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STABILIZING ISOMORPHISMS FROM `p (`2) INTO Lp [0, 1]
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Abstract. Let 1 < p 6= 2 < ∞, ε > 0 and let T be an isomorphism from
`p(`2) into Lp[0, 1]. Then there is a subspace Y ⊂ `p(`2), (1+ ε)-isomorphic to
`p(`2) such that T|Y is an (1 + ε)-isomorphism and T (Y ) is Kp-complemented
in Lp [0, 1], with Kp depending only on p. Moreover, Kp ≤ (1 + ε)γp if p > 2
and Kp ≤ (1 + ε)γp/(p−1) if 1 < p < 2, where γr is the Lr norm of a standard
Gaussian variable.

1. Introduction

Let B be one of the 5 “classical” subspaces of Lp = Lp[0, 1]; by these we mean
`p, `2, `p⊕p `2, `p(`2) and Lp itself. Here `p(`2) is the space of (say, real) matrices
A = (ai,j)

∞
i,j=1 with norm ‖A‖`p(`2) = (

∑∞
j=1(

∑∞
i=1 a2

i,j)
p/2)1/p. It is well known

that these five spaces isometrically embed in Lp, 1 ≤ p < ∞, and, for 1 < p < ∞,
have embeddings which are complemented. (For p = 1 this last statement holds
only for L1 and `1.)

It was known for some time that if X is any subspace of Lp, 1 < p < ∞,
isomorphic to one of these B then there is a subspace of X isomorphic to B and
complemented in Lp. For `p see [10], for `2, [14]. The case `p ⊕p `2 follows from
these two results. The quite complicated case of Lp was proved in [8] (and for
p = 1 perviously in [5]). The case of `p(`2) can be proved using a variation of the
method of [8] (and there is also a much simpler proof for p > 2) and was known
to the second named author for a long time but not published (the simpler proof
for p > 2 is included in [7]).
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Recently, there were three paper which address this property for some of the
spaces B above and related questions again. This was done mostly because some
strengthening of this property was needed for other purposes. Firstly, Haydon,
Odell and Schlumprecht proved in [7, Theorem 6.8] that, for p > 2, any subspace
of Lp isomorphic to `p(`2) contains a subspace (1 + ε)-isomorphic to `p(`2) and
complemented in Lp by means of a projection of norm at most (1+ε)γp, γp being
the Lp norm of a standard Gaussian variable. Their proof uses the fact that a
similar theorem holds for the space `2 in Lp; i.e., any subspace of Lp, p > 2,
isomorphic to `2 contains a subspace (1 + ε)-isomorphic to `2 and complemented
in Lp by means of a projection of norm at most (1 + ε)γp. This later deep fact,
hidden already in Aldous’ [1], was recently given a simpler proof by Alspach [2].
The third paper is by Dosev, Johnson and the second named author [4, Theorem
3.4] from which the following follows:
For each 1 < p < ∞ there is a constant Kp, depending only on p such that if T :
Lp → Lp is an isomorphism (into) then there is a subspace X of Lp Kp-isomorphic
to Lp such that T|X is a Kp-isomorphism and T (X) is Kp-complemented in Lp.
We remark that a similar theorem for p = 1 (with the constant K1 arbitrarily
close to 1) is due to Enflo and Starbird [5]; see also [15] for a somewhat simpler
exposition.

The main purpose of the current paper is to prove a similar theorem for `p(`2).

Theorem 1.1. Let 1 < p 6= 2 < ∞, ε > 0 and let T : `p(`2)
onto→ X be an

isomorphism where X ⊂ Lp [0, 1]. Then there is a subspace Y ⊂ `p(`2) (1 +
ε)-isomorphic to `p(`2) such that T|Y is an (1 + ε)-isomorphism and T (Y ) is
complemented in Lp [0, 1] by means of a projection of norm at most (1 + ε)γp if
p > 2 and (1 + ε)γp/(p−1) if 1 < p < 2.

For p > 2 this theorem follows easily from the result of [7] mentioned above
so the main innovation here is the case 1 < p < 2. However, since the addition
needed to present a uniform proof for 1 < p < 2 and p > 2 is minimal, we shall
prove both cases. The proof is very much in the spirit of [4] but we wrote it in
such a manner that one does not need to refer to that paper.

2. Preliminaries

The proofs below will assume familiarity with basic techniques of Banach space
theory. In particular techniques related to bases. We shall use freely notions
like unconditional bases, block bases, small perturbations of bases, gliding hump
arguments and similar notions. They can all be found in the first chapter of [11].

Recall that the Haar system is the following sequence of functions on [0, 1]:
h0,0(t) ≡ 1 and, for n = 0, 1, . . . and i = 1, 2, . . . , 2n,

hn,i(t) =

 1 if t ∈ ((2i− 2)2−(n+1), (2i− 1)2−(n+1))
−1 if t ∈ ((2i− 1)2−(n+1), 2i2−(n+1))
0 otherwise

This system forms an unconditional basis for Lp = Lp[0, 1] for each 1 < p < ∞
(but not in L1 in which it is, in its natural order, a non-unconditional Schauder
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basis) see e.g. [12]. We denote by Hp its unconditional constant; i.e.,

‖
∑

an,ihn,i‖p ≤ Hp‖
∑

εn,ian,ihn,i‖p

for any sequence of coefficients {an,i} and any sequence of signs {εn,i}. (We shall
use the real field although all the arguments easily carry over to the complex
field with minimal changes, one of which should be in this definition). The best
constant Hp is known and is of order max{p, p/(p− 1)}.

Recall Khinchine’s inequality; For 1 ≤ p < ∞,

Ap(
n∑

i=1

a2
i )

1/2 ≤ (Ave±|
n∑

i=1

±ai|p)1/p ≤ Bp(
n∑

i=1

a2
i )

1/2

for all n and all coefficients {ai}n
i=1. The best constants Ap and Bp are known

and in particular Ap is between 2−1/2 and 1 for 1 ≤ p ≤ 2 and 1 for p > 1 and Bp

is 1 for 1 ≤ p ≤ 2 and of order p1/2 for p > 2.
We shall make an intensive use of the square function with respect to the Haar

system. For f ∈ Lp, 1 < p < ∞, with expansion f =
∑

an,ihn,i we denote its
square function with respect to the Haar system by

S(f) = (
∑

a2
n,ih

2
n,i)

1/2.

The unconditionality of the Haar system and Khinchine’s inequality easily imply
that

H−1
p Ap‖S(f)‖p ≤ ‖f‖p ≤ HpBp‖S(f)‖p, 1 < p < ∞.

Equi-integrability of some sets of functions will play an important role in the
sequel. Recall that a set F of Lebesgue integrable functions on [0, 1] is said to
be equi-integrable if for all ε > 0 there is a δ > 0 such that for every subset A of
[0, 1] of measure at most δ,

∫
A
|f |dt < ε for all f ∈ F . Equivalently, if For for all

ε > 0 there is a positive R such that
∫
|f |1|f |>Rdt < ε for all f ∈ F .

For 0 < r < ∞ the set F is r-equi-integrable if {|f |r ; f ∈ F} is equi-integrable.
Finally, by a K-isomorphism we mean a linear map T from one normed space

X into another Y such that A−1‖x‖ ≤ ‖Tx‖ ≤ B‖x‖ for all x ∈ X with AB ≤ K.
In particular, for small ε, a (1 + ε)-isomorphism T does not necessarily almost
preserve the norm of each x (as is sometimes assumed in other places) but of
course some multiple of T does.

3. Stabilizing embeddings of `2 into Lp

In this section we consider the analogue of Theorem 1.1 for the space `2 instead
of `p(`2). As we indicated above this theorem is known although not simple,
especially if one wants to achieve the best constants. (For a somewhat weaker
Theorem, in terms of the constants achieved, see Theorem 3.1 in [14].) The
purpose of this section is to survey its proof and point the reader to the relevant
references.

Theorem 3.1. Let ε > 0 and let T : `2 → Lp [0, 1], 1 ≤ p < ∞, be an isomor-
phism. Then there is an infinite dimensional subspace X ⊆ `2 such that T|X is
an (1 + ε)-isomorphism and, for 1 < p < ∞, TX is (1 + ε) γp-complemented in
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Lp. Here, for p > 2, γp is the Lp norm of a standard Gaussian variable and, for
1 < p < 2, the L p

p−1
norm of such a variable.

Note first that in order to prove the first part of the theorem, the existence
of a (1 + ε)-isomorphism on X ⊆ `2, it is enough to prove that T`2 contains a
Y which is (1 + ε)-isomorphic to `2. Indeed if this is the case let {fi}∞i=1 ⊆ Y
be a basis (1 + ε)-equivalent to an orthonormal basis of `2 and put ei = T−1fi,
i = 1, 2, . . . . Since {ei}∞i=1 is a weakly null sequence in `2 for which {‖ei‖}∞i=1 is
bounded and bounded away from zero, we may find a subsequence

{
eij

}∞
j=1

such

that
{
eij

}∞
j=1

is as small perturbation as we wish of an orthogonal sequence and{∥∥eij

∥∥}∞
j=1

is as close as we want to a constant sequence. X = span
{
eij

}∞
j=1

is

then the subspace we are after. That TX contains a subspace (1 + ε)-isomorphic
to `2 is by now well known and follows from the stability of Lp (see [9]).

We are left with the problem of complementation, and especially the norm of
the best projection. For p > 2 the theorem is specifically stated and proved in
[7]. There is a simpler proof in [2]. For 1 ≤ p < 2 this follows, as we shall indicate
momentarily from [1]. This is not at all an easy paper to follow and it would be
nice if somebody finds an easier proof maybe a-la-[2]. We shall only sketch how
to get the result from [1] and then give a much simpler argument which however
gives a somewhat weaker estimate.

Let Y ⊆ Lp [0, 1], 1 < p < 2, be isomorphic to `2. We would like to find
a subspace Y0 ⊆ Y (1 + ε)-isomorphic to `2 and (1 + ε) γ p

p−1
-complemented in

Lp [0, 1].
By [10] the unit ball of Y is p-equi-integrable and the L1 and Lp norms are

equivalent on Y . From here on we shall use the notations of [1]. By the combi-
nation of Proposition 3.9 and Theorem 3.10 of [1], there is a uniformly integrable

sequence Xn in Y such that i (Xn)
wm→ σ (q, α) for some 1 < q ≤ 2. Recall that

i (Xn) is the random measure δXn and that for random measures ξn, ξ, ξn
wm→ ξ

denotes 〈f, ξn〉
w→ 〈f, ξ〉 for all f ∈ C (R) (and

w→ denotes weak convergence in
L1). Finally, for a function α ≥ 0, σ (q, α) is the random measure whose char-
acteristic function is e−αq |t|q ; i.e., it is a mixture of symmetric q-stable random
variables.

In our case, by [1, Proposition 3.11] the only possible value for q is q = 2.
So we get a sequence Xn which tends in some sense to a mixture of Gaussian
variables. Proposition 3.11 and its proof then say that some subsequence of Xn is
(1 + ε) equivalent to the unit vector basis of `2. The proof really gives more: some
subsequence of Xn is arbitrarily close, in Lp norm to a sequence of the form αZn

where, given α, Zn are i.i.d N (0, 1). This means that after a change of density
we may assume that {Xn} is a small perturbation in the Lp norm of a sequence of
i.i.d N (0, 1) variables Zn. By a change of density we mean an operator of the form
Tϕ : Lp → Lp([0, 1], ϕdt), Tϕf = f

ϕ1/p where ϕ is a density which is strictly positive

on the union of the supports of the Xn-s. It is thus enough to show that the span
of such a sequence is γ p

p−1
complemented in Lp. Since {Zn}∞n=1 ⊆ L p

p−1
it is clearly

enough to show that the orthogonal projection P : L2
onto→ [Zn] has norm γ p

p−1
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when considered as an operator on L p
p−1

. Since for all f ∈ L p
p−1

(so also f ∈ L2)

Pf is a Gaussian variable ‖Pf‖ p
p−1

= γ p
p−1

‖Pf‖2 ≤ γ p
p−1

‖f‖2 ≤ γ p
p−1

‖f‖ p
p−1

.

This concludes the (admittedly very rough) sketch of the proof of Theorem 3.1

We now present a sketch of a proof of the complementation part for 1 < p <
2 which does not use [1], but gives a somewhat worse constant than (1 + ε) γ p

p−1
.

Let {fn}∞n=1 be a normalized sequence in TX which is (1 + ε) equivalent to the

unit vector basis of `2. Let gn = |fn|p−1 signfn so that ‖gn‖ p
p−1

= 1 and 〈gn, fn〉 =

1. Passing to a subsequence we may assume gn
w→ g. Since fn

w→ 0, passing to
another subsequence we may assume that {fn}∞n=1 and {gn − g}∞n=1 are arbitrarily
close to a biorthogonal sequence; i.e.∑

n,m

|〈fn, gm − g〉 − δnm| < ε

Note that 1− ε ≤ ‖gn − g‖ ≤ 2 for all n (the lower bound follows from
〈fn, gn − g〉 ≥ 1− ε). We may also assume, by passing to a further subsequence,
that gn − g is a martingale difference sequence (or a block basis of the Haar
system). Consequently, for all coefficients {an}∞n=1

‖
∑

an (gn − g)‖ p
p−1

≤ HpE ‖
∑
±an (gn − g)‖ p

p−1

≤ 2HpBp (
∑

a2
n)

1/2

where Hp is the unconditionality constant of the Haar basis and Bp = γ p
p−1

is the

type 2 constant of L p
p−1

. Define now P : Lp → [fn] by Pf =
∑∞

n=1 〈f, gn − g〉 fn

then it is easily seen that P is a projection of norm ≤ 2KpBp (1 + ε).

4. Proof of the main result

Here we shall prove Theorem 1.1. We shall denote by {ei,j}∞i,j=1 the canonical

basis of `p(`2) i.e., ∥∥∥∥∥
∞∑

i,j=1

ai,jei,j

∥∥∥∥∥ =

 ∞∑
j=1

(
∞∑
i=1

a2
i,j

)p/2
1/p

for all {ai,j}∞i,j=1 ⊆ R. By passing to a subsequence in each column of {ei,j}∞i,j=1, a

gliding hump argument (applied in the order (11) , (12) , (21) , (13) , (22) , (31) , ...
of the indices) and a simple perturbation argument, we can assume that for some
infinite subsequences Nj ⊆ N , {Tei,j}∞j=1,i∈Nj

is a block basis of the Haar system

in Lp. By that we mean that if the perturbed operator satisfies the conclusion of
the theorem so does the original one. Also, since {ei,j}∞j=1,i∈Nj

spans an isometric

`p(`2), and we are anyhow interested only in a subspace of `p(`2) isometric to
`p(`2), we may also assume that Nj = N for all j; i.e., {Tei,j}∞i,j=1 is a block basis
of the Haar system. We shall assume that from now on.

Given a finite E ⊆ N and i ∈ N set vi (E) = S
(∑

j∈E Tei,j

)
. The next two

lemmas are basically taken from [4]. We repeat the proofs for completeness.
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Lemma 4.1. For all finite E ⊆ N and 1 < p < 2 the convex hull of {v2
i (E)}i∈N

is p/2-equi-integrable; i.e., the set of p/2 powers of functions in the convex hull
of {v2

i (E)}i∈N is equi-integrable.

Proof. Fix a finite E ⊆ N and write vi = vi (E). Assume that the convex hull of
{v2

i }i∈N is not p/2-equi-integrable. Then, there exists ε0 > 0, a sequence {u2
j}j∈N

of disjoint convex blocks of {v2
i }i∈N (i.e. u2

j =
∑

i∈σj
α2

i,jv
2
i where σj are disjoint

subsets of N and
∑

i∈σj
α2

i,j ≤ 1) and disjoint subsets Bj such that
∫

Bj
|uj|p > ε0

for all j ∈ N. The fact that we can choose the sequence {u2
j} to be disjointly

supported with respect to {v2
i } follows from the easy fact that the convex hull of

a finite subset of {v2
i }∞i=1 is p/2-equi-integrable.

Now, For all {am}∞m=1 ∈ `2, we obtain the following inequality, contradicting
p < 2.

(
∑∞

m=1 a2
m)

1/2
= |E|−1/p

(∑
j∈E (

∑∞
m=1 a2

m)
p/2
)1/p

= |E|−1/p
∥∥∥∑∞

m=1 am

∑
i∈σm

αi,m

∑
j∈E ei,j

∥∥∥
`p(`2)

≥ |E|−1/p ‖T‖−1 H−1
p Ap

∥∥∥S (∑∞
m=1 am

∑
i∈σm

αi,m

∑
j∈E Tei,j

)∥∥∥
p

= |E|−1/p ‖T‖−1 H−1
p Ap

(∫
(
∑∞

m=1 a2
mu2

m (E))
p/2

dµ
)1/p

≥ |E|−1/p ‖T‖−1 H−1
p Ap

(∫
(
∑∞

m=1 a2
mu2

m (E) χBm)
p/2

dµ
)1/p

= |E|−1/p ‖T‖−1 H−1
p Ap

(∑∞
m=1 |am|p

∫
Bm

up
m (E) dµ

)1/p

≥ |E|−1/p ‖T‖−1 H−1
p Apε0 (

∑∞
m=1 |am|p)1/p

.

�

Lemma 4.2. There are successive convex combinations νk (·) of {v2
i (·)} such that

for all finite E ⊆ N νk (E) →
k→∞

Λ (E) in Lp/2. Λ (E) is a L+
p/2 additive valued

measure, Λ, on the finite subsets on N.

Proof. Case 1 (1 < p < 2): Let V = {(
∑∞

n=1 α2
nv

2
n) :

∑
α2

n ≤ 1}. Since V
is bounded in Lp/2, by a result of Nikishin [13] for each ε > 0 there is a set
D = Dε ⊂ [0, 1] of measure larger than 1 − ε such that supv∈V

∫
D

vdµ < ∞. As
in the proof of [8, Lemma 6.4 ] (or see [4, Proposition 5.2 ] for more details),
we can find successive convex combinations νk(·) of the v2

n(·) such that νk(E)1D

converges pointwise and in L1 to Λ(E)1D for every finite E ⊂ N, where Λ (E) is
L+

0 -valued (and Λ1D is L+
1 -valued). By passing to a subsequence of the νk and

a simple diagonal argument we can find, for every εn → 0 a sequence of sets Dn

with µ(Dn) > 1 − εn and such that νk(E)1Dn converges, as k → ∞, pointwise
and in L1 to Λ(E)1Dn for every finite E ⊂ N and every n. In particular, νk(E)
converges pointwise to Λ(E) for every finite E ⊂ N. It remains to show that the
convergence is also in Lp/2 (on the whole interval). Since for each E, {νk (E)}k∈N
is p/2-equi-integrable, it follows that, given any δ > 0, if n is large enough∫

Dc
n
νk(E)p/2dµ < δ for all k. Consequently, also

∫
Dc

n
Λ(E)p/2dµ ≤ δ and
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lim sup
k→∞

∫
|νk(E)− Λ(E)|p/2dµ ≤ lim sup

k→∞

∫
Dn

|νk(E)− Λ(E)|p/2dµ + 2δ

≤ lim sup
k→∞

‖(νk(E)− Λ(E))1Dn‖
p/2
1 + 2δ

= 2δ.

Case 2 (2 < p < ∞):

∥∥v2
i (E)

∥∥1/2

p/2
= ‖vi (E)‖p ≤ Hp

∥∥∥∥∥∑
j∈E

Tei,j

∥∥∥∥∥
p

≤ Hp ‖T‖

∥∥∥∥∥∑
j∈E

ei,j

∥∥∥∥∥
`p(`2)

= Hp ‖T‖ |E|
1
p .

Thus, there exists a subsequence of {v2
i }
∞
i=1 that converges weakly in Lp/2 [0, 1]

for every E ∈ 2N. Denote the limit by Λ (E). By the reflexivity of Lp/2 [0, 1]
and another diagonal argument, there exists a sequence {σk}∞k=1 of disjoint finite
subsets of the integers and non-negative numbers {αi}∞i=1 such that

∑
i∈σk

α2
i = 1

and
∑

i∈σk
α2

i v
2
i (E) → Λ (E) as k →∞ for all finite E where the convergence is

in the Lp/2 [0, 1] norm. Set νk (·) =
∑

i∈σk
α2

i v
2
i (·). νk is clearly additive on the

finite subsets of N. �

It is clear that the sequence {Λ ({j})}∞j=1 is positively equivalent to the unit

vector basis of `p/2; i.e., putting Λj = Λ ({j}),
∥∥∑ a2

jΛj

∥∥
p/2

≈ (
∑
|aj|p)2/p

for all

sequences of coefficients {aj}∞j=1. Next we would like to improve the equivalence
constant to be arbitrarily close to 1 by blocking the Λj-s.

Lemma 4.3. Let 1 < p < ∞, ε > 0 and εk ↘ 0. There are successive disjoint
σk ⊆ N k = 1, 2, ... and coefficients {αj}∞j=1 such that putting φk =

∑
j∈σk

α2
jΛj,

for all {ak}∞k=1,(
∞∑

k=1

|ak|p
)2/p

≤

∥∥∥∥∥
∞∑

k=1

a2
kφk

∥∥∥∥∥
p/2

≤ (1 + ε)

(
∞∑

k=1

|ak|p
)2/p

.

In addition, there are disjoint sets {Bk}∞k=1 such that
∥∥φk1Bc

k

∥∥ ≤ εk.

Proof. By the subsequence splitting lemma (see e.g. [3, Lemma 5.2.8]) we may
assume, passing to a subsequence, that there are disjoint sets {Aj}∞j=1 such that{

Λ
p/2
j 1Ac

j

}∞
j=1

is equi-integrable. For p > 2 this already implies that
∫

Λ
p/2
j 1Ac

j
→

0. Otherwise, there is an R > 0 and δ > 0 such that
∫

Λ
p/2
j 1Λj≤R ≥ δ for j ∈ J

for some infinite J ⊆ N and it would follow that for j ∈ J
∫

Λj ≥ δR1−p/2 and

for all coefficients {ai},
∫ (∑

a2
jΛj

)p/2 ≥
(∫ ∑

a2
jΛj

)p/2 ≥ δp/2R
p
2(1− p

2)
(∑

a2
j

)p/2
,

contradicting the positive equivalence to the unit vector basis of `p/2. We can now
take the σk-s to be singletons and Bk-s to be some subsequence of the Aj-s.

For 1 < p < 2, the proof is a bit more complicated. Set hj = Λj1Ac
j

and let
δk ↘ 0 be a sequence to be determined later. By the equi-integrability, there
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exists an R > 0 such that∫ ∣∣∣∣∣ 1

n2/p

n∑
j=1

hj1{hj≥R}

∣∣∣∣∣
p/2

dµ ≤ 1

n

n∑
i=1

∫
h

p/2
j 1{hj≥R}dµ ≤ δ

p/2
1

2
.

We also have,∫ ∣∣∣∣∣ 1

n2/p

n∑
j=1

hj1{hj<R}

∣∣∣∣∣
p/2

dµ <

∫ ∣∣∣∣∣ 1

n2/p

n∑
j=1

R

∣∣∣∣∣
p/2

dµ = Rp/2 1

n
np/2 ≤ δ

p/2
1

2

for n sufficiently large. Set m1 = 1
n2/p

∑n
j=1 Λj and B1 = ∪n

j=1Aj. Then∫ ∣∣m11Bc
1

∣∣p/2
dµ =

∫ ∣∣∣ 1
n2/p

∑n
j=1 Λj1Bc

1

∣∣∣p/2

dµ

≤
∫ ∣∣∣ 1

n2/p

∑n
j=1 Λj1Ac

j

∣∣∣p/2

dµ ≤ δ
p/2
1 .

Similarly, we find m2 = 1

(n2−n1)2/p

∑n2

j=n1+1 Λj and B2 = ∪n2
j=n1+1Aj that satisfy∫ ∣∣m21Bc

2

∣∣p/2
dµ ≤ δ

p/2
2 .

Continuing in this manner we find mi = 1

(ni−ni−1)2/p

∑ni

j=ni−1+1 Λj and disjoint

{Bj} satisfying
∫ ∣∣mi1Bc

i

∣∣p/2
dµ ≤ δ

p/2
i . The sequence {‖mk‖p/2} is bounded and

bounded away from zero. Consequently, putting Φk = mk

‖mk‖p/2
we get that for an

appropriate choice of the δk-s, {Φk, Bk} satisfy the conclusion of the lemma. �

Proof of Theorem 1.1 In the following let σk and αj be as in the state-
ment of Lemma 4.3. Let εl,k > 0 and for each k let {σl,k}∞l=1 be successive
finite subsets of N and {βi,k}i∈σl,k

coefficients such that
∑

i∈σl,k
β2

i,k = 1 and∥∥∥∑i∈σl,k
β2

i,kν
2
i (σk)− Λ (σk)

∥∥∥
p/2

< εl,k. Then∥∥∥∥∥∥
∑
j∈σk

α2
j

∑
i∈σl,k

β2
i,kν

2
i (j)−

∑
j∈σk

α2
jΛj

∥∥∥∥∥∥
p/2

≤
(

max
j∈σk

|αj|p
)2/p

εl,k.

Put fl,k =
∑

j∈σk
αj

∑
i∈σl,k

βi,kei,j. Then, if the εl,k-s are small enough,∥∥∥∑l,k al,kfl,k

∥∥∥
`p(`2)

≈
∥∥∥∑l,k a2

l,kS
2 (T (fl,k))

∥∥∥1/2

p/2

=
∥∥∥∑l,k a2

l,k

∑
j∈σk

α2
j

∑
i∈σl,k

β2
i,kν

2
i (j)

∥∥∥1/2

p/2

1+ε
≈

∥∥∥∑l,k a2
l,k

∑
j∈σk

α2
jΛj

∥∥∥1/2

p/2

1+ε
≈

(∑∞
k=1

(∑∞
l=1 a2

l,k

)p/2
)1/p

.

This shows that {fl,k}∞,∞
l=1,k=1 is equivalent to the unit vector basis of `p(`2). The

constant of the equivalence depends however on ‖T‖ , ‖T−1‖ and p. We next
correct this: we can find, for each k, a block basis gu,k =

∑
l∈τu,k

γl,kfl,k, u =
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1, 2, ..., such that ‖
∑∞

u=1 augu,k‖`p(`2)

1+ε
≈ (

∑
a2

u)
1/2

.

Since for each k gu,k is supported only on columns in σk, we get from that that
{gu,k}u,k is (1 + ε)-equivalent to the unit vector basis of `p(`2).

Next we would like to apply a similar stabilization procedure to {T (gu,k)}u,k.

This of course is more complicated since this sequence does not lie in `p(`2) any
more.

Note that, by passing to further subsequences we may assume that for some
positive constant b (depending on T ), and for all k and {an} with

∑∞
n=1 a2

n = 1∥∥∥∥∥S2

(
∞∑

n=1

anTgn,k

)
− bφk

∥∥∥∥∥
p/2

< εk

where εk is the preassigned sequence appearing in Lemma 4.3. In particular,∥∥S2 (
∑∞

n=1 anTgn,k)1Bc
k

∥∥p/2

p/2

≤
∥∥(S2 (

∑∞
n=1 anTgn,k)− bφk)1Bc

k

∥∥p/2

p/2
+ bp/2

∥∥φk1Bc
k

∥∥p/2

p/2

≤ ε
p/2
k + bp/2ε

p/2
k .

This shows that any sequence of the form {S(
∑∞

n=1 an,kTgn,k)}∞k=1 with, say,∑∞
n=1 a2

n,k = 1 for all k is essentially (with respect to the Lp norm) disjointly
supported. We would like to have a similar statement with the S removed. This
is where the Haar functions (rather than some other unconditional basis of Lp)
play a role. First we may assume that the sets Bk are each a finite union of
dyadic intervals. Next notice that for each k if l is large enough then Tfl,k is a
dyadic simple function such that each Haar function appearing in its expansion
(with non zero coefficient) has support which is either contained or disjoint of
Bk. Consequently,

S (Tfl,k1Bk
) = S (Tfl,k)1Bk

and S
(
Tfl,k1Bc

k

)
= S (Tfl,k)1Bc

k
. (4.1)

In particular, this implies that for some constant Kp (depending on p only), for
all k and all {an}∞n=1,∥∥(∑∞

n=1 anTgn,k)1Bc
k

∥∥
p
≤ Kp

∥∥S2 (
∑∞

n=1 anTgn,k)1Bc
k

∥∥1/2

p/2

≤ Kp

(
1 + bp/2

)1/p
ε
1/2
k (

∑∞
n=1 a2

n)
1/2

.

We thus get that if εk are chosen small enough, the two sequences {Tgn,k1Bk
}∞n,k=1

and {Tgn,k}∞n,k=1 are small perturbations one of the other. Define T̃ : `p(`2) →
[(Tgn,k)1Bk

]∞n,k=1 by T̃ en,k = (Tgn,k)1Bk
. The perturbation above is such that

if we show that for some subspace X ⊂ `p(`2), spanned by blocks {un,k}∞n,k=1 of

{en,k}∞n,k=1 1-equivalent to the unit vector basis of `p(`2), and such that
{

T̃ un,k

}∞
n,k=1

is (1 + ε)-equivalent to a multiple of the unit vector basis of `p(`2) and
[
T̃ un,k

]∞
n,k=1

is (1 + ε) γp/(p−1)-complemented in Lp, then the same (with 1+2ε replacing 1+ε)
holds for {Tun,k}∞n,k=1.
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The way we choose un,k is similar to the way we have chosen gn,k: since for
each k {Tgn,k}∞k=1 is equivalent to the unit vector basis of `2 we can find blocks
{un,k} of {gn,k} such that {(Tun,k)1Bk

} (which are blocks of {(Tgn,k)1Bk
}∞n,k=1)

are (1 + ε) equivalent to the unit vector basis of `2 and (1 + ε) γp complemented in
Lp. Call the projection Pk. Note also that we may assume that the `2 norm of the
coefficients of {Tun,k} relative to {Tfn,k} all differ by a multiplicative constant of
at most 1+ε. (This is important since we want T|X to be a (1 + ε)-isomorphism).
Finally, define P : Lp → [(Tun,k)1Bk

] by Pf =
∑

Pk (f1Bk
). �

5. Concluding remarks

1. We first remark that the constants γp and γp/(p−1) that appear in the statement
of Theorem 1.1 (and also in the theorem in section 3) are best possible. Actually,
these are lower bounds on the norm of the best projection onto an (isometric) `2

subspace of Lp. This was proved in [6].
2. If one wants to avoid the use of the material in section 3 at the price of getting
worse constants, still depending only on p, one can use [14, Theorem 3.1] instead.
3. As we already remarked, it would be nice if somebody comes up with a simpler
proof of the theorem of section 3. Maybe along the lines of [2].
4. Since `2 is not isomorphic to a complemented subspace of L1 there is of course
no complete analogue of Theorem 1.1 for L1. However, the weaker statement
that any isomorphism T : `1(`2) → L1 stabilizes; i.e., is a (1 + ε)-isomorphism
when restricted to some subspace of `1(`2) (1 + ε)-isomorphic to `1(`2) , is still
possible. Of course the proof as is written above makes an heavy use of the
unconditionality of the Haar system and thus cannot be used. However, note that
for most of the proof we could replace the Haar system with any unconditional
basic sequence containing T (`1(`2)), even with constant depending on T . So we
could use Tei,j as such a sequence. The problem is in (4.1) where we use the
“eventual commutativity” of the square function operation and the restriction to
a given dyadic set. This seems like a not very essential use of the Haar system
but we couldn’t overcome it easily and we leave it for future research.
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