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Abstract. Let X be a Baire space, Y be a W -space and Z be a regular
topological space. We will show that every KC-function f : X × Y → Z is
strongly quasi-continuous at each point of X × Y . In particular, when X is a
Baire space and Y is Corson compact, every KC-function f from X × Y to a
Moore space Z is jointly continuous on a dense subset of X × Y . We also give
a few applications of our results on continuity of group actions.

1. Introduction

Let X, Y and Z be topological spaces, following Kempisty [13], a function ϕ :
X → Z is called quasi-continuous at a point x ∈ X if for arbitrary neighborhoods
V and W of x and ϕ(x) respectively, one can find a nonempty open subset G of
V such that ϕ(G) ⊂ W . The function ϕ : X → Y is called quasi-continuous if it
is quasi-continuous at each point of X. By a Kempisty continuous function (KC-
function for short), we mean a function f : X×Y → Z which is quasi-continuous
in the first variable and continuous in the second variable.

A mapping f : X×Y → Z is called strongly quasi-continuous at (x, y) ∈ X×Y
if for each neighborhood W of f(x, y) in Z and for each product of open sets
U × V ⊂ X × Y containing (x, y), there is a nonvoid open set U1 ⊂ U and a
neighborhood V1 ⊂ V of y such that f(U1 × V1) ⊂ W.

The notion of quasicontinuity was used by R. Baire [2] in the study of points of
continuity of separately continuous functions. There is a rich literature concerning
the problem of determining points of continuity for two variable functions (see
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for example [6, 7, 17, 19, 20, 21, 22]). In particular, Piotrowski in [23] proved the
following result:

Theorem 1.1. Let X be a Baire space, Y ba first countable and Z be metric. If
f : X × Y → Z is a KC-function, then for all y ∈ Y , there is a Gδ subset Dy of
X such that f is jointly continuous in Dy × {y}.

In 1976, by means of a topological game, G. Gruenhage [11] introduced a
class of topological spaces, called W -spaces, which contains the class of all first
countable spaces and is stable under Σ-products and open mappings.

In this paper, we use a topological game argument to show that every KC-
function f : X × Y → Z is strongly quasi-continuous, provided that X is a Baire
space, Y is a W -space and Z is regular. In particular, when Z is a Moore space,
it follows that for each y ∈ Y the set of joint continuity of f is a dense Gδ subset
of X×{y}. Since, as the class of W -spaces strictly contains first countable spaces
(see section 2), our result extends Theorem 1.1. It follows that every KC-action
π : G × Y → Y is jointly continuous if Y is a Moore W -space and G is a Baire
left topological group.

2. Topological games

In this section, we will introduce two topological games which will be used
in the sequel. Each topological game is described by two types of rules; the
playing rules, that determine how to play the game, and the winning rule which
determines the winner. The winning rule differs from game to game and, actually,
identifies the game.

Let (X, τ) be a topological space. The Banach–Mazur game BM(X) [5] be-
tween two players α and β is done as follows.
Player β starts the game by selecting a nonempty open set U1 of X; then player
α chooses a non-empty open set V1 ⊂ U1. When (Ui, Vi) , 1 ≤ i ≤ n − 1, have
been defined, player β picks a nonempty open set Un ⊂ Vn−1 and α answers
by selecting a nonempty open set Vn ⊂ Un. In this way two players generate a
sequence of nonempty open subsets of X

U1 ⊃ V1 ⊃ U2 · · · ⊃ Un ⊃ Vn . . .

which is called a play.
The player α wins the play (Ui, Vi)i≥1 if (

⋂∞
n=1 Vn) 6= ∅. Otherwise the player β

is said to have won the play.
By a strategy for one of the players, we mean a rule that specifies each move of
the player. We say that the player α has a winning strategy for the game BM(X)
if there exists a strategy s, such that α wins all plays provided that he/she acts
according to the strategy s. In this case, we say that X is an α-favorable space,
otherwise X is said to be an α-unfavorable space for this game. Similarly, winning
strategy for the player β and β-favorablity are defined.
It is known that X is a Baire space if and only if the player β does not have a
winning strategy in the game BM(X) (see [25] Theorems 1 and 2). Therefore
every α-favorable space X is a Baire space. However, the converse in not true in
general ( see for example [12]).
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We need also to the following topological game which was introduced in [11].
Let Y be a topological space and y0 ∈ Y . The topological game G(Y, y0) is
played by two players O and P as follows. Player O goes first by selecting an
open neighborhood H1 of y0. P answers by choosing a point y1 ∈ H1.
In general, in step n, if selections H1, y1, . . . , Hn, yn have already been specified,
O selects an open set Hn+1 with y0 ∈ Hn+1 and then P answers by choosing a
point yn+1 ∈ Hn+1. If

g1 = (H1, y1), · · · , gn = (H1, y1, · · · , Hn, yn)

are the first ”n” move of some play ( of the game ), we call gn the nth (partial
play) of the game. We say that O wins the game g = (Hn, yn)n≥1 if yn → y0.

A strategy s for one of the players is defined similar to that of Banach–Mazur
game. We call y ∈ Y a W -point (respectively w-point) in Y if O has (respectively
P fails to have) a winning strategy in the game G(Y, y). A space Y in which each
point of Y is a W -point (respectively w-point) is called a W -space (respectively
w-space). It is known that every first countable space is a W -space [11, Theorem
3. 3]. However, the converse in not true in general [16, Example 2. 7].

There are w-spaces which are not W -space. For example [10] if Y is the one
point compactification T ∪{∞} of an Aronszajn tree T with the interval topology,
then neither P nor O has a winning strategy in G(Y,∞).

3. Strong quasi-continuity and joint continuity

Let X, Y and Z be topological spaces. In this section, we give a topolog-
ical game argument to show under certain conditions on X, Y and Z every
KC-function f : X × Y → Z is strongly quasi-continuous. Our results can be
considered as a partial extension of some results in [18] and [23].

Theorem 3.1. Let Y be a topological space and Z be a regular space. If either

(1) X is a Baire space and the player O has a winning strategy in G(Y, y0) or
(2) X is an α-favorable space and the player P does not have a winning strat-

egy in G(Y, y0).

Then every KC-function f : X×Y → Z is strongly quasi-continuous on X×{y0}.

Proof. On the contrary, suppose that (1) or (2) holds but f is not strongly quasi-
continuous at (x0, y0) for some point x0 ∈ X. By the definition, there is an
open set W containing z0 = f(x0, y0) and there is some product of open sets
U × V ⊂ X × Y containing (x0, y0) such that for each open set U ′ ⊂ U and
each neighborhood H ′ ⊂ H of y0, there is some (x′, y′) ∈ U ′ × H ′ such that
f(x′, y′) /∈ W .

Since Z is regular, there is an open subset G with f(x0, y0) ∈ G and G ⊂ W .
By quasi-continuity of f(·, y0), there is a non-empty open subset U ′ ⊂ U such that
f(U ′×{y0}) ⊂ G. We define simultaneously a strategy s for β in BM(X) and a
strategy t for P in G(Y, y0) by induction as follows. Let U1 = U ′ be the first move
of β-player and V1 ⊂ U1 be the answer of the player α to this movement. Suppose
that H1 is the first choice of O-player. Then by our assumption, f(V1×H1) is not
a subset of G. Therefore there is some (x1, y1) ∈ V1×H1 such that f(x1, y1) /∈ G.
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Define t(H1) = y1. By quasi-continuity of f(·, y1), we can find a non-empty open
subset U1 of V1 such that f(U1 × {y1}) ∩G = ∅. Let s(V1) = U1.

Let for n ≥ 1, the partial plays pn = (U1, V1, . . . , Un, Vn) in BM(X) and gn =
(H1, y1, . . . , Hn) in G(Y, y0) are specified. Since by our assumption f(Vn×Hn) is
not contained in G, there is some (xn, yn) ∈ Vn × Hn such that f(xn, yn) /∈ G.
By quasi-continuity of x 7→ f(x, yn), there is a non-empty open subset Un+1 of
Vn such that f(Un+1 × {yn}) ∩G = ∅.

Define s(U1, V1, . . . , Un, Vn) = Un+1 and t(H1, y1, . . . , Hn) = yn. In this way, by
induction on n, a strategy for β in BM(X) and a strategy for P in G(Y, y0) are
defined.

If (1) or (2) holds, there are a s-play p = (Un, Vn) and t-play g = (Hn, yn) which
are won by α and O respectively. Let x∗ ∈

⋂
n≥1 Un. Then by continuity of y 7→

f(x∗, y) at y0 and the fact that f(x∗, y0) ∈ G, there is an open neighborhood H of
y0 such that f(x∗, y) ∈ G for all y ∈ H. Since O wins the play g = (Hn, yn), there
is some n0 ∈ N such that yn ∈ H for all n ≥ n0. Hence f(x∗, y0) ∈ G. However,
our construction shows that f(x, yn) /∈ G for all x ∈ Un. This contradiction
proves the Theorem.

�

The following result follows immediately from Theorem 3.1.

Corollary 3.2. Let Y be a topological space and Z be a regular space. If either

(1) X is a Baire space and Y is a W -space or
(2) X is an α-favorable space and Y is a w-space.

Then every KC-function f : X × Y → Z is strongly quasi-continuous.

4. Applications

Let Z be a topological space z ∈ Z and U be a collection of subsets of Z, then
the star of z with respect to U is defined by st(z,U) =

⋃
{U ∈ U : z ∈ U}. A

sequence {Gn} of open covers of Z is said to be a development of Z if for each
z ∈ Z, the set {st(z,Gn) : n ∈ N} is a base at z.

A developable space is a space which has a development. A Moore space is a
regular developable space.

Piotrowski [22, Theorem A] proved that if X is Baire space, Y is a topological
space, Z is a developable space and f : X × Y → Z is strongly quasi-continuous,
then the points of joint continuity of f is a dense Gδ subset in X × {y} for all
y ∈ Y (see also [17, Theorem 2] for another proof of this result). Hence the
following result follows from Theorem 3.1.

Corollary 4.1. Let Z be a Moore space. If either

(1) X is a Baire space and Y is a W -space or
(2) X is an α-favorable space and Y is a w-space.

Then for every KC-function f : X × Y → Z and y0 ∈ Y , there is a dense Gδ

subset Dy0 of X such that f is jointly continuous at each point of Dy0 × {y0}.
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Definition 4.2. A compact space Y is called Corson compact if for some κ, Y
embeds in

{x ∈ Rκ : xα = 0 for all but countably many α ∈ κ}.

Corollary 4.3. Let X be a Baire space, Y be a Corson compact space and Z
be a regular space. Then every KC-function f : X × Y → Z is strongly quasi-
continuous. In particular, if Z is a Moore space, then f is jointly continuous on
a dense subset of X × Y .

Proof. Since every Corson compact is a W -space [11, Theorem 4.6], the result
follows from Theorem 3.1 and Corollary 4.1. �

In order to give another application of our result, we need to the following
definition.

Definition 4.4. Let G be a group equipped with a topology. The group G is
called left topological if for each g ∈ G, the left translation h ∈ G → gh ∈
G is continuous. By trivial change in the above definition, a right topological
group can be defined. If G is both left and right topological, then G is called
semitopological. A semitopological group is called paratopological if the product
mapping is jointly continuous. If in addition the inverse function x 7→ x−1 is
continuous, then G is said to be a topological group.

Let G be a left topological group and Y be a topological space. We say that
G acts on X if there exists a function π : G× Y → Y such that

π(gh, y) = π(g, π(h, y)) (g, h ∈ G, y ∈ Y ). (4.1)

Ellis [9] proved that every separately continuous action π : G × Y → Y is
jointly continuous provided that G is a locally compact semitopological group
and Y is a locally compact space. Theorem 3.1 enable us to give the following
related result. The interested reader is referred to [1, 3, 4, 8, 14, 15] for further
information in this direction.

Theorem 4.5. Let Y be a Moore space and G be a left topological group. If either

(1) G is a Baire space and Y is a W -space or
(2) G is an α-favorable space and Y is a w-space.

Then every KC-action π : G× Y → Y jointly continuous.

Proof. Let (g0, y0) ∈ G× Y . By Corollary 4.1, there is a dense Gδ subset Dy0 of
G such that π is jointly continuous at each point of Dy0 × {y0}. Let {gα} and
{yα} converge to g and y0 respectively and take some arbitrary point h ∈ Dy0 .
Since π is continuous at (h, y0) and

lim
α

hg−1gα = h, lim
α

yα = y0,

we see that limα π(hg−1gα, yα) = π(h, y0). Therefore by using (4.1), we have

lim
α

π(gα, yα) = lim
α

π(gh−1, π(hg−1gα, yα))

= π(gh−1, π(h, y0)) = π(g, y0).

This proves our result. �
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Since every Moore space is first countable ( hence is a W -space), the following
result follows from Theorem 4.5.

Corollary 4.6. [24, Theorem 4]. Let G be a Baire semitopological group which
is also a Moore space. Then G is a paratopological group.

The main result of [14] states that every strongly Baire semitopological group
is a paratopological group. Since every Baire Moore space is strongly Baire,
Corollary 4.6 is a special case of this result.

Remark 4.7. Cao et al in [4, Corollaries 2.4 and 2.11] have recently shown that
every Baire and Moore paratopological group G is a topological group. In the
view of Corollary 4.6, the paratopological group G is a topological group.
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