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ABSTRACT. We prove the existence of the unique common fixed point theorems
of a pair of weakly compatible mappings satisfying ®-maps in G-metric spaces.
These results generalize the well-known results in the literature.

1. INTRODUCTION AND PRELIMINARIES

The metric fixed point theory is very important and useful in Mathematics.
It can be applied in various areas, for instant, variational inequalities, optimiza-
tion, and approximation theory. There were many authors introduced the gen-
eralizations of metric spaces such as Gahler [3, 9] (called 2-metric spaces) and
Dhage [6, 7] (called D-metric spaces). In 2003, Mustafa and Sims [17] found
that most of the claims concerning the fundamental topological properties of D-
metric spaces are incorrect. Consequently, they [15] introduced a generalization
of metric spaces. Namely, G-metric spaces as the following:

Definition 1.1. Let X be a nonempty set and G : X x X x X — R" be a
function satisfying :

(G1) G(z,y,2z) =0ifz =y = z,

(G2) 0 < G(z,x,y), for all x,y € X with x # y,

(G3) G(z,z,y) < G(x,y,z2), for all z,y,z € X with z # v,

(G4) G(z,y,z) = G(z,z,y) = G(y,z,x) = --- (symmetry in all three vari-
ables), and
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(G5) G(x,y,2) < G(x,a,a)+G(a,y, 2), for all z,y, z,a € X (rectangle inequal-
ity).
Then the function G is called a generalized metric or more specifically a G-metric
on X, and the pair (X, G) is called a G-metric space.

Since then the fixed point theory in G-metric spaces has been studied and
developed by many authors (see [1, 2, 3,4, 15, 16, 18,19, 21, 23, 24]). The common
fixed point theorems for mappings satisfying certain contractive conditions in
metric spaces have been continually studied for decade (see [5, 10, 11, 12, 13,
and references contained therein). In 2009, Abbas and Rhoades [3], proved the
unique common fixed point theorems for a pair of weakly compatible mappings
in G-metric spaces. Recently, Shatanawi [22], proved the unique fixed point
theorems for contractive mappings satisfying ®-maps in G-metric spaces. In this
paper, we prove the existence of the unique common fixed point theorems of a
pair of weakly compatible mappings satisfying ®-maps in G-metric spaces. These
results generalize the well-known results proved by Abbas and Rhoades [3] and
Shatanawi [22].

We now recall some of the basic concepts and results in G-metric spaces that
have been established in [15].

Definition 1.2. Let (X, G) be a G-metric space. We say that a sequence {z,}
in X is:
(i) a G-convergent sequence if, for any ¢ > 0, there exist z € X and N € N
such that G(z, z,, z,) < ¢, for all n,m > N,
(ii) a G-Cauchy sequence if, for any ¢ > 0, there exists NV € N such that
G(zp, T, 1) < €, for all n,m,l > N.

Theorem 1.3. Let (X,G) be a G-metric space and {x,} be a sequence in X.
Then the following are equivalent:
(i) {zn} is G-convergent to x,
(ii) G(zp, xn,x) — 0, as n — o0,
(ii) G(zp,z,x) — 0, as n — oo,
(iv) G(zm, Tn,z) — 0, as m,n — oo.

Theorem 1.4. Let (X,G) be a G-metric space and {x,} be a sequence in X.
Then the following are equivalent:
(i) {z,} is G-Cauchy.
(ii) For every € > 0, there exists N € N such that G(xy,, Ty, ) < €, for all
n,m > N.

A G-metric space X is said to be complete if every G-Cauchy sequence in X
is a G-convergent sequence in X.

Proposition 1.5. Let (X, G) be a G-metric space. Then the function G(x,y, z)
18 jointly continuous in all three of its variables.

Definition 1.6. Let f and g be single-valued self mappings on a set X. If
w = fxr = gx for some x € X, then x is called a coincidence point of f and g,
and w is called a point of coincidence of f and g.
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Abbas and Rhoades [3] proved the existence of the unique common fixed points
of a pair of weakly compatible mappings in G-metric spaces by using the following
proposition as a main tool.

Proposition 1.7. ([3, Proposition 1.5]) Let f and g be weakly compatible self
mappings on a set X. If f and g have a unique point of coincidence w = fr = gz,
then w is the unique common fixed point of f and g.

2. COMMON FIXED POINT THEOREMS

In 1977, Matkowski [14] introduced the ®-map as the following: let ® be the
set of all function ¢ such that ¢ : [0, +00) — [0, +00) is a nondecreasing function
satisfying lim, .., ¢"(t) = 0 for all ¢ € (0,400). If ¢ € ®, then ¢ is called a
®-map. Furthermore, if ¢ is a ®-map, then

(i) ¢(t) <t for all t € (0, +00),
(ii) ¢(0) = 0.
From now on, unless otherwise stated, ¢ is meant the ®-map.

Theorem 2.1. Let (X,G) be a G-metric space. Suppose that the mappings f, g :
X — X satisfy either

G(fz, fy, fz) < p(max{G(gz, fz, fx), G(gy, fy, fy), G(9z, fz, f2)}), (2.1)

or

G(fz, fy, fz) < p(max{G(gz, gz, fz),G(gy, 9y, fy), G(92, 92, f2)})  (2.2)

forallz,y,z € X. If the range of g contains the range of f and g(X) is a complete
subspace of X, then f and g have a unique point of coincidence in X. Moreover if
f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Assume that f and g satisfy the condition (2.1). Let xy be an arbitrary
point in X. Since the range of g contains the range of f, there is ;1 € X
such that gr; = fxg. By continuing the process as before, we can construct a
sequence {gx,} such that gx,,; = fx, for all n € N. If there is n € N such that
gr, = gr,.1, then f and g have a point of coincidence. Thus we can suppose
that gz, # gr,.1 for all n € N. Therefore, for each n € N, we obtain that

G(9Tn, 9Tnt1, 9Tn1) = G(fTn-a, fTn, f1n)

p(max{G(gzn—1, fTn_1, frn1), G(9Tn, fTn, fTn),

G(g2n, [T, f7n)})

p(max{G(9rn—1, [Tn1, fTn-1), G(gTn, fTn, f2n)}

d(max{G(grn_1,9Tn, 9Tn), G(9Tn, gTpi1, GTns1)}-

If max{G(gzn-1, 9Tn, 9Tn), G(9Tn, 9Tns1, 9Tns1)} = G(gTn, 9Tni1, gTns1), then
G(92n, 9Tn+1, 9Tnt1) < G(G(9Tn, 9Tn+1, 9Tn41)) < G(9Tn, 9Tnt1, 9Tni1),

which leads to a contradiction. This implies that

IN

IA A

G(gxn) 9gTn41, gxn-l-l) S gb(G(gxn—lv gTn, gxn))
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That is, for each n € N, we have

G(gx’m 9Tn+1, gxn—l—l) = G(fl’n_l, fxn) fxn)
(b(G(gxn*hg'rrugxn))
¢2(G(gxnf2> gxnfla gxnfl))

IA A

¢n(G(91’0, gy, gxl))-

We will show that {gz,} is G-Cauchy. Let € > 0.
Since lim,, .o, ¢"(G(gxo, g1, 971)) = 0 and ¢(e) < e, there exists N € N such
that

o"(G(gzo, gx1,971)) < € — P(e) for all m > N.

This implies that

G(9Tn, 9Tnt1, §Tni1) < € — ¢(e) for all n > N. (2.3)
Let m,n € N with m > n. We will prove that
G(9Tn, 9Tm, gTm) < e forallm >n> N (2.4)

by induction on m. Since € — ¢(¢) < € and by (2.3), we obtain that (2.4) holds
for m = n + 1. Suppose that (2.4) holds for m = k. Therefore, for m = k+ 1, we
have

G(gxm 9Tn+1, gmn—l-l) + G(gxn—i-h 9Tk+1, gxk-i-l)

e —d(e) + G(fan, far, far)

e —¢(e)

+o(max{G(9n, 9Tn+1, 9Tn+1), G(9Tk, 9Th1, 9Tht1)})
e—p(e) + p(e) = e.

Thus (2.4) holds for all m > n > N. It follows that {gx,} is G-Cauchy. By the

completeness of g(X), we obtain that {gz,} is G-convergent to some ¢ € g(X).
So there exists p € X such that gp = ¢. We will show that gp = fp. Suppose that

gp # fp. By (2.1), we have

G(gxnmfpufp) = G(fxnflafﬂfp)
< ¢(max{G(gTn_1,9%n, g,), G(gp, fp, [P)})-

G(gxnv 9Tk41, gwk—i—l)

IN A A

IN

Case 1.
maX{G(gxn—ly gy, gwn)a G(gpa fpa fp)} = G(gxn—ly gTn, gl'n),

we obtain that

G(g2n, [, fp) < (G (gTn—1,gTn, g20n)) < G(gTn—1, gTn, gn).
By taking n — oo, we have G(gp, fp, fp) = 0 and so gp = fp.
Case 2.
max{G (91, 9Tn, 92n), G(gp, P, [P)} = G(gp, [P, [p),
we obtain that

G(gzn, [, fP) < &(G(gp, fp, [D)).
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By taking n — oo, we have G(gp, fp, fp) < ¢(G(gp, fp, fp)) < G(gp, [, [p),
which leads to a contradiction. Therefore gp = fp. We now show that f and g

have a unique point of coincidence. Suppose that fq = gq for some ¢ € X. By
applying (2.1), it follows that

G(gp,9p,99) = G(fp, fp, fq)

< o(max{G(gp, fp, fp), G(gp, fp, fp),G(94, fq, fa)})
= 0.

Therefore gp = gq. This implies that f and g have a unique point of coincidence.
By Proposition 1.7, we can conclude that f and ¢ have a unique common fixed
point. The proof using (2.2) is similar. O

Corollary 2.2. ([3, Theorem 2.5]) Let (X, G) be a G-metric space. Suppose that
the mappings f,q: X — X satisfy either

G(fx, fy, fz) < kmax{G(gx, f, fx),G(gy, fy, fv),G(g9z, 2, f2)},
or

G(fz, fy, fz) < kmax{G(gz, gz, fx),G(9y, 9y, fy),G(92, 92, f2)}

for all x,y,z € X where 0 < k < 1. If the range of g contains the range of
f and g(X) is a complete subspace of X, then f and g have a unique point of
coincidence in X. Moreover if f and g are weakly compatible, then f and g have
a unique common fixed point.

Proof. Define ¢ : [0,00) — [0,00) by ¢(t) = kt. Therefore ¢ is a nondecreasing
function and lim,,_,, ¢"(t) = 0 for all ¢ € (0, +00). It follows that the contractive
conditions in Theorem 2.1 are now satisfied. This completes the proof. 0

Example 2.3. Let X = [0,2],G(z,y,2) = max{|z — y|, |y — z|,|r — 2|} and

¢(t) = L. Therefore ¢ is a ®-map. Define f,g: X — X by
fr=1and gr =2 — .

We obtain that f and g satisfy (2.1) and (2.2) in Theorem 2.1. Indeed, we have

G(fz, fy, fz) =0,
p(max{G gz, fz, fx), G(gy, [y, fy), Glgz, [z, [2)})

1
= g(max{[l — [, |1 =y, [1 = 2[}),

and

o(max{G(gz, gz, fx),G(gy, 9y, fy), G(92, 92, f2)})

1
= & (mac{[1— 2], [1 ], [1 - =]}).
It is obvious that the range of g contains the range of f and ¢g(X) is a complete
subspace of (X, G). Furthermore, f and g are weakly compatible. Thus all as-
sumptions in Theorem 2.1 are satisfied. This implies that f and g have a unique
common fixed point which is z = 1.
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Theorem 2.4. Let (X,G) be a G-metric space. Suppose that the mappings f, g :
X — X satisfy

G(fz, fy, fz) < ¢(G(gx, gy, 92)), (2.5)

forallz,y,z € X. If the range of g contains the range of f and g(X) is a complete
subspace of X, then f and g have a unique point of coincidence in X. Moreover if
f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let xg be an arbitrary point in X. Since the range of g contains the range
of f, there is 1 € X such that gxy = fxy. By continuing the process as before,
we can construct a sequence {gx,} such that gz, = fz, for all n € N. If there
is n € N such that gz, = gr,.1, then f and g have a point of coincidence. Thus
we can suppose that gz, # gr,,, for all n € N. Therefore, for each n € N, we
obtain that

G(gxm 9Tni1, gxn—i-l) = G(fxn—lu Jn, fxn)
(b(G(ga:nflagxnagxn))
¢2(G(gl’n72> gmnfla gxnfl))

IA A

¢"(G(gwo, g1, g1)).
We will show that {gz,} is G-Cauchy. Let € > 0.
Since lim,, .o, ¢"(G(gxo, g1, 971)) = 0 and ¢(e) < e, there exists N € N such
that
" (G(gzo, gx1,911)) < € — P(e) for all n > N.
This implies that

G(9Zn, 9Tnt1, §Tnt1) <€ — P(e) for all m > N. (2.6)
Let m,n € N with m > n. We will prove that
G(9Tn, 9Tm, gTm) < e forallm >n> N (2.7)

by induction on m. Since € — ¢(¢) < € and by (2.6), we obtain that (2.7) holds
for m = n+ 1. Suppose that (2.7) holds for m = k. Therefore, for m = k + 1, we
have

G(9Zn, 9Tns1, §Tnt1) + G(9Tnt1, GThr1, GTp41)

e —¢(e) + G(fan, far, for)

e — ¢(e) + ¢(G(gwn, gy, gar)})

e—¢le) +ole) =e.

Thus (2.7) holds for all m > n > N. It follows that {gx,} is G-Cauchy. By the
completeness of g(X), we obtain that {gz,} is G-convergent to some ¢ € g(X).

So there exists p € X such that gp = ¢. We will show that gp = fp. By (2.5), we
have

G(g'r'ru 9TE+1, g$k+1)

VAN VANRVAR VAN

< G(gp, 9P, 9Tns1) + G(9Tns1, 9Tns1, D)
< G(gp, gp: gTn+1) + O(G(92n, gn, gp))
< G(gp, gp; 9Tn+1) + G(9Zn, gTn, gp).

G(gp, 9p, [p)
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By taking n — oo, we have G(gp, gp, fp) = 0 and so gp = fp. We now show
that f and g have a unique point of coincidence. Suppose that fq = gq for some
q € X. Assume that gp # gq. By applying (2.5), it follows that

G(gp,gp,99) = G(fp, fp, fq)
< o(G(gp, gp, 99))
< Glgp, 9p, 99),

which leads to a contradiction. Therefore gp = ¢gq. This implies that f and g
have a unique point of coincidence. By Proposition 1.7, we can conclude that f
and ¢ have a unique common fixed point. O]

By setting ¢ to be the identity function on X, we immediately have the following
corollary.

Corollary 2.5. ([22, Theorem 3.1]) Let (X,G) be a complete G-metric space.
Suppose that the mapping f : X — X satisfies

G(fz, fy, f2) < ¢(G(2,y, 2)),
forall z,y,z € X. Then f has a unique fized point.
Theorem 2.6. Let (X, G) be a G-metric space. Suppose that the mappings f, g :

X — X satisfy
G(fx, fy, f2)

< p(max{G(gz, 9y, 92), G(gz, fz, fx), G(gy, fy, fy), G(fx,9y,92)})  (2.8)

forall x,y,z € X. If the range of g contains the range of f and g(X) is a complete
subspace of X, then f and g have a unique point of coincidence in X. Moreover if
f and g are weakly compatible, then f and g have a unique common fized point.

Proof. Let xq be an arbitrary point in X. Since the range of g contains the range
of f, there is x1 € X such that gxy = fry. By continuing the process as before,
we can construct a sequence {gx,} such that gz, = fz, for all n € N. If there
is n € N such that gx,, = gz, 11, then f and g have a point of coincidence. Thus
we can suppose that gz, # gz, for all n € N. Therefore, for each n € N, we
obtain that

G(92n; 91, 9Tnt1) = G(fanp-r, fTn, f2n)
¢(max{G(grn—1, 9T, 974), G(9Tn-1, fTn-1, fTn1),
G(97n, [T, f2n), G(fTn1,9Tn, gTn)})
p(max{G (971, 9Tn, gTn), G(9Tn_1, 9Tn, gTn),
G<gxm 9Tn+1, gxn+1)7 G(gxna 9Ty, 9~77n)}>

< (max{G(gTn-1, 90, 90), G(9Tn, gTnt1, 9Tnt1)})-
If max{G(gzn_1, 9Tn, 92n), G(9Tn, 9Tn i1, 9Tni1)} = G(gTn, gTni1, gTns1), then

IN

IN

G(gxm 9Tn41, gxn—i-l) < ¢(G(gl’n, 9Tni1, gxn-&-l)) < G(gxm 9Tni1, gxn—&-l),
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which leads to a contradiction. This implies that

That is,

G(g$n7 gTn+1, gwn—i—l) S ¢(G(gl’n_1, g, gxn))
for each n € N, we have
G(gxn, 9Tn+1, ganrl) = G(fxnfla fxm fxn)
¢(G(g$n—1ag$nagxn>)
¢2(G(gxn—27 gTn-1, gxn—l))

IA A

¢n(G(g$0, gry, gxl))

We will show that {gz,} is G-Cauchy. Let € > 0.
Since lim,, .o, ¢"(G (g0, g1, 971)) = 0 and ¢(e) < e, there exists N € N such

that

O"(G(gzo, gx1,911)) < € — P(e) for all n > N.

This implies that

G(gTn, Tns1, gTni1) < € — ¢(e) for all m > N. (2.9)

Let m,n € N with m > n. We will prove that

G(9Tn, 9Tm, gTm) < e forallm>n> N (2.10)

by induction on m. Since € — ¢(¢) < € and by (2.9), we obtain that (2.10) holds
for m = n + 1. Suppose that (2.10) holds for m = k. Therefore, for m = k + 1,

we have

G(g'xn7 9Tk+1, g$k+1)

Thus (2.

G(9%n; 9Tni1, 9Tni1) + G(9Tn11, 9Thi1, GTh11)
e — () + G(fxn, fan, far)
e — ¢(e) + p(max{G(gxn, 9Tk, 9xk), G(9xp, fTn, f2),
G(9wk, frg, for), G(fon, 9k, 971) })
e — ¢(e) + p(max{G(gxn, grk, 92k ), G(9Tn, 9Tni1, §Tni1),
G(gzk, fon, for), G(fTn, 9T, gK)})
< e—¢le) +oe) ==
10) holds for all m > n > N. It follows that {gz,} is G-Cauchy. By the

IN A A

IA

completeness of g(X), we obtain that {gz,} is G-convergent to some ¢ € g(X).
So there exists p € X such that gp = ¢. We will show that gp = fp. By (2.8), we

have

IA A CIA
Q

IN
Q

Q

(9p, 9p, fp)

(9P, gp, 9n) + G(92n, 9, [D)

(9p: gp, gxn) + G(fn-1, [Tn-1, [P)

(9P, gp, gn) + d(max{G (921, 9Tn-1, gp)
(

(

(

QD

(gxn—la fxn—h fwn—l);

Q

.G
gTn—1, fl‘n,l, fxn*1>7 G(fxnfh gTn-1, gp)})
ap, gp, 9n) + ¢(max{G(9rn_1,97n_1,9p), G
9Tp—1, 9Tn, 9Tn), G(gTn, 9Tn_1,gp)}).

(gxn—la gZTn, g-rn)>
G
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Case 1.
max{G (9,1, 9Tn-1, 9p), G(9Zn-1, 9Tn, 9Ts), G(9%n, 9Tn_1,9p)}
= G(9Tn-1,9%n-1,9D),

we obtain that

G(gp, gp, [p) < G(gp, gp, 9Ts) + G(9Tp_1, GTn_1, gp).

By taking n — oo, we have G(gp, fp, fp) = 0 and so gp = fp.
Case 2.

maX{G(an—la gTn—1, gp)v G(gxn—h 9Tn, gxn), G(gl'm gTn—1, gp)}
= G(gxnfh gZTn, gxn)u

we obtain that

G(gp, gp, [p) < G(gp, gp, 970) + G(gTn—1, GTn, gTn).
By taking n — oo, we have G(gp, fp, fp) = 0 and so gp = fp.
Case 3.
max{G(9z,_1, 9Tn-1, 9P), G(9Tn—_1, 9Zn, g), G(g2n, 9Tn_1,gp)}
- G(gxﬂd 9Tn—1, gp>7

we obtain that

G(gp, gp, fp) < G(gp, gp, gxn) + G(92n, gTn_1, gp).

By taking n — oo, we have G(gp, fp, fp) = 0 and so gp = fp. We now show
that f and g have a unique point of coincidence. Suppose that fq = gq for some
q € X. Assume that gp # gq. By applying (2.8), it follows that

G(fp, fp. fa)
< ¢(max{G(gp. gp. 99), G(gp, fp. fp), G(gp, fp, [P), G(fP. 9P, 90)})
< o(Glgp, gp, 9q)) < G(gp, 9p; 99);

which leads to a contradiction. Therefore gp = gq. This implies that f and g

have a unique point of coincidence. By Proposition 1.7, we can conclude that f
and g have a unique common fixed point. O

G(gp, 9p, 99)

Consequently, if we suppose that g is the identity function on X, then we obtain
the following corollary.

Corollary 2.7. ([22, Theorem 3.2]) Let (X,G) be a complete G-metric space.
Suppose that the mapping f : X — X satisfies

G(fx, fy, f2)

< ¢(max{G(z,y,2),G(z, fz, fx),G(y, [y, [y), G(fz,y,2)})
for all z,y,z € X. Then f has a unique fized point.
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