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Abstract. In this short note, a new approach is provided to prove that every
nonzero continuous cosine function on a compact group G is the normalized
character of a representation of G into the special unitary group SU(2).

1. Introduction

Let G be a group. A cosine function on G is a solution to the cosine equation
(also called d’Alembert equation)

f(xy) + f(xy−1) = 2f(x)f(y), (1.1)

where f : G → C is the function to determine. Eq. (1.1) has been attracting
a great deal of attention recently. See, e.g., [1]-[7], [10]-[16], and the references
therein. This is mainly because there are close relations between the structure of
cosine functions and harmonic analysis. In particular, it has been in [1, 14, 15, 16]
shown that any nonzero continuous cosine function on a compact group G is the
normalized character of a 2-dimensional (continuous) representation of G into the
2-dimensional special unitary group SU(2).

It should be mentioned that in [1] we deal with a much more general equation by
using (of course, not surprisingly) much more complex approaches. The solutions
of Eq. (1.1) are obtained as a consequence of the main results there. In [16], the
structure of cosine functions mentioned above is derived from a so called Small
Dimension Lemma, which states that an irreducible representation of a compact
group under certain assumptions must have dimension ≤ 2. Its proof is not
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long, but not quite elementary, since it uses the equivalence between the given
representation, say π, and the restriction of the right regular representation onto
each row space Ei = span{πij : j = 1, ..., dπ} of π (i = 1, ..., dπ), and Schur’s
orthogonality relations.

The main purpose of this short note is to give a very elementary proof to the
corresponding lemma (i.e., Lemma 2.1 below) in our current context. We are
going to provide three proofs. The first one is the most elementary, in which only
some basics from Linear Algebra are needed. The second and third ones are still
elementary, but use Burnside’s Theorem, which states that the only irreducible
algebra of the linear transformations on the finite dimensional vector space V of
dimension > 1 is the algebra of all linear transformations mapping V into V (cf.,
e.g., [9, Chapter 1]).

2. Main Result

In this section, let us begin with recalling that a collection of linear transfor-
mations is said to be irreducible if it has only trivial invariant subspaces.

Lemma 2.1. Let K be a closed irreducible subgroup of the unitary group U(n)
(n ≥ 1). Suppose for every k ∈ K there is ck ∈ C such that

k + k−1 = ckIn. (2.1)

Then either n = 1, or n = 2 and K ≤ SU(2).

Proof. Suppose n > 1. Clearly, from (2.1) we have k2 − ckk + In = 0 for all
k ∈ K. So the polynomial t2 − ckt + 1 is divisible by the minimal polynomial of
k. Hence, we have either (i) k is a scalar matrix, or (ii) k has exactly two distinct
eigenvalues λk and λ̄k satisfying |λk| = 1 and λk 6= ±1.

Since K is irreducible, there exists an element a ∈ K satisfying the properties
of (ii). For brevity, let λ and λ̄ be the exactly two distinct eigenvalues of a. After
a similarity, we may assume that a = diag(λIr, λ̄Is) with r ≥ 1, s ≥ 1. WLOG,
one can further assume r ≥ s.

Proof 1. For k ∈ K, with respect to the decomposition Cn = Cr ⊕ Cs, we write

k as the 2× 2 block matrix k =

(
k11 k12

k21 k22

)
. Then k + k∗ = ckIn (as k−1 = k∗ in

(2.1)) implies that

k21 = −k∗
12, (2.2)

k11 + k∗
11 =ckIr, k22 + k∗

22 = ckIs. (2.3)

Applying (2.3) to ak =

(
λk11 λk12

−λ̄k∗
12 λ̄k22

)
, we deduce

λk11 + λ̄k∗
11 = cakIr, λ̄k22 + λk∗

22 = cakIs. (2.4)

Since λ 6= ±1, a simple calculation using (2.3) and (2.4) yields

k11 = αkIr, k22 = ᾱkIs
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where αk = cak−λ̄ck

λ−λ̄
∈ C. In other words, every k ∈ K is of the form

k =

(
αkIr k12

−k∗
12 ᾱkIs

)
. (2.5)

For k, k′ ∈ K, considering the (1,1)-block entry of kk′, we get from (2.5) that

k12k
′∗
12 = (αkαk′ − αkk′)Ir. (2.6)

Since K is irreducible, there is b ∈ K with b12 6= 0. Letting k = k′ = b in (2.6)
gives rise to b12b

′∗
12 = γIr for some γ ∈ C with γ 6= 0. Since

r = rank(γIr) = rank(b12b
∗
12) ≤ rank(b12) ≤ s,

we have r = s. Hence there exist U ∈ SU(r) and a nonzero β ∈ C such that
b12 = βU . Letting k′ = b in (2.6), we conclude that for every k ∈ K, k12 = βkU
for some βk ∈ C. So

k =

(
αkIr βkU

−βkU
−1 αkIr

)
.

Let v ∈ Cr be an eigenvector of U . Then the 2-dimensional subspace of Cn

spanned by

(
v
0

)
and

(
0
v

)
is K-invariant. Since K is irreducible, we obtain that

n = 2 and k =

(
αk βk

−βk αk

)
∈ SU(2). �

Proof 2. Once having the general form (2.5) of the elements in K, we can conclude
from Burnside’s Theorem that r = s(= 1) and then finish the proof from (2.5).
Indeed, consider the algebra A ⊆ Mn(C) generated by K. Since K is irreducible,
it is easy to see so is A. By Burnside’s Theorem (which, in our context, says
that the only irreducible subalgebra of Mn(C) (n > 1) is Mn(C) itself), we obtain
A = Mn(C). On the other hand, let x be an arbitrary element in A. As usual,
we write x = (xij)n (instead of being a 2× 2 block matrix as in (2.5)). If r > 1,
it follows from (2.5) that x12 = 0. This clearly gives a contradiction. Therefore
r = 1, and we are done. �

Proof 3. This time, we also apply Burnside’s Theorem, but immediately after
obtaining (2.2). That is, we do not need to know the general form of elements
in K given in (2.5). Suppose on the contrary that r > 1. Let k = (kij)n be an
arbitrary element in K. It follows from (2.2) that

k21 + k12 = 0.

(Notice that k12 above is a complex number and k12 in (2.2) is an r × s sub-
matrix.) Applying this to ak, and noticing (ak)12 = λk12 and (ak)21 = λk21, we
obtain

λk21 + λ̄k12 = 0.

Clearly, the above two identities imply that k12 = 0 as λ 6= λ̄. This contradicts
Burnside’s Theorem by the arbitrariness of k. So r = 1.



COSINE FUNCTIONS 129

From the above discussion, we have that K ≤ U(2), and that for every k ∈ K,
either k = ±I2, or k is conjugate to diag(λk, λk) with λk 6= λk. Therefore,
K ≤ SU(2). �

Any one of the above proofs proves the lemma. �

As a consequence of Lemma 2.1, we reproduce the structure of continuous cosine
functions on a compact group G (cf. [14]-[16]).

Theorem 2.2. Let G be a compact group. Then f is a nonzero continuous cosine
function on G if and only if there is a representation ρ : G → SU(2) such that

f =
χρ

2
, (2.7)

where χρ is the character of ρ.

Proof. Apparently, it suffices to prove “only if” directon: any nonzero continuous
cosine function f on G is of the form given in (2.7).

Same as [1, 2, 16] and keeping the same notation there, we first transfer Eq. (1.1)
to an operator equation. Clearly, Eq. (1.1) is equivalent to

Ryf + Ry−1f = 2f(y)f for all y ∈ G.

Then applying the Fourier transform, we deduce

(π(y) + π(y)−1)f̂(π) = 2f(y)f̂(π). (2.8)

It is very well-known that cosine functions are central. So for every [π] ∈ Ĝ, we

have that f̂(π) is a scalar matrix (cf. [8]). That is, f̂(π) = λπIdπ for some λπ ∈ C.
Then (2.8) becomes

λπ(π(y) + π(y)−1) = 2λπf(y)Idπ for all y ∈ G.

Since f 66= 0, obviously supp(f̂) = {[π] ∈ Ĝ | λπ 6= 0} 6= ∅. Let [π] ∈ supp(f̂).
Then we have

π(y) + π(y)−1 = 2f(y)Idπ . (2.9)

Since π is irreducible, applying Lemma 2.1 to K = π(G), one obtains either
dπ = 1, or dπ = 2 and π(G) ≤ SU(2).

If dπ = 1, then f = 1
2
(π + π̄). Let ρ : G → SU(2) be the representation defined

by ρ = π ⊕ π̄. Then f = 1
2
χρ.

If dπ = 2 and π(G) ≤ SU(2), taking trace in (2.9) and noticing that tr(U−1) =
tr(U) for any U ∈ SU(2), we get f = 1

2
χρ. So the representation ρ = π : G →

SU(2) gives the desired one. �
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[2] J. An and D. Yang, A Levi-Civitá equation on compact groups and nonabelian Fourier
analysis, Integral Equations Operator Theory 66 (2010), 183–195.

[3] W. Chojnacki, Group representations of bounded cosine functions, J. Reine Angew. Math.
478 (1986), 61–84.

[4] W. Chojnacki, On group decompositions of bounded cosine sequences, Studia Math. 181
(2007), 61–85.

[5] T.M.K. Davison, D’Alembert’s functional equation on topological groups, Aequationes
Math. 76 (2008), 33–53.

[6] T.M.K. Davison, D’Alembert’s functional equation on topological monoids, Publ. Math.
Debrecen 75 (2009), 41–66.

[7] P. de Place Friis, D’Alembert’s and Wilson’s equation on Lie groups, Aequationes Math.
67 (2004), 12–25.

[8] G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
[9] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-

Verlag New York, 2000.
[10] H. Stetkær, D’Alembert’s functional equations on metabelian groups, Aequationes Math.

59 (2000), 306–320.
[11] H. Stetkær, D’Alembert’s and Wilson’s functional equations on step 2 nilpotent groups,

Aequationes Math. 67 (2004), 241–262.
[12] H. Stetkær, Properties of d’Alembert functions, Aequationes Math. 77 (2009), 281–301.
[13] H. Stetkær, Functional equations on groups, preprint.
[14] D. Yang, Factorization of cosine functions on compact connected groups, Math. Z. 254

(2006), 655–674.
[15] D. Yang, Contributions to the theory of functional equations, Ph.D Thesis, University of

Waterloo, Canada, 2006.
[16] D. Yang, Functional Equations and Fourier Analysis, Canad. Math. Bull. (to appear).

Department of Mathematics & Statistics, University of Windsor, Windsor,
ON N9B 3P4, Canada.

E-mail address: dyang@uwindsor.ca


	1. Introduction
	2. Main Result
	References

