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COMPARISON OF ONE-SIDED MODULES
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Communicated by A. R. Villena

Abstract. Given an inclusion N ⊂ M of II1 factors with trivial relative
commutant, this paper lists all operators x, y ∈ M such that the left N -module
generated by x is equal to or contained in the right N -module generated by y.

1. Introduction

For an inclusion of finite von Neumann algebras B ⊂M , the fundamental set of
B is defined to be

N f (B) = {x ∈M : Bx = xB} .

This notion was defined in [2], and, it was shown there that N f (B) is crucial to
the study of normalizers of masas (maximal abelian self-adjoint algebra) in II1
factors, when B is a masa. Roughly speaking, some twisting or intertwining is
involved whenever a left B-module is also a right-B module, and, it is often of
interest to know the operators that do the twisting. In this paper, we calculate
N f (·) for inclusion of II1 factors with trivial relative commutant. These results
are generalizations of Dye-type results on masas.

Let M be a seperable II1 factor equipped with its unique normal tracial state
τ . The trace τ induces a Hilbert norm on M which is denoted by ‖·‖2. We always
assume that M acts on L2(M, τ) (the Hilbert space completion of (M, ‖·‖2)) via
left multiplication. If B ⊂M is a von Neumann subalgebra, then the normalizer
of B is the group

N(B) = {u ∈ U(M) : uBu∗ = B} ,
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where U(·) denotes the unitary group of the associated algebra. Also let EB denote
the unique normal trace preserving conditional expectation onto B. Recall that
for x ∈M , if

KB(x) = convw {uxu∗ : u ∈ U(B)} ,

then KB(x) contains a unique element φ(x) of minimal ‖·‖2; the closure in the
above is with respect to the weak topology of L2(M, τ). Moreover, φ(x) =
EB′∩M(x) (cf. [3]).

This writing is organized as follows. In §2 we describe N f (·) of a subfactor with
trivial relative commutant. §3 deals with intertwiners and inclusions or equality
of modules with different cyclic vectors. In §4 we present a similar result related
to masas to compare the changes with results of the previous sections.

2. Fundamental sets

Theorem 2.1. Let N ⊂ M be inclusion of II1 factors. Let 0 6= x ∈ N f (N).
Then x ∈ N , if and only if x is invertible in N .

Proof. There are two cases to consider.
Case 1: Let 0 6= x ∈ N f (N) ∩ N and x ≥ 0. Choose ε > 0 so small that
ε� τ(x). By Dixmier’s approximation theorem choose unitaries u1, · · · , uk ∈ N
and scalars 0 ≤ λ1, · · · , λk ≤ 1,

∑k
i=1 λi = 1 such that∥∥∥∥∥

k∑
i=1

λiuixu
∗
i − τ(x)1

∥∥∥∥∥ < ε.

Therefore,
∑k

i=1 λiuixu
∗
i is invertible in N . Now choose n1, · · · , nk ∈ N such that

uix = xni for all 1 ≤ i ≤ k. Then

k∑
i=1

λiuixu
∗
i =

k∑
i=1

λixniu
∗
i = x

k∑
i=1

λiniu
∗
i .

Therefore x has a right inverse in N . So x is invertible in N .
Case 2: Let 0 6= x ∈ N f (N) ∩ N . We also have x∗N = Nx∗. Then Nxx∗ =
xNx∗ = xx∗N . So by Case 1, xx∗ is invertible N . It follows that x is invertible
in N . �

Theorem 2.2. Let N ⊂ M be inclusion of II1 factors such that N ′ ∩M = C1.
Then 0 6= x ∈ N f (N) if and only if x = wv, where w is invertible in N and
v ∈ N(N).

Proof. There are two cases to consider here as well.
Case 1: Let 0 6= x ∈ N f (N) and x ≥ 0. Then NEN(x) = EN(x)N . So by
Theorem 2.1, EN(x) is invertible in N .

If n ∈ N be such that nx = 0, then nEN(x) = 0, so n = 0. Similarly, xn = 0
for some n ∈ N imply n = 0 as well. Thus there is a well defined map

ψ : N 7→ N such that nx = xψ(n)
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for all n ∈ N . Clearly, ψ is linear. Taking conditional expectations it follows that
ψ is bounded.

Let (N)ψ denote the ball of radius ‖ψ‖ in N . For each unitary u ∈ N , we have

uxu∗ = xψ(u)u∗ ∈ x(N)ψ. (2.1)

As N ′ ∩M = C1, so there is a sequence of convex combinations

yn =
kn∑
i=1

λ
(n)
i ui,nxu

∗
i,n

with 0 ≤ λ
(n)
i ≤ 1 and

∑kn

i=1 λ
(n)
i = 1 and ui,n ∈ U(N) such that yn → τ(x)1 in

‖·‖2, and, hence yn → τ(x)1 in w.o.t as n → ∞. On the other hand from Eq.
(2.1),

yn =
kn∑
i=1

λ
(n)
i ui,nxu

∗
i,n = x

kn∑
i=1

λ
(n)
i ψ(ui,n)u

∗
i,n ∈ x(N)ψ.

By using Mazur’s theorem on convex sets in Banach spaces and w∗ compactness
of the ball of a von Neumann algebra, there is a subsequence

knl∑
i=1

λ
(nl)
i ψ(ui,nl

)u∗i,nl

converging in w.o.t to a z ∈ (N)ψ. Thus xz = τ(x)1. So x has a right inverse
and hence is invertible in N . So x ∈ N .
Case 2: Let 0 6= x ∈ N f (N). Then xx∗N = xNx∗ = Nxx∗. Apply the previous
case, to conclude that xx∗ is invertible in N . So x is invertible in M .

Let x = (xx∗)
1
2v be the polar decomposition of x. Then v is a unitary. Re-

placing the roles of x by x∗, we also have x∗x ∈ N and is invertible in N . Then
v∗xx∗v = x∗x ∈ N. Now

Nx = N(xx∗)
1
2v = Nv.

One the other hand

xN = (xx∗)
1
2vN = vv∗(xx∗)

1
2vN = v(x∗x)

1
2N = vN.

So Nv = vN and hence v is a normalizing unitary. Thus x has the form x = wv
where w is invertible in N and v ∈ N(N). Since the other direction is obvious
we are done. �

Remark 2.3. Note that in view of Theorem 2.2, N f (N)\{0} is a group and clearly
the invertibles in N is a normal subgroup of N f (N). While for masas N f (·)\{0}
contains the groupoid normalizer [2].

3. Different cyclic vectors

Definition 3.1. Given an inclusion B ⊂M of von Neumann algebras satisfying
B′ ∩M ⊆ B, define the one-sided intertwiners of B to be the collection

GN (1)
M (B) = {v a partial isometry in M : vBv∗ ⊆ B, v∗v ∈ B} .
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The superscript (1) is used in the above definition to indicate that even though
vBv∗ ⊆ B, there is no guarantee of the inclusion v∗Bv ⊆ B. For more on
one-sided intertwiners check [1].

Theorem 3.2. Let N ⊂ M be inclusion of II1 factors with trivial relative com-
mutant. Let x, y ∈ M be non zero operators such that Nx ⊆ yN . Let y = v |y|
denote the polar decomposition of y.

(i) If x = y, then |x| is invertible in N and v∗ ∈ GN (1)
M (N) ∩ U(M).

(ii) Else xy−1 ∈ N and |y| ∈ N .
In both cases Nx ⊆ vN .

Proof. Let I = {n ∈ N : nx = 0} and J = {n ∈ N : yn = 0}. Then I and J are
respectively weakly closed left and right ideals in N . Thus there exist projections
p, q ∈ N such that I = N(1− p) and J = (1− q)N . Thus x = px and y = yq.

If n1, n2 ∈ N be such that yn1 = yn2, then yq(n1−n2) = 0. Thus q(n1−n2) ∈
J . Hence qn1 = qn2. Thus there is a well defined map ψ : Np 7→ qN such that

npx = yqψ(np), n ∈ N.
Clearly, ψ is linear and by closed graph theorem ψ is bounded. It is also easy to
see that ψ is injective. Thus

x∗n∗ = x∗pn∗ = ψ(np)∗qy∗ = ψ(np)∗y∗, and (3.1)

nxx∗ = npxx∗ = yqψ(np)x∗ = yψ(np)x∗, n ∈ N.
So

uxx∗u∗ = yψ(up)x∗u∗

= yψ(up)ψ(up)∗y∗, u ∈ U(N) from Eq. (3.1).

Averaging xx∗ over u ∈ U(N) and using w∗ compactness of the ball of radius
‖ψ‖ in N , it follows that there is a z ∈ N such that

yzy∗ = τ(xx∗)1.

Thus y is invertible and (y∗y)−1 ∈ N . Thus |y| ∈ N and q = 1. This settles the
case when x = y. The rest is obvious. �

Since the symmetry of inclusion is missing in Theorem 3.2, not much can be
said. However, when the symmetry is present stronger statements can be made.
We need an intermediate lemma.

Lemma 3.3. Let N ⊂ M be inclusion of II1 factors with trivial relative com-
mutant. Let 0 6= z ∈ M be such that Nz = z∗N . Then z = wv, where w is a
invertible in N and v is a unitary in M such that vNv = N .

Proof. Since Nz = z∗N , so z∗ = nz for some n ∈ N . Thus kerz ⊆ kerz∗. Let
p and q denote the projections χ(0,∞)(|z|) and χ(0,∞)(|z∗|) respectively. Hence
q ≤ p. If q < p, then τ(q) < τ(p). But p ∼ q in M . So q = p. We claim that
p = 1. Indeed, z = zp = pz. Thus

pNpz = pNz = pz∗N = z∗N = Nz = Npz.
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Hence, (1 − p)Npz = 0 and so (1 − p)Npzz∗ = 0. By functional calculus (1 −
p)Np = 0. Hence pnp = np for each n ∈ N , which forces p ∈ N ′ ∩M . It follows
that p = 1 and z is invertible in M .

Consequently, there is a bounded linear surjective map ψ : N 7→ N such that
ψ(n) = z∗nz−1, n ∈ N .

There is a sequence zn =
∑kn

i=1 λ
(n)
i ui,nzz

∗u∗i,n with 0 ≤ λ
(n)
i ≤ 1 for 1 ≤ i ≤ kn,∑kn

i=1 λ
(n)
i = 1 for all n, ui,n ∈ U(N) such that zn → τ(zz∗)1 in ‖·‖2. Write

z∗u∗i,n = vi,nz with vi,n = ψ(u∗i,n) ∈ N . Thus

zn =
kn∑
i=1

λ
(n)
i ui,nzvi,nz = z∗

(
kn∑
i=1

λ
(n)
i v∗i,nvi,n

)
z.

But yn =
∑kn

i=1 λ
(n)
i v∗i,nvi,n ∈ (N)ψ (the ball of radius ‖ψ‖ in N); thus there is a

subsequence ynk
converging weakly to some x ∈ N . Consequently, z∗xz = τ(zz∗)1

i.e., x = τ(zz∗)(z∗)−1z−1 = τ(zz∗)(zz∗)−1 ∈ N . Thus zz∗ ∈ N is invertible.

Let z = (zz∗)
1
2v denote the polar decomposition of z. Then v is a unitary

in M . Now Nz = N(zz∗)
1
2v = Nv. Again z∗N = v∗(zz∗)

1
2N = v∗N . Thus

Nv = v∗N . �

Theorem 3.4. Let N ⊂M be inclusion of II1 factors with trivial relative commu-
tant. Let x, y ∈ M be non zero operators such that Nx = yN . Let x = (xx∗)

1
2v

and y = w(y∗y)
1
2 denote the polar decompositions of x, y, respectively. Then

(xx∗)
1
2 , (y∗y)

1
2 ∈ N f (N) ∩N . Moreover, Nv = wN and v, w ∈ N(N).

Proof. From Theorem 3.2 it follows that |y| is invertible in N . A similar argument
using averaging technique shows that |x| is also invertible in N .

We have y = mx for some m ∈ N . Thus Nx = mxN . So

Nxx∗m∗ = mxNx∗m∗ = mxx∗N. (3.2)

Write z = xx∗m∗. Then Nz = z∗N . From Lemma 3.3, z = w0v0, where w0 is a
invertible inN and v0 is a unitary inM such that v0Nv0 = N . Now w0v0 = xx∗m∗

implies that xx∗,m are invertible. From Eq. (3.2) it follows that Nxx∗ = xx∗N .
From Theorem 2.2 it follows that xx∗ is invertible in N . (A similar argument
shows that yy∗ is also invertible in N .)

Note that v, w are unitaries. We have

N(xx∗)
1
2v = Nv and w(y∗y)

1
2N = wN.

Thus Nv = wN . So w∗Nv = N , in particular w∗v ∈ U(N). Let N 3 u = w∗v.
Note that v∗Nv = v∗wN = u∗N = N . Thus v ∈ N(N). Finally, check that
w ∈ N(N) as well. �

4. Commutative Case

When the subfactor in the previous sections is replaced by a masa the conclu-
sions change, although the techniques to arrive at the conclusion mostly remain
the same.
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Recall that a partial isometry v ∈M is said to be a groupoid normalizer of a dif-
fuse (one that has no minimal projections) abelian algebra A ⊂M if v∗v, vv∗ ∈ A
and vAv∗ = Avv∗ = vv∗A. Let GN (A) denote the groupoid normalizers of A. A
result similar to Theorem 4.1 was proved in [2]. The proof of Theorem 4.1 has a
parallel measure theoretic explanation using the language of discrete bimodules
and disintegration of measures.

Theorem 4.1. Let A ⊂ M be a masa. Let x ∈ A be such that Ax ⊂ xA and
‖x‖ = 1. Let x = |x∗| v be the polar decomposition of x. Then Av ⊂ vA and
|x∗| ∈ A. In addition, if x is self-adjoint or Ax∗ ⊂ x∗A, then v ∈ GN (A) and
|x| ∈ A.

Proof. Let I = {a ∈ A : ax = 0} and J = {a ∈ A : xa = 0}. Then I,J are
weakly closed ideals in A and so has the form A(1 − p) and A(1 − q) for some
projections p, q ∈ A, respectively. Thus x = px = xq.

If xa1q = xa2q for some a1, a2 ∈ A, then x(a1 − a2)q = 0. So (a1 − a2)q ∈ J .
Hence, (a1 − a2)q = (a1 − a2)q(1 − q) = 0. Therefore, a1q = a2q. Consequently,
there is a well defined linear map ψ : Ap 7→ Aq such that

xψ(ap) = apx = ax, for all a ∈ A. (4.1)

So x∗a∗ = ψ(ap)∗x∗, a ∈ A. Thus

uxx∗u∗ = xψ(up)ψ(up)∗x∗, for all u ∈ U(A).

Therefore averaging over U(A) and noting that A′ ∩ M = A, one finds a
0 ≤ a0 ∈ Aq such that a0 6= 0 and EA(xx∗) = xa0x

∗. Thus

τ(x∗x) = τ(xx∗) = τ(EA(xx∗)) = τ(xa0x
∗) = τ(x∗xa0).

So ∥∥∥(1− a0)
1
2 |x|

∥∥∥
2

= τ(|x| (1− a0) |x|) = τ(x∗x(1− a0)) = 0.

Hence x∗x = a0x
∗x = x∗xa0 (as x∗x ≥ 0). Therefore, x∗x(1 − a0) = 0. Equiva-

lently, x(1− a0) = 0. Thus 1− a0 ∈ J . So

1− a0 = (1− a0)(1− q).

Thus q = a0q = a0. Consequently,

A 3 EA(xx∗) = xa0x
∗ = xqx∗ = xx∗.

We have x = (xx∗)
1
2v. Let v∗v = r and vv∗ = s. So x∗ = v∗(xx∗)

1
2 . Use

functional calculus to see that s = vv∗ ∈ A. Since weakly closed ideals are
uniquely determined by projections so s = p. Then from Eq. (4.1) we have

(xx∗)
1
2vψ(ap) = ap(xx∗)

1
2v = (xx∗)

1
2apv.

Consider

J0 = {b ∈ A : bvψ(ap) = bapv ∀a ∈ A} .

Then J0 is a weakly closed ideal in A and contains (xx∗)
1
2 . Thus p ∈ J0. So

vψ(ap) = pvψ(ap) = apv = av.
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Thus Av ⊂ vA and v∗av = ψ(ap)r. The final statement follows easily by replacing
the role of x by x∗ in the above. �
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