

Banach J. Math. Anal. 5 (2011), no. 2, 6-14
Banach $\mathbf{J o u r n a l}_{\text {of }} \mathbf{M a t h e m a t i c a l ~}^{\mathbf{A}_{\text {nalysis }}}$
ISSN: 1735-8787 (electronic)
www.emis.de/journals/BJMA/

QUASI-MULTIPLIERS OF THE DUAL OF A BANACH ALGEBRA

M. ADIB ${ }^{1}$, A. RIAZI ${ }^{2 *}$ AND J. BRAČIČ ${ }^{3}$
Communicated by M. Brešar

Abstract

In this paper we extend the notion of quasi-multipliers to the dual of a Banach algebra A whose second dual has a mixed identity. We consider algebras satisfying weaker condition than Arens regularity. Among others we prove that for an Arens regular Banach algebra which has a bounded approximate identity the space $Q M_{r}\left(A^{*}\right)$ of all bilinear and separately continuous right quasi-multipliers of A^{*} is isometrically isomorphic to $A^{* *}$. We discuss the strict topology on $Q M_{r}\left(A^{*}\right)$ and apply our results to C^{*}-algebras and to the group algebra of a compact group.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier on a Banach algebra and was introduced by Akemann and Pedersen [1] for C^{*} algebras. McKennon [15] extended the definition to a general complex Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A bilinear mapping $m: A \times A \rightarrow A$ is a quasi-multiplier on A if

$$
m(a b, c d)=a m(b, c) d \quad(a, b, c, d \in A) .
$$

Let $Q M(A)$ denote the set of all separately continuous quasi-multipliers on A. It is showed in [15] that $Q M(A)$ is a Banach space for the norm $\|m\|=\sup \{\|m(a, b)\|$; $a, b \in A,\|a\|=\|b\|=1\}$. For some classical Banach algebras, the Banach space of quasi-multipliers may be identified with some other known space or algebras.

Date: Received: 13 July 2010; Revised: 9 September; Accepted: 8 October 2010.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 47B48; Secondary 46H25.
Key words and phrases. Quasi-multiplier, multiplier, Banach algebra, second dual, Arens regularity.

For instance, by [15, Corollary of Theorem 22], one can identify $Q M\left(L_{1}(G)\right)$, where G is a locally compact Hausdorff group, with the measure algebra $M(G)$.

After McKennon's seminal paper the theory of quasi-multipliers on Banach algebras was developed further by Vasudevan and Goel and Takahasi[18], Vasudevan and Goel [17], Kassem and Rowlands [8], Lin [12, 13, 14], Dearden [5], Argün and Rowlands [2], Grosser [7], and Yilmaz and Rowlands [20]. Recently quasimultipliers have been studied in the context of operator spaces by Kaneda and Paulsen [10] and Kaneda [9].

In [7] and [2, p. 235] the notion of quasi-multiplier is extended to the dual of a Banach algebra and concrete representations of the space $Q M\left(A^{*}\right)$ has been given in the case of the algebra $K_{0}(X)$ of all approximable operators on a Banach space X. The aim of this paper is to present a few new statements on quasi-multipliers of the dual A^{*} of a Banach algebra A whose second dual has a mixed identity. Before we state our main results the basic notation is introduced. We mainly adopt the notations from the monograph [4]. The reader is referred to this book for some results used in this paper, as well.

For a Banach space X, let X^{*} be its topological dual. The pairing between X and X^{*} is denoted by $\langle\cdot, \cdot\rangle$. We always consider X naturally embedded into $X^{* *}$ through the mapping π, which is given by $\langle\pi(x), \xi\rangle=\langle\xi, x\rangle \quad\left(x \in X, \xi \in X^{*}\right)$.

Let A be a Banach algebra. It is well known that on the second dual $A^{* *}$ there are two algebra multiplications called the first and the second Arens product, respectively. Since in the paper we use mainly the first Arens product, we recall its definition. Let $a \in A, \xi \in A^{*}$, and $F, G \in A^{* *}$ be arbitrary. Then one defines $\xi \cdot a$ and $G \cdot \xi$ as $\langle\xi \cdot a, b\rangle=\langle\xi, a b\rangle$ and $\langle G \cdot \xi, b\rangle=\langle G, \xi \cdot b\rangle$, where $b \in A$ is arbitrary. Now, the first Arens product of F and G is an element $F \circ G$ in $A^{* *}$ which is given by $\langle F \circ G, \xi\rangle=\langle F, G \cdot \xi\rangle$, where $\xi \in A^{*}$ is arbitrary. The second Arens product, which we denote by \circ^{\prime}, is defined in a similar way.

The space $A^{* *}$ equipped with the first (or second) Arens product is a Banach algebra and A is a subalgebra of it. It is said that A is Arens regular if the equality $F \circ G=F \circ^{\prime} G$ holds for all $F, G \in A^{* *}$. For example, every C^{*}-algebra is Arens regular, see [3]. Note however that $F \circ a=F \circ^{\prime} a$ and $a \circ F=a \circ^{\prime} F$ hold for any $a \in A$ and $F \in A^{* *}$.

By $A^{*} A$ we denote the subspace $\left\{\xi \cdot a ; \xi \in A^{*}, a \in A\right\}$ of A^{*}. Similarly, $A A^{*}=\left\{a \cdot \xi ; a \in A, \xi \in A^{*}\right\}$. If $A^{*} A=A^{*}$, then we say that A^{*} factors on the left. Similarly, A^{*} factors on the right if $A A^{*}=A^{*}$. Ülger [16] has proved that if A is Arens regular and has a b.a.i., then A^{*} factors on both sides.

An element E in the second dual $A^{* *}$ is said to be a mixed identity if it is a right identity for the first and a left identity for the second Arens product. By [4, Proposition 2.6.21], an element $E \in A^{* *}$ is a mixed identity if and only if $E \cdot \xi=\xi=\xi \cdot E$, for every $\xi \in A^{*}$. Note that $A^{* *}$ has a mixed identity if and only if A has a b.a.i.

2. Main Results

Let A be a complex Banach algebra. Assume that $A^{* *}$ is endowed with the first Arens product and A^{*} is a Banach $A^{* *}$-bimodule in the natural way. The following is an extension of a definition given in [7].

Definition 2.1. A bilinear mapping $m: A^{*} \times A^{* *} \rightarrow A^{*}$ is a right quasi-multiplier of A^{*} if

$$
\begin{equation*}
m(F \cdot \xi, G)=F \cdot m(\xi, G) \quad \text { and } \quad m(\xi, G \circ F)=m(\xi, G) \cdot F \tag{2.1}
\end{equation*}
$$

hold for arbitrary $\xi \in A^{*}$ and $F, G \in A^{* *}$.
Similarly, a bilinear mapping $m^{\prime}: A^{* *} \times A^{*} \rightarrow A^{*}$ is a left quasi-multiplier of A^{*} if

$$
m^{\prime}(F \circ G, \xi)=F \cdot m^{\prime}(G, \xi) \quad \text { and } \quad m^{\prime}(G, \xi \cdot F)=m^{\prime}(G, \xi) \cdot F
$$

hold for arbitrary $\xi \in A^{*}$ and $F, G \in A^{* *}$.
Although in our investigation we do not assume Arens regularity, we usually have to assume that the given algebra satisfies the following weaker condition. We say that a Banach algebra A satisfies condition (K) if

$$
(F \cdot \xi) \cdot G=F \cdot(\xi \cdot G) \quad\left(F, G \in A^{* *}, \xi \in A^{*}\right)
$$

Of course, every Arens regular Banach algebra satisfies condition (K). However, the class of Banach algebras satisfying (K) is larger. It contains, for instance, every Banach algebra A which is an ideal in its second dual. Namely, for arbitrary $F, G \in A^{* *}$ and $\xi \in A^{*}$, we have

$$
\begin{gathered}
\langle(F \cdot \xi) \cdot G, a\rangle=\langle\pi(a),(F \cdot \xi) \cdot G\rangle=\left\langle G \circ^{\prime} \pi(a), F \cdot \xi\right\rangle=\left\langle\left(G \circ^{\prime} \pi(a)\right) \circ F, \xi\right\rangle \\
=\left\langle G \circ^{\prime}(\pi(a) \circ F), \xi\right\rangle=\langle\pi(a) \circ F, \xi \cdot G\rangle=\langle F \cdot(\xi \cdot G), a\rangle \quad(a \in A) .
\end{gathered}
$$

Thus, the class of algebras satisfying the condition (K) is strictly larger than the class of Arens regular algebras. Note however that a unital Banach algebra satisfies condition (K) if and only if it is Arens regular. Indeed, if 1 is the identity for A, then $\pi(1)$ is the identity for $\left(A^{* *}, \circ\right)$ and $\left(A^{* *}, \circ \prime\right)$. Assume that A satisfies the condition (K). For arbitrary $F, G \in A^{* *}$ and $\xi \in A^{*}$, one has

$$
\begin{aligned}
\langle F \circ G, \xi\rangle & =\langle F, G \cdot \xi\rangle=\left\langle F \circ^{\prime} \pi(1), G \cdot \xi\right\rangle=\langle\pi(1),(G \cdot \xi) \cdot F\rangle \\
& =\langle\pi(1), G \cdot(\xi \cdot F)\rangle=\langle\pi(1) \circ G, \xi \cdot F\rangle=\langle G, \xi \cdot F\rangle=\left\langle F \circ^{\prime} G, \xi\right\rangle
\end{aligned}
$$

which means that the condition (K) implies Arens regularity.
If A is a Banach algebra satisfying condition (K) and $A^{* *}$ has a mixed identity, then a map $m: A^{*} \times A^{* *} \rightarrow A^{*}$ is a quasi-multiplier of A^{*} if and only if

$$
\begin{equation*}
m(F \cdot \xi, G \circ H)=F \cdot m(f, G) \cdot H \tag{2.2}
\end{equation*}
$$

holds for arbitrary $F, G, H \in A^{* *}$ and $\xi \in A^{*}$. Indeed, it is obvious that every bilinear mapping satisfying (2.1) satisfies (2.2) as well. On the other hand, if m satisfies (2.2) and E is a mixed identity for $A^{* *}$, then one has

$$
m(F \cdot \xi, G)=m(F \cdot \xi, G \circ E)=F \cdot m(\xi, G) \cdot E=F \cdot m(\xi, G)
$$

Similarly, $m(\xi, G \circ H)=m(\xi, G) \cdot H$.

Let $Q M_{r}\left(A^{*}\right)$ be the set of all bilinear and separately continuous right quasimultipliers of A^{*}. It is obvious that $Q M_{r}\left(A^{*}\right)$ is a linear space. Moreover, it is a Banach space with respect to the norm

$$
\|m\|=\sup \left\{\|m(\xi, F)\| ; \quad \xi \in A^{*}, F \in A^{* *},\|\xi\| \leq 1,\|F\| \leq 1\right\}
$$

Of course, the same holds for $Q M_{l}\left(A^{*}\right)$, the set of all bilinear and separately continuous left quasi-multipliers of A^{*}.

Proposition 2.2. Let A be a Banach algebra satisfying condition (K). Then $Q M_{r}\left(A^{*}\right)$ is a Banach $A^{* *}$-bimodule in a natural way.

Proof. Let $m \in Q M_{r}\left(A^{*}\right)$ and $H \in A^{* *}$ be arbitrary. Define $H * m$ and $m * H$ as $H * m(\xi, G)=m(\xi \cdot H, G)$ and $m * H(\xi, G)=m(\xi, H \circ G)$, where $\xi \in A^{*}$ and $G \in A^{* *}$ are arbitrary. Since equalities

$$
\begin{aligned}
H * m(F \cdot \xi, G) & =m((F \cdot \xi) \cdot H, G)=m(F \cdot(\xi \cdot H), G) \\
& =F \cdot m(\xi \cdot H, G)=F \cdot(H * m(\xi, G))
\end{aligned}
$$

and

$$
H * m(\xi, G \circ F)=m(\xi \cdot H, G \circ F)=(H * m(\xi, G)) \cdot F
$$

hold for all $\xi \in A^{*}$ and $F, G \in A^{* *}$ we conclude that $H * m$ is a quasi-multiplier. The boundedness of $H * m$ follows from $\|m(\xi \cdot H, G)\| \leq\|m\|\|\xi\|\|H\|\|G\|$. Thus, $H * m \in Q M_{r}\left(A^{*}\right)$. A similar reasoning gives $m * H \in Q M_{r}\left(A^{*}\right)$.

It is easily seen that equalities $\left(H_{1} \circ H_{2}\right) * m=H_{1} *\left(H_{2} * m\right), m *\left(H_{1} \circ H_{2}\right)=$ $\left(m * H_{1}\right) * H_{2}$, and $\left(H_{1} * m\right) * H_{2}=H_{1} *\left(m * H_{2}\right)$ hold for arbitrary $m \in Q M_{r}\left(A^{*}\right)$ and $H_{1}, H_{2} \in A^{* *}$.

For some Banach algebras A, there is a natural multiplication on the dual A^{*}. The following observation is related to Proposition 2.2. If A^{*} is a Banach algebra with multiplication \diamond which is compatible with the $A^{* *}$-bimodule structure of A^{*} in the sense that $F \cdot(\xi \diamond \eta)=(F \cdot \xi) \diamond \eta$ holds for arbitrary $\xi, \eta \in A^{*}$ and $F \in A^{* *}$. Then $Q M_{r}\left(A^{*}\right)$ has a natural structure of a left Banach A^{*}-module. Namely, the product $\eta \star m$ of $\eta \in A^{*}$ and $m \in Q M_{r}\left(A^{*}\right)$ is given by $\eta \star m(\xi, F)=m(\xi \diamond \eta, F)$, where $\eta, \xi \in A^{*}$ and $F \in A^{* *}$ are arbitrary.

Let A be a general Banach algebra. Then a map $T: A^{*} \rightarrow A^{*}$ is called a right multiplier of A^{*} if

$$
T(F \cdot \xi)=F \cdot T(\xi)
$$

for all $\xi \in A^{*}, F \in A^{* *}$. With $M_{r}\left(A^{*}\right)$ we denote the space of all bounded linear right multipliers on A^{*}. It is obvious that for each $F \in A^{* *}$ the right multiplication operator $R_{F} \xi=\xi \cdot F$ is a right multiplier on A^{*}. If $A^{* *}$ has a mixed identity, then each bounded linear right multiplier on A^{*} is a right multiplication operator. Indeed, let E be a mixed identity for $A^{* *}$ and $T \in M_{r}\left(A^{*}\right)$ be arbitrary. Then equalities

$$
\langle T \xi, a\rangle=\langle E \circ a, T \xi\rangle=\langle E, T(a \cdot \xi)\rangle=\left\langle R_{T^{*}(E)} \xi, a\right\rangle
$$

hold for all $a \in A$ and $\xi \in A^{*}$, which means $T=R_{T^{*}(E)}$.

Theorem 2.3. If $A^{* *}$ has a mixed identity, then

$$
\rho_{T}(\xi, F)=(T \xi) \cdot F \quad\left(T \in M_{r}\left(A^{*}\right), \xi \in A^{*}, F \in A^{* *}\right)
$$

defines an injective linear map $\rho: M_{r}\left(A^{*}\right) \rightarrow Q M_{r}\left(A^{*}\right)$ with norm $\|\rho\| \leq 1$. Moreover, ρ is onto if $A^{* *}$ has an identity. If $A^{* *}$ has a mixed identity with norm one, then ρ is an isometry.

Proof. Let $T \in M_{r}\left(A^{*}\right)$ be arbitrary. It is obvious that ρ_{T} is a bilinear map from $A^{*} \times A^{* *}$ to A^{*} and that it is bounded with $\|T\|$. For $a \in A, \xi \in A^{*}$, and $F, G \in A^{* *}$, we have

$$
\rho_{T}(F \cdot \xi, G)=T(F \cdot \xi) \cdot G=(F \cdot T \xi) \cdot G=F \cdot(T \xi \cdot G)=F \cdot \rho_{T}(\xi, G)
$$

and

$$
\rho_{T}(\xi, G \circ F)=(T \xi) \cdot(G \circ F)=(T \xi \cdot G) \cdot F=\rho_{T}(\xi, G) \cdot F .
$$

Thus, $\rho_{T} \in Q M_{r}\left(A^{*}\right)$. It follows from the definition that $\rho: M_{r}\left(A^{*}\right) \rightarrow Q M_{r}\left(A^{*}\right)$ is linear. Obviously, $\left\|\rho_{T}\right\| \leq\|T\|$, which gives $\|\rho\| \leq 1$. Let $E \in A^{* *}$ be a mixed identity. If $\rho_{T}=0$, then we have $(T \xi) \cdot E=0$ for every $\xi \in A^{*}$ and consequently $T=0$. Assume that E is an identity for $A^{* *}$. Let $m \in Q M_{r}\left(A^{*}\right)$ be arbitrary. It is easily seen that $T \xi=m(\xi, E)\left(\xi \in A^{*}\right)$ defines a bounded right multiplier of A^{*}. Since equalities $\rho_{T}(\xi, F)=(T \xi) \cdot F=m(\xi, E) \cdot F=m(\xi, E \circ F)=m(\xi, F)$ hold for all $\xi \in A^{*}$ and $F \in A^{* *}$ we conclude that ρ is onto.

At the end assume that E is mixed identity for $A^{* *}$ of norm one. Let $T \in$ $M_{r}\left(A^{*}\right)$ and $\varepsilon>0$ be arbitrary. If $\xi \in A^{*}$ is such that $\|\xi\| \leq 1$ and $\|T\|-\varepsilon<\|T \xi\|$, then

$$
\left\|\rho_{T}\right\| \geq\left\|\rho_{T}(\xi, E)\right\|=\|T \xi\|>\|T\|-\varepsilon
$$

Thus, ρ is an isometry.
Corollary 2.4. If A is a C^{*}-algebra, then ρ is an isometrical isomorphism from $M_{r}\left(A^{*}\right)$ onto $Q M_{r}\left(A^{*}\right)$.

Proof. It is well known that every C^{*}-algebra is Arens regular and has b.a.i. Thus, A satisfies condition (K) and its second dual $A^{* *}$ is unital.

If A is a Banach algebra satisfying condition (K) and $A^{* *}$ has an identity, then Theorem 2.3 allows a natural definition of multiplication in $Q M_{r}\left(A^{*}\right)$. Namely, for arbitrary $m_{1}, m_{2} \in Q M_{r}\left(A^{*}\right)$, let $T_{1}, T_{2} \in M_{r}\left(A^{*}\right)$ be uniquely determined multipliers satisfying $m_{1}=\rho_{T_{1}}$ and $m_{2}=\rho_{T_{2}}$. Then

$$
m_{1} \circ_{\rho} m_{2}=\rho_{T_{1}} \circ_{\rho} \rho_{T_{2}}:=\rho_{T_{2} T_{1}}
$$

gives a well defined multiplication. It is easy to see that $Q M_{r}\left(A^{*}\right)$ is a unital Banach algebra.

Note that $Q M_{l}\left(A^{*}\right)$ as well has a natural multiplication if A is a Banach algebra satisfying condition (K) and $A^{* *}$ has a mixed identity. Indeed, let $M_{l}\left(A^{*}\right)$ be the space of all bounded left multipliers on A^{*}, i.e., bounded linear operators T on A^{*} satisfying $T(\xi \cdot F)=T \xi \cdot F$, for all $\xi \in A^{*}$ and $F \in A^{* *}$. A similar reasoning as in Theorem 2.3 shows that the mapping $\lambda: M_{l}\left(A^{*}\right) \rightarrow Q M_{l}\left(A^{*}\right)$, which is defined by

$$
\lambda_{S}(F, \xi)=F \cdot S \xi \quad\left(S \in M_{l}\left(A^{*}\right), \xi \in A^{*}, F \in A^{* *}\right)
$$

is a linear bijection. Thus, a natural multiplication on $Q M_{l}\left(A^{*}\right)$ is given by $\lambda_{S_{1}} \circ_{\lambda} \lambda_{S_{2}}:=\lambda_{S_{1} S_{2}}$.

If A is a Banach algebra such that $A^{* *}$ has an identity, say E, of norm one, then one can identify $Q M_{r}\left(A^{*}\right)$ by $M_{r}\left(A^{*}\right)$ and $Q M_{l}\left(A^{*}\right)$ by $M_{l}\left(A^{*}\right)$. Since right multipliers on A^{*} are precisely right multiplication operators with elements in $A^{* *}$ and left multipliers are left multiplication operators with same elements we conclude that if $A^{* *}$ has an identity of norm one, then Banach algebras $Q M_{r}\left(A^{*}\right)$ and $Q M_{l}\left(A^{*}\right)$ are isomorphic.

Theorem 2.5. Let A be a Banach algebra satisfying condition (K) and $A^{* *}$ has an identity E. Assume A^{*} factors on the right. Then there exists an isomorphism of $A^{* *}$ onto $Q M_{r}\left(A^{*}\right)$.

Proof. Define a map $\psi: A^{* *} \rightarrow Q M_{r}\left(A^{*}\right)$ by $\psi(H)=\rho_{R_{H}}$, where R_{H} is the right multiplication operator on A^{*} determined by $H \in A^{* *}$. Then, for arbitrary $\xi \in A^{*}, F \in A^{* *}$,

$$
\psi(H)(\xi, F)=(\xi \cdot H) \cdot F
$$

We check only the multiplicativity of ψ since the linearity and continuity are evident. Let $H_{1}, H_{2} \in A^{* *}$. By Theorem 2.3, there exist $T_{1}, T_{2} \in M_{r}\left(A^{*}\right)$ such that $\psi\left(H_{1}\right)=\rho_{T_{1}}$ and $\psi\left(H_{2}\right)=\rho_{T_{2}}$. Hence, for arbitrary $\xi \in A^{*}, F \in A^{* *}$, we have

$$
T_{1}(\xi) \cdot F=\left(\xi \cdot H_{1}\right) \cdot F \quad \text { and } \quad T_{2}(\xi) \cdot F=\left(\xi \cdot H_{2}\right) \cdot F
$$

It follows

$$
\begin{aligned}
\left(\psi\left(H_{1}\right) \circ_{\rho} \psi\left(H_{2}\right)\right)(\xi, F) & =\rho_{T_{2} T_{1}}(\xi, F)=T_{2}\left(T_{1}(\xi)\right) \circ F=T_{1} \xi \cdot\left(H_{2} \circ F\right) \\
& =\xi \cdot\left(H_{1} \circ H_{2} \circ F\right)=\psi\left(H_{1} \circ H_{2}\right)(\xi, F),
\end{aligned}
$$

which means ψ is a homomorphism.
Assume that $\psi(H)=0$ for $H \in A^{* *}$. Since the mapping ρ is one to one $R_{H}=0$. Hence, for each $\xi \in A^{*}$, one has $\xi \circ H=0$. Since, by the assumption, A^{*} factors on the right, we conclude $H=0$. Thus, ψ is one to one. Homomorphism ψ is onto, as well. Namely, if $m \in Q M_{r}\left(A^{*}\right)$, then there exist $T \in M_{r}\left(A^{*}\right)$ such that $m=\rho_{T}=\rho_{R_{T^{*}(E)}}=\psi\left(T^{*}(E)\right)$.

The previous theorem holds, for instance, for every Arens regular Banach algebra with a b.a.i., in particular for every C^{*}-algebra.

Let H be a Hilbert space and let $A=K(H)$, the algebra of all compact operators on H . The dual of the space of compact operators is the space of all trace-class operators, $C_{1}(H)$. The second dual of A is $B(H)$. Since $K(H)$ is a C^{*}-algebra we have $Q M_{r}\left(C_{1}(H)\right) \cong B(H)$.
Theorem 2.6. Let A be a Banach algebra satisfying condition (K) and assume that $A^{* *}$ has an identity E. If $A^{* *}$ is Arens regular then $Q M_{r}\left(A^{*}\right)$ is Arens regular.

Proof. Let ψ be as in the proof of Theorem 2.5. Thus, it is an onto homomorphism. Of course, $\psi^{* *}:\left(A^{* *}\right)^{* *} \rightarrow\left(Q M_{r}\left(A^{*}\right)\right)^{* *}$ has the same property, as well. Let $\tilde{F}, \tilde{G} \in\left(Q M_{r}\left(A^{*}\right)\right)^{* *}$. Then there exist $F, G \in\left(A^{* *}\right)^{* *}$ such that $\psi^{* *}(F)=\tilde{F}, \psi^{* *}(G)=\tilde{G}$. Thus,

$$
\tilde{F} \circ \tilde{G}=\psi^{* *}(F) \circ \psi^{* *}(G)=\psi^{* *}(F \circ G)=\psi^{* *}\left(F \circ^{\prime} G\right)=\tilde{F} \circ^{\prime} \tilde{G}
$$

Beside the norm topology there are two other useful topologies on $Q M_{r}\left(A^{*}\right)$. The first is the strict topology β which is given by seminorms

$$
m \rightarrow\|m * F\| \quad\left(F \in A^{* *}, m \in Q M_{r}\left(A^{*}\right)\right)
$$

The second is the quasi-strict topology γ. It is given by seminorms

$$
m \rightarrow\|m(\xi, F)\| \quad\left(\xi \in A^{*}, F \in A^{* *}, m \in Q M_{r}\left(A^{*}\right)\right)
$$

Let τ denote the topology on $Q M_{r}\left(A^{*}\right)$ generated by the norm.
If $A^{* *}$ has a mixed identity, then $\gamma \subseteq \beta \subseteq \tau$. Indeed, let a net $\left\{m_{\alpha}\right\}_{\alpha \in I} \subseteq$ $Q M_{r}\left(A^{*}\right)$ converge to $m \in Q M_{r}\left(A^{*}\right)$ in the topology β and let $\xi \in A^{*}$ be arbitrary. Since $A^{* *}$ has a mixed identity the second dual $A^{* *}$ is factorable. For arbitrary $F \in A^{* *}$, there exist $G, H \in A^{* *}$ such that $F=G \circ H$. It follows, by the definition of the topology β, that $\left\|m_{\alpha} * G-m * G\right\| \rightarrow 0$. Thus

$$
\begin{aligned}
\left\|m_{\alpha}(\xi, F)-m(\xi, F)\right\| & =\left\|m_{\alpha}(\xi, G \circ H)-m(\xi, G \circ H)\right\| \\
& =\left\|\left(m_{\alpha} * G\right)(\xi, H)-(m * G)(\xi, H)\right\| \rightarrow 0
\end{aligned}
$$

which means that $\left\{m_{\alpha}\right\}_{\alpha \in I}$ converges to m in the topology γ. It is obvious that $\beta \subseteq \tau$.

Theorem 2.7. Let A be a Banach algebra satisfying condition (K).
(i) The space $\left(Q M_{r}\left(A^{*}\right), \gamma\right)$ is complete.
(ii) If $A^{* *}$ has a mixed identity of norm one, then $\left(Q M_{r}\left(A^{*}\right), \beta\right)$ is complete.

Proof. (i) Let $\left\{m_{\alpha}\right\}_{\alpha \in I}$ be a γ-Cauchy net in $Q M_{r}\left(A^{*}\right)$. Then, for arbitrary $\xi \in A^{*}$ and $F \in A^{* *}$, we have a Cauchy net $\left\{m_{\alpha}(\xi, F)\right\}_{\alpha \in I}$ in the norm topology of A^{*}. Let $m(\xi, F)=\lim _{\alpha} m_{\alpha}(\xi, F)$. It is obvious that in this way we have defined a bilinear mapping m on $A^{*} \times A^{* *}$ satisfying condition (2.1). Also by uniform boundedness principle ([11], p. 172 and [6], p. 489), m is separately continuous and therefore $m \in Q M_{r}\left(A^{*}\right)$.
(ii) Let $\left\{m_{\alpha}\right\}_{\alpha \in I}$ be a β-Cauchy net in $Q M_{r}\left(A^{*}\right)$. For each $F \in A^{* *}$, the mapping $T_{F}^{\alpha}: A^{*} \rightarrow A^{*}$ which is given by $T_{F}^{\alpha}(\xi)=m_{\alpha}(\xi, F)$ defines elements in $M_{r}\left(A^{*}\right)$. It is easy to show that $\rho_{T_{F}^{\alpha}}=m_{\alpha} \circ F$. It follows from the definition of the β-topology that $\left\{\rho_{T_{F}^{\alpha}}\right\}_{\alpha \in I}$ is a Cauchy net in the norm of $Q M_{r}\left(A^{*}\right)$. By Theorem 2.3, ρ is isometry and therefore $\left\{T_{F}^{\alpha}\right\}$ is a Cauchy net in the norm of $M_{r}\left(A^{*}\right)$. By the completeness of $M_{r}\left(A^{*}\right)$, there exists $T_{F} \in M_{r}\left(A^{*}\right)$ such that $\left\|T_{F}^{\alpha}-T_{F}\right\| \rightarrow 0$. Since $\gamma \subseteq \beta$ the net $\left\{m_{\alpha}\right\}_{\alpha \in I}$ is a Cauchy net in γ topology. By the first part of this theorem, $\left(Q M_{r}\left(A^{*}\right), \gamma\right)$ is complete. Hence there exist $m \in Q M_{r}\left(A^{*}\right)$ such that

$$
\lim _{\alpha} m_{\alpha}(\xi, F)=m(\xi, F) \quad \text { for all } \quad \xi \in A^{*} \quad \text { and } \quad F \in A^{* *} .
$$

For each $G \in A^{* *}$,

$$
\begin{aligned}
\rho_{T_{F}}(\xi, G) & =\lim _{\alpha} \rho_{T_{F}^{\alpha}}(\xi, G)=\lim _{\alpha}\left(m_{\alpha} \circ F\right)(\xi, G)=\lim _{\alpha} m_{\alpha}(\xi, F \circ G) \\
& =m(\xi, F \circ G)=m \circ F(\xi, G) .
\end{aligned}
$$

It follows that

$$
\left\|m_{\alpha} \circ F-m \circ F\right\|=\left\|\rho_{T_{F}^{\alpha}}-\rho_{T_{F}}\right\|=\left\|T_{F}^{\alpha}-T_{F}\right\| \rightarrow 0
$$

which implies that m is the β-limit of the net $\left\{m_{\alpha}\right\}_{\alpha \in I}$, i.e., $Q M_{r}\left(A^{*}\right)$ is complete in β topology.

At the end we consider the group algebra of a compact group G. By [21], $L_{1}(G)$ is Arens regular if and only if G is finite. However, since $L_{1}(G)$ is a twosided ideal in its second dual ([19]), it satisfies condition (K). Note that the dual $L_{1}(G)^{*}$ can be identified with $L_{\infty}(G)$.

Let $M(G)$ be the convolution algebra of all bounded regular measures on G. Recall that the convolution product of $f \in L_{1}(G)$ and $\mu \in M(G)$ is given by

$$
f * \mu(x)=\int_{G} f\left(x y^{-1}\right) d \mu(y)
$$

Of course, $L_{\infty}(G)$ is a Banach $L_{1}(G)^{* *}$-bimodule. However, the space $L_{\infty}(G)$ has also a natural structure of a Banach $M(G)$-bimodule. The same holds for $L_{\infty}(G)^{*}=L_{1}(G)^{* *}$. We will denote all these module multiplications by $*$.

Proposition 2.8. Let G be a compact group and $A=L_{1}(G)$. Then the equation

$$
\left(\theta_{\mu}(\xi, F):=(\xi * \mu) * F \quad\left(\mu \in M(G), \xi \in L_{\infty}(G), F \in L_{1}(G)^{* *}\right)\right.
$$

defines a linear isomorphism between $M(G)$ and a subspace of $Q M_{r}\left(A^{*}\right)$.
Proof. Note that by the definition of module action $(\xi * \mu) * F=\xi *(\mu * F)$. From this and condition (K) we conclude that $\theta_{\mu} \in Q M_{r}\left(L_{1}(G)^{*}\right)$. Of course, $\theta: M(G) \rightarrow Q M_{r}\left(L_{1}(G)^{*}\right)$ is a bounded linear map. We claim that θ is injective. Indeed, suppose that $\theta_{\mu}=0$. Then $(\xi * \mu) * F=0$ for all $\xi \in L_{\infty}(G)$ and $F \in\left(L_{\infty}(G)\right)^{*}$. Since $L_{1}(G)$ has a b.a.i. it follows $\xi \circ \mu=0$. In particular, for each $\xi \in C_{0}(G), \xi \circ \mu=0$. Since the measure algebra $M(G)$ is the dual of $C_{0}(G)$ and it has a b.a.i., $\mu=0$, as required.

Acknowledgements: The authors are very grateful to the referee for some helpful comments and suggestions.

References

1. C.A. Akemann and G.K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973), 785-795.
2. Z. Argün and K. Rowlands, On quasi-multipliers, Studia Math. 108 (1994), 217-245.
3. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870.
4. H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, Clarendon press, 2000.
5. B. Dearden, Quasi-multipliers of Pedersen's ideal, Rocky Mountain J. Math. 22 (1992), 157-163.
6. R.E. Edwards, Functional Analysis, Theory and Application, Holt, Rinehart and Winston, 1965.
7. M. Grosser, Quasi-multipliers of the algebra of approximable operators and its duals, Studia Math. 124 (1997), 291-300.
8. M.S. Kassem and K. Rowlands, The quasi-strict topology on the space of quasi-multipliers of a B^{*}-algebra, Math. Proc. Cambridge Philos. Soc. 101 (1987), 555-566.
9. M. Kaneda, Quasi-multipliers and algebrizations of an operator space, J. Funct. Anal. 251 (2007), 346-359.
10. M. Kaneda and V.I. Paulsen, Quasi-multipliers of operator spaces, J. Funct. Anal. 217 (2004), 347-365.
11. G. Köthe, Topological Vector Space I, I. New York-Heidelberg-Berlin: Springer, (1969).
12. H. Lin, The structure of quasi-multipliers of C^{*}-algebras, Trans. Amer. Math. Soc. 315 (1987), 147-172.
13. H. Lin, Fundamental approximate identities and quasi-multipliers of simple AFC ${ }^{*}$-algebras, J. Func. Anal. 79 (1988), 32-43.
14. H. Lin, Support algebras of σ-unital C^{*} - algebras and their quasi-multipliers, Trans. Amer. math. Soc. 325, (1991), 829-854.
15. M. McKennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233 (1977), 105-123.
16. A. Ülger, Arens regularity sometimes implies the RNP, Pacific. J. Math 143 (1990), 377399.
17. R. Vasudevan and S. Goel, Embedding of quasi-multipliers of a Banach algebra into its second dual, Math. Proc. Cambridge Philos. Soc. 95 (1984), 457-466.
18. R. Vasudevan, S. Goel and S. Takahasi, The Arens product and quasi-multipliers, Yokohama. Math. J. 33, (1985), 49-66.
19. S. Watanabe, A Banach algebra which is an ideal in the second dual space, Sci. Rep. Niigata Univ. Ser. A 11 (1974), 95-101.
20. R. Yilmaz and K. Rowlands, On orthomorphisms, quasi-orthomorphisms and quasimultipliers, J. Math. Anal. Appl. 313 (2006), 120-131.
21. N. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford 24 (1973), 59-62.

1,2 Department of Mathematics and Computer Science, Amirkabir University of Technology, P. O. Box 15914, Tehran 91775, Iran.

E-mail address: madib@aut.ac.ir
E-mail address: riazi@aut.ac.ir
${ }^{3}$ IMFM, University of Ludbljana, Jadranska ul. 19, SI-1000, Luubljana, SloveNIA.

E-mail address: janko.bracic@fmf.uni-lj.si

