If Nk(T ) ≤
Nk(R) for all k ∈ N, then ‖T‖ ≤ ‖R‖.

Proof. For every ε > 0, we can choose N ∈ N such that:
i) sN(T ) ≤ sN(R) + ε,
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ii)sN(R) ≤ si(R) + ε, for every i ≥ N .
Using (iv) of Corollary 2.2 and Lemma 2.10 together with Lemma 2.11, we have

‖T‖ =

∥∥∥∥∥
∞∑
i=1

si(T )ei ⊗ ei

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

i=1

si(T )ei ⊗ ei +
∞∑

i=N+1

sN(T )ei ⊗ ei

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

i=1

si(R)ei ⊗ ei +
∞∑

i=N+1

sN(T )ei ⊗ ei

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

i=1

si(R)ei ⊗ ei +
∞∑

i=N+1

(sN(R) + ε)ei ⊗ ei

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

i=1

si(R)ei ⊗ ei +
∞∑

i=N+1

(si(R) + 2ε)ei ⊗ ei

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
i=1

si(R)ei ⊗ ei

∥∥∥∥∥+ 2ε‖I‖ = ‖R‖+ 2ε‖I‖.

�
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