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CONDITIONAL MULTIPLIERS AND ESSENTIAL NORM OF
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Abstract. In this paper the conditional multipliers acting between Lp spaces
are characterized by using some properties of conditional expectation operator.
Also, we determine the essential norm of uCϕ on Lp for 1 < p < ∞.

1. Introduction and preliminaries

Let (X, Σ, µ) be a sigma finite measure space. By L0(Σ), we denote the linear
space of all Σ-measurable functions on X. For any complete sigma finite sub-
algebra A ⊆ Σ with 1 ≤ p ≤ ∞ the Lp-space Lp(X,A, µ|A) is abbreviated by
Lp(A), and its norm is denoted by ‖.‖p. We understand Lp(A) as a Banach
subspace of Lp(Σ). All comparisons between two functions or two sets are to be
interpreted as holding up to a µ-null set. The support of a measurable function
f is defined as σ(f) = {x ∈ X; f(x) 6= 0}. A Σ-measurable function u on X for
which uf ∈ Lq(Σ) for each f ∈ Lp(A), is called a conditional multiplier.

Associated with each complete sigma finite sub-algebra A ⊆ Σ, there exists an
operator E = EA, which is called conditional expectation operator, on the set of
all non-negative measurable functions f or for each f ∈ Lp(Σ) ( 1 ≤ p ≤ ∞), and
is uniquely determined by the following conditions:

(1) (i) E(f) is A- measurable, and
(2) (ii) if A is anyA- measurable set for which

∫
A

fdµ exists, we have
∫

A
fdµ =∫

A
E(f)dµ.
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We shall make repeated use of the following properties of conditional expecta-
tions:
E1. E(f) = f if and only if f is A-measurable.
E2. If f is A-measurable then E(fg) = fE(g).
E3. |E(f)|p ≤ E(|f |p).
E4. If f ≥ 0 then E(f) ≥ 0; if f > 0 then E(f) > 0.

Properties E1. and E2. imply that E is idempotent and E(Lp(Σ)) = Lp(A).
For more details on the properties of E see [10, 12, 14].

Recall that an A-atom of the measure µ is an element A ∈ A with µ(A) > 0
such that for each F ∈ Σ, if F ⊆ A then either µ(F ) = 0 or µ(F ) = µ(A). A
measure with no atoms is called non-atomic. It is well-known fact that every σ-
finite measure space (X,A, µ|A) can be partitioned uniquely as X =

(⋃
n∈N An

)
∪

B, where {An}n∈N is a countable collection of pairwise disjoint A-atoms and B,
being disjoint from each An, is non-atomic (see [19]).

Combination of conditional expectation operator E and multiplication operator
Mu appears more often in the service of the study of other operators such as
multiplication and weighted composition operators (see [11, 12]). These operators
are closely related to averaging operators on order ideals in Banach lattices and
to operators called conditional expectation-type operators introduced in [1]. For
a beautiful exposition of the study of weighted conditional expectation operators
on Lp-spaces, see [3] and the references therein.

Some results of this article is a generalization of the work done in [4, 11, 17].
In section 2, we will determine the symbol functions u ∈ L0(Σ) that induce
bounded multiplication (weighted composition) operators from Lp(A) into Lq(Σ),
for 1 ≤ p, q ≤ ∞. In section 3, for a bounded weighted composition operator uCϕ

on Lp(Σ) with 1 < p < ∞, we determine its essential norm. In addition, in
section 4 there are a number of examples which they can describe reasonably
some of the results of this paper.

2. Characterization of conditional multipliers between Lp-spaces

Let 1 ≤ p, q ≤ ∞. We denote the set of all conditional multipliers by Kp,q(A, Σ)
where is defined as follows:

Kp,q = Kp,q(A, Σ) = {u ∈ L0(Σ) : uLp(A) ⊆ Lq(Σ)}.

Kp,q(A, Σ) is a vector subspace of L0(Σ). In fact, u ∈ Kp,q if and only if the
corresponding multiplication operator Mu : Lp(A) → Lq(Σ) is bounded. Put
Kp,p = Kp. It is easy to check that L∞(Σ) ⊆ Kp(A, Σ) and Kp(Σ, Σ) = L∞(Σ).
In this section we characterize the members of u ∈ Kp,q in terms of the conditional
expectation induced by A.

Lambert in [11], proved that u ∈ Kp(A, Σ) if and only if E(|u|p) ∈ L∞(A),
where 1 ≤ p < ∞. Also Takagi and Yokouchi in [17] characterized the members
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of Kp,q(Σ, Σ) in the case 1 ≤ p, q ≤ ∞. In the rest of this section we consider
remain cases.

Cases: 1 ≤ q < p < ∞ and 1 ≤ p < q < ∞
Although, the parts (a) and (b) of the following theorem was given in [5, 6],

however, we rewrite them with modifications in their proofs which will be needed
later (Theorem 2.3).

Theorem 2.1. (a) Suppose 1 ≤ q < p < ∞ and u ∈ L0(Σ). Then u ∈ Kp,q if

and only if (E(|u|q))
1
q ∈ Lr(A), where 1

p
+ 1

r
= 1

q
.

(b) Suppose 1 ≤ p < q < ∞ and u ∈ L0(Σ). Then u ∈ Kp,q if and only if
(i) E(|u|q) = 0 on B, and

(ii) M := supn∈N
E(|u|q)(An)

µ(An)
q
r

< ∞, where 1
q

+ 1
r

= 1
p
.

Proof. (a) Let u ∈ Kp,q. So the multiplication operator Mu : Lp(A) → Lq(Σ) is

bounded. Define Λ : L
p
q (A) → C given by Λ(f) =

∫
X

E(|u|q)fdµ. We shall show

that the linear functional Λ is bounded. For each f ∈ L
p
q (A) we have

|Λ(f)| ≤ ‖E(|u|q)|f | ‖1 = ‖E(|u|q|f |)‖1 = ‖u|f |
1
q ‖q

q

= ‖Mu|f |
1
q ‖q

q ≤ ‖Mu‖q ‖ |f |
1
q ‖q

p = ‖Mu‖q‖f‖ p
q

.

It follows that ‖Λ‖ ≤ ‖Mu‖q. By the Riesz representation theorem, there exists

the unique function g ∈ L
r
q (A) such that Λ(f) =

∫
X

gfdµ, for each f ∈ L
p
q (A).

Therefore g = E(|u|q) a.e. on X, and hence (E(|u|q))
1
q ∈ Lr(A).

Now, if (E(|u|q))
1
q ∈ Lr(A), it follows easily from the Hölder’s inequality that

‖uf‖q ≤ ‖(E(|u|q))
1
q ‖r‖f‖p, for each f ∈ Lp(A). Thus, u ∈ Kp,q.

(b) Suppose that both (i) and (ii) hold. Then, for each f ∈ Lp(A) with
‖f‖p ≤ 1 we have

‖uf‖q
q = ‖E(|u|q)|f |q‖1 = (

∫
B

+

∫
∪An

)(E(|u|q)|f |q)dµ

=
∑
n∈N

∫
An

E(|u|q)|f |qdµ =
∑
n∈N

(E(|u|q)(An)|f(An)|qµ(An)

=
∑
n∈N

(E(|u|q)(An)

µ(An)
q
r

(|f(An)|p µ(An))
q
p ≤ M‖f‖q

p

where we have used the fact that E(|u|q) is constant A-measurable function on
each An (see [9, Theorem I.7.3]). Hence u ∈ Kp,q.

Conversely, suppose u ∈ Kp,q. So the multiplication operator Mu : Lp(A) →
Lp(Σ) is bounded. First we show that E(|u|q) = 0 a.e. on B. Assuming the
contrary, we can find some δ > 0 such that µ({x ∈ B : E(|u|q)(x) ≥ δ}) > 0. Put
F = {x ∈ B : E(|u|q)(x) ≥ δ}. Since (X,A, µ|A) is a σ-finite measure space, we
can suppose that µ(F ) < ∞. Also since F is non-atomic, then for all n ∈ N, there



CONDITIONAL MULTIPLIERS AND ESSENTIAL NORM 161

exists Fn ⊆ F such that µ(Fn) = µ(F )
2n . For any n ∈ N, put fn = µ(Fn)

−1
p χFn . It

is clear that fn ∈ Lp(A) and ‖fn‖p = 1. Since q
p

> 1, we have

∞ > ‖Mu‖q ≥ ‖ufn‖q
q =

1

µ(Fn)
q
p

‖uχ
Fn
‖q

q =
1

µ(Fn)
q
p

∫
Fn

E(|u|q)dµ

≥ δµ(Fn)

µ(Fn)
q
p

= δµ(Fn)1− q
p = δ

(
2n

µ(F )

) q
p
−1

−→∞, as n →∞,

which is a contradiction. Hence we conclude that µ({x ∈ B : E(|u|q)(x) 6= 0}) =

0. Now, we examine the superimum in (ii). For any n ∈ N, put fn = µ(An)
−1
p χAn .

Then it is clear that fn ∈ Lp(A) and ‖fn‖p = 1. Similar argument shows that
M ≤ ‖Mu‖q < ∞. �

Cases: 1 ≤ q < ∞ = p , 1 ≤ p < ∞ = q and p = q = ∞

Theorem 2.2. (a) If 1 ≤ q < ∞ = p, then u ∈ K∞,q if and only if E(|u|q) ∈
L1(A).

(b) If 1 ≤ p < ∞ = q, then u ∈ Kp,∞ if and only if E(|u|p) = 0 a.e. on B and

supn∈N
E(|u|p)(An)

µ(An)
< ∞.

(c) u ∈ K∞ if and only if E(|u|) ∈ L∞(A).

Proof. (a) Let E(|u|q) ∈ L1(A) and take f ∈ L∞(A). Then we have

‖uf‖q
q ≤

∫
X

E(|u|q)|f |qdµ ≤ ‖f‖q
∞ ‖E(|u|q)‖1 .

Hence u ∈ K∞,q. Now suppose only that the multiplication operator Mu :
L∞(A) → Lq(Σ) is bounded. Then ‖E(|u|q)‖1 =

∫
X
|u|qdµ ≤ ‖Mu‖q < ∞.

(b) Suppose that u ∈ Kp,∞. By the same argument in the proof of the Theorem
2.1(b), if we put fn = χFn , we have then

∞ > ‖Mu‖p ≥
‖MuχFn‖

p
L∞(A)

‖χFn‖
p
p

=
sup

A∈A, 0<µ(A)<∞
1

µ(A)

∫
A

E(|u|p)χFndµ

µ(Fn)

≥ δ

µ(Fn)
=

δ2n

µ(F )
−→∞, as n →∞,

which is a contradiction. Hence we conclude that E(|u|p) = 0 a.e. on B. Also,
for any n ∈ N we have

E(|u|p)(An) ≤ ‖E(|u|p)‖
L∞(A)

= sup
n∈N

1

µ(An)

∫
An

E(|u|p)dµ

= sup
n∈N

1

µ(An)

∫
An

|uχ
An
|pdµ = ‖MuχAn

‖p
L∞(A)

≤ ‖Mu‖pµ(An).
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It follows that M := supn∈N
E(|u|p)(An)

µ(An)
< ∞. Conversely, suppose that E(|u|p) = 0

a.e. on B and M < ∞. For each f ∈ Lp(A), we have

‖uf‖p
L∞(A)

= sup
n∈N

1

µ(An)

∫
An

|uf |pdµ ≤ sup
n∈N

1

µ(An)

∫
An

E(|u|p)|f |pdµ

= sup
n∈N

(
E(|u|p)(An)

µ(An)

)
|f(An)|pµ(An) ≤ M

∑
n∈N

|f(An)|pµ(An) ≤ M‖f‖p
p .

It follows that Mu(L
p(A)) ⊆ L∞(A) ⊆ L∞(Σ), and hence u ∈ Kp,∞.

(c) Suppose that u ∈ L∞(A) and take f ∈ L∞(A). Then we have

‖uf‖
L∞(A)

= sup
A∈A, 0<µ(A)<∞

1

µ(A)

∫
A

|uf |dµ

≤ ‖u‖∞ sup
A∈A, 0<µ(A)<∞

1

µ(A)

∫
A

|f |dµ = ‖u‖∞‖f‖L∞(A)
.

It follows that Mu(L
∞(A)) ⊆ L∞(A) ⊆ L∞(Σ), and hence u ∈ K∞. For the

other direction, suppose that for each f ∈ L∞(A), uf ∈ L∞(Σ). Then we obtain
‖u‖∞ = ‖uχ

X
‖∞ ≤ ‖Mu‖ < ∞. Thus the proposition is proved. �

Let u ∈ Kp,q. We define

‖u‖Kp,q =



‖(E(|u|q))
1
q ‖ pq

p−q
1 ≤ q < p < ∞

‖E(|u|p)‖
1
p
∞ 1 ≤ q = p < ∞

‖E(|u|q)‖
1
q
1 1 ≤ q < ∞ = p{

supn
E(|u|q)(An)

µ(An)
q−p

p

} 1
q

1 ≤ p < q < ∞{
supn

E(|u|p)(An)
µ(An)

} 1
p

1 ≤ p < ∞ = q

‖u‖∞ p = q = ∞.

Theorem 2.3. (Kp,q, ‖.‖Kp,q) is a Banach space.

Proof. According to the procedure used in the proof of the previous results, it is
easy to see that ‖u‖Kp,q = ‖Mu‖ and hence Kp,q is a Banach space with respect
to this norm. Nevertheless, we shall illustrate the case 1 ≤ q < p < ∞. The

same method used in the proof of Theorem 2.1 yields ‖Mu‖ ≤ ‖(E(|u|q))
1
q ‖r and

sup{
∫

X
E(|u|q)|f |dµ : f a unit vector in L

p
q (Σ)} ≤ ‖Mu‖q. It follows that

‖(E(|u|q))
1
q ‖r = ‖E(|u|q)‖

1
q
r
q
≤ ‖Mu‖,

where r = pq
p−q

. �

Put Mp,q = {Mu : Lp(A) → Lq(Σ); u ∈ Kp,q}. It follows from the above
theorem that the mapping Γ : u 7→ Mu is then an isometry from Kp,q onto Mp,q.
Let Mu ∈ Mp,q. It is easy to see that for 1 ≤ p, q < ∞, the adjoint operator
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M∗
u : Lq′(Σ) → Lp′(A) is given by M∗

uf = E(uf), where p′ and q′ are the conju-
gate exponent to p and q respectively. Such operators played a central role in the
classification project undertaken in [1]. It turns out that this class of operators
includes a number of interesting special cases such as kernel operators, partial
integral operators and Rieze homomorphisms (see [2, 3]).

In what follows, ϕ : X → X will be a non-singular measurable transformation
of X, namely, a mapping from X into itself with the properties that the measure
µ ◦ ϕ−1 is absolutely continuous with respect to µ, and ϕ−1(Σ) is sigma finite.
We set h = dµ ◦ ϕ−1/dµ. Let 1 ≤ p, q ≤ ∞ and ϕ−1(A) ⊆ A. Define Kϕ

p,q the set
of all multipliers of the range of composition operators from Lp(A) into Lq(Σ),
as follows

Kϕ
p,q = {w ∈ L0(Σ) : u.R(Cϕ) ⊂ Lq(Σ)},

where Cϕ is a composition operator on Lp(A) and R(Cϕ) is the range of Cϕ.
In other words, u ∈ Kϕ

p,q if and only if the corresponding weighted composition
operator W : Lp(A) → Lq(Σ) defined as Wf = u.f ◦ ϕ is bounded. Put Kϕ

p,p =

Kϕ
p and ‖u‖Kϕ

p,q
= ‖W‖, for u ∈ Kϕ

p,q. Since ϕ−1(A) ⊆ A, f ◦ ϕ is an A-
measurable whenever f is an A-measurable function. Suppose 1 ≤ p, q < ∞. As
an application of the properties of the conditional expectation operator and using
the change of variable formula, for each f ∈ Lp(A), we have

‖uCϕf‖q
q =

∫
X

EA(|u|q)|f ◦ ϕ|qdµ =

∫
X

Eϕ−1(Σ)(EA(|u|q))|f |q ◦ ϕdµ

=

∫
X

hEϕ−1(Σ)(EA(|u|q)) ◦ ϕ−1|f |qdµ =

∫
X

| q
√

Sf |qdµ = ‖M q√Sf‖q
q,

where S := hEϕ−1(Σ)(EA(|u|q)) ◦ ϕ−1. Thus u ∈ Kϕ
p,q if and only if q

√
S ∈ Kp,q.

Note that if A = Σ, then E = I and ‖uCϕf‖q = ‖M q√Jf‖q, where J :=

hEϕ−1(Σ)(|u|q) ◦ ϕ−1. Using this fact and previous results we have the follow-
ing theorem.

Theorem 2.4. Assume that ϕ : X → X is a non-singular measurable transfor-
mation and ϕ−1(A) ⊆ A.

(a) Let 1 ≤ p = q < ∞. Then u ∈ Kϕ
p if and only if S ∈ L∞(Σ). In this case

‖u‖Kϕ
p

= ‖S‖
1
p
∞.

(b) Let 1 ≤ q < p < ∞. Then u ∈ Kϕ
p,q if and only if S ∈ L

p
p−q (Σ). In this

case ‖u‖Kϕ
p,q

= ‖S‖
1
q

p
p−q

.

(c) Let 1 ≤ q < ∞ = p . Then u ∈ Kϕ
∞,q if and only if u ∈ Lq(Σ). In this case

‖u‖Kϕ
∞,q

= ‖u‖q.
(d) Let 1 ≤ p < q < ∞. Then u ∈ Kϕ

p,q if and only if S = 0 a.e. on B and

supn
S(An)

µ(An)
q−p

p
< ∞. In this case ‖u‖Kϕ

p,q
= {supn

S(An)

µ(An)
q−p

p
}

1
q .

(e) Let 1 ≤ p < ∞ = q . Then u ∈ Kϕ
p,∞ if and only if J = 0 a.e. on B and

supn
S(An)
µ(An)

< ∞. In this case ‖u‖Kϕ
p,∞ =

{
supn

S(An)
µ(An)

} 1
p
.
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(f) Let p = q = ∞. Then u ∈ Kϕ
∞ if and only u ∈ L∞(Σ). In this case

‖u‖Kϕ
∞ = ‖u‖∞.

Note that when A = Σ, all parts of the Theorem 2.4 can be easily follows from
[17].

3. Essential norm of weighted composition operators

In this section by using conditional expectation operator we determine the
essential norm of uCϕ on the spaces Lp(Σ) for 1 < p < ∞ in terms of the set
{x ∈ X : J(x) ≥ r > 0}. First, we collect some materials and facts that will be
needed in the sequel.

Let B be a Banach space and K be the set of all compact operators in B. For
any bounded linear operator T on B, the essential norm of T means the distance
from T to K in the operator norm, namely

‖T‖e = inf{‖T − S‖ : S ∈ K}.
Clearly, T is compact if and only if ‖T‖e = 0. As is seen in [16], the essential
norm plays an interesting role in the compact problem of concrete operators.
Many people have computed the essential norm of various concrete operators.
For these studies about (weighted) composition operators, refer to [13, 18, 7].

We are concerned with the case that T is a weighted composition operator
W := uCϕ on Lp(Σ). In [8], Chan has showed that uCϕ is compact on Lp(Σ) if
and only if

for any ε > 0, {x ∈ X : J(x) ≥ ε} consists of finitely many atoms. (3.1)

From this point of view, we compute the essential norm of uCϕ.

Theorem 3.1. Let 1 < p < ∞ and uCϕ : Lp(Σ) → Lp(Σ) be a bounded weighted
composition operator. The essential norm of uCϕ is given by

‖uCϕ‖e = inf{r > 0 : Gr consists of finitely many atoms}, (3.2)

where Gr = {x ∈ X : p
√

J(x) ≥ r}. Considering the case ‖uCϕ‖e = 0 in (3.2),
we know that (3.1) is necessary and sufficient for uCϕ to be compact.

Proof. Denote the right side of (3.2) by α. We first show that ‖uCϕ‖e ≥ α. If α =
0, there is nothing to prove, and so we assume that α > 0. Take ε > 0 arbitrarily.
The definition of α implies that F = Gα−ε/2 either contains a non-atomic subset
or has infinitely many atoms. If F contains a non-atomic subset, then there are
measurable sets Fn, n ∈ N, such that Fn+1 ⊆ Fn ⊆ F , 0 < µ(Fn) < 1

n
. Define

fn = µ(Fn)−
1
p χFn . Then ‖fn‖p = 1 for all n ∈ N. We claim that fn → 0 weakly.

For this we show that
∫

X
fng → 0 for all g ∈ Lq(Σ), where 1

p
+ 1

q
= 1. Let A ⊆ F

with 0 < µ(A) < ∞ and g = χA. Then∣∣∣∣∫
X

fnχAdµ

∣∣∣∣ = µ(Fn)−
1
p µ(A ∩ Fn) ≤

(
1

n

)1− 1
p

−→ 0, as n →∞.
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Since simple functions are dense in Lq(Σ), thus fn is proved to converge to 0
weakly. Now assume that F consists of infinitely many atoms. Let {Fn}∞n=1 be
disjoint atoms in F . Again put fn as above. It is easy to see that for A ⊆ F
with 0 < µ(A) < ∞ we have µ(A ∩ Fn) = 0, for sufficiently large n. So in
both case

∫
X

fng → 0. Now, take a compact operator T on Lp(Σ) such that
‖uCϕ − T‖ < ‖uCϕ‖e + ε

2
. Then we have

‖uCϕ‖e > ‖uCϕ − T‖ − ε

2
≥ ‖uCϕfn − Tfn‖p −

ε

2

≥ ‖uCϕfn‖p − ‖Tfn‖p −
ε

2
= ‖M p√Jfn‖p − ‖Tfn‖p −

ε

2

≥
(∫

Fn

| p
√

Jfn|pdµ

) 1
p

− ‖Tfn‖p −
ε

2
≥ (α− ε

2
)− ‖Tfn‖p −

ε

2

for all n ∈ N. Since a compact operator maps weakly convergent sequences into
norm convergent ones, it follows ‖Tfn‖p → 0. Hence ‖uCϕ‖e ≥ α − ε. Since ε
was arbitrary, we obtain ‖uCϕ‖e ≥ α.

For the opposite inequality, take ε arbitrarily. Put K = Gα+ε and v = χ
K
u.

The definition of α implies that K consists of finitely many atoms. So we can write
K = {K1, K2, . . . , Km}, where K1, K2, . . . , Km are distinct. Since vCϕf(X) =∑m

i=1 v(Ki)f(ϕ(Ki)), for all f ∈ Lp(Σ), hence vCϕ has finite rank. Noting that
vCϕ is a compact operator, so we have

‖uCϕ − vCϕ‖ = ‖(1− χ
K
)uCϕ‖ = sup

‖f‖p≤1

‖(χ
X\K

u)Cϕf‖p

= sup
‖f‖p≤1

(∫
X

hEϕ−1(Σ)(χ
X\K

|u|p) ◦ ϕ−1|f |p dµ

) 1
p

= sup
‖f‖p≤1

(∫
X\K

hEϕ−1(Σ)(|u|p) ◦ ϕ−1|f |p dµ

) 1
p

= sup
‖f‖p≤1

(∫
X\K

| p
√

Jf |p dµ

) 1
p

≤ (α + ε) sup
‖f‖p≤1

(∫
X\K

|f |p dµ

) 1
p

≤ (α + ε).

Since ε was arbitrary, we get ‖uCϕ‖e ≤ α. �

Note that, in case of non-atomic measures, the equality ‖uCϕ‖ = ‖uCϕ‖e was
proved in much greater generality by Schep in [15].

4. Examples

In this section examples are then given to illustrating some of the previous
results and to show that how the conditional expectation operators work in prac-
tice.
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Example 4.1. Let w = {mn}∞n=1 be a sequence of positive real numbers. Con-
sider the space lp(w) = Lp(N, 2N, µ), where 2N is the power set of natural numbers
and µ is a measure on 2N defined by µ({n}) = mn. Let u = {un}∞n=1 be a se-
quence of complex numbers. PutA = ϕ−1(2N), where ϕ : N → N is a non-singular
measurable transformation. Direct computation shows that

E(f)(k) =

∑
n∈ϕ−1(ϕ(k)) fnmn∑

n∈ϕ−1(ϕ(k)) mn

,

for all non-negative sequence f = {fn}∞n=1 and k ∈ N. By using the previous
results, u ∈ Kp,q if and only if there exists Mi > 0 (1 ≤ i ≤ 4) such that for all
k ∈ N, we have

(a)
∑

n∈ϕ−1(ϕ(k))

|un|pmn ≤ M1

∑
n∈ϕ−1(ϕ(k))

mn (1 ≤ p = q < ∞).

(b)
∞∑

k=1

{∑
n∈ϕ−1(ϕ(k)) |un|qmn∑

n∈ϕ−1(ϕ(k)) mn

} p
p−q

mk < ∞ (1 ≤ q < p < ∞).

(c)
∑

n∈ϕ−1(ϕ(k))

|un|qmn ≤ M3m
q−p

p
n

∑
n∈ϕ−1(ϕ(k))

mn (1 ≤ p < q < ∞).

(d)
∞∑

k=1

{∑
n∈ϕ−1(ϕ(k)) |un|qmn∑

n∈ϕ−1(ϕ(k)) mn

}
mk < ∞ (1 ≤ q < ∞ = p).

(e)
∑

n∈ϕ−1(ϕ(k))

|un|pmn ≤ M4mk

∑
n∈ϕ−1(ϕ(k))

mn (1 ≤ q < ∞ = p).

Example 4.2. Let X = (−π/2, π/2), dµ = dx, Σ the Lebesgue sets, and A the
σ-subalgebra generated by the symmetric sets about the origin. Put 0 < a < π/2.
Then for each u ∈ L0(Σ) we have∫ a

−a

E(|u|p)(x)dx =

∫ a

−a

|u(x)|pdx

=

∫ a

−a

{
|u(x)|p + |u(−x)|p

2
+
|u(x)|p − |u(−x)|p

2

}
dx =

∫ a

−a

|u(x)|p + |u(−x)|p

2
dx.

Consequently, E(|u|p)(x) = (|u(x)|p + |u(−x)|p)/2. This example is due to
Lambert [11]. Now, since |u(x)|p ≤ 2(|u(x)|p + |u(−x)|p)/2 = 2E(|u|p)(x),
then Kp ⊆ L∞(Σ). On the other hand we always have L∞(Σ) ⊆ Kp. Thus
Kp = L∞(Σ). Note that if u(x) = x2 + tan x, then E(u)(x) = x2 ∈ L∞(A) but
u /∈ L∞(Σ).

Example 4.3. Let X = [−1, 1], dµ = 1
2
dx and Σ the Lebesgue sets. Define

the non-singular transformations ϕi : X → X by ϕ1(x) = 3
√

3x and ϕ2(x) =
(
√

1 + x− 1)χ[−1,0] +(1−
√

1− x)χ(0,1]. Put hϕi
= dµ ◦ϕ−1

i /dµ and A = ϕ−1
2 (Σ).

It is easy to see that Eϕ−1
1 (Σ) = I and EA(f) = (f(x) + f(−x))/2, for all positive

measurable function f on X. Put u(x) =
√

x2 + x + 1. Direct computations show
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that hϕ1(x) = x2, hϕ2(x) = (2+2x)χ[−1,0] +(2−2x)χ(0,1] and EA(u2)(x) = x2 +1.
Therefore we get that

S1(x) := hϕ1(x)Eϕ−1
1 (Σ)(EA(u2)) ◦ ϕ−1

1 (x) = x2 +
1

9
x8,

J1(x) = x2 +
1

3
x5 +

1

9
x8,

J2(x) = (2 + 2x)
(
(2x + x2)2 + 1

)
χ[−1,0] + (2− 2x)

(
(2x− x2)2 + 1

)
χ(0,1],

where Ji := hϕi
Eϕ−1

i (Σ)(u2) ◦ ϕ−1
i . If Wi = u.f ◦ ϕi, then we get that

‖W1‖L2(A)→L2(Σ) =

√
10

3
, ‖W1‖L2(Σ)→L2(Σ) =

√
13

3
, ‖W2‖L2(Σ)→L2(Σ) = 2

√
10.

Example 4.4. Let lp(w), u and ϕ be the same as stated informally in the hy-
potheses of Example 4.1. Put A = ϕ−2(2N). Direct computations show that

h(k) =
1

mk

∑
j∈T−1(k)

mj , h2(k) =
dµ ◦ ϕ−2

dµ
(k) =

1

mk

∑
j∈ϕ−1(k)

h(j)mj ,

J(k) =
1

mk

∑
j∈ϕ−1(k)

(u(j))2mj , (h2E
A(u2) ◦ ϕ−2)(k) =

1

mk

∑
j∈ϕ−2(k)

(u(j))2mj ,

Eϕ−1(Σ)(u2)(k) =

∑
j∈ϕ−1(ϕ(k))(u(j))2mj∑

j∈ϕ−1(ϕ(k)) mj

, EA(u2)(k) =

∑
j∈ϕ−2(ϕ2(k))(u(j))2mj∑

j∈ϕ−2(ϕ2(k)) h(j)mj

,

S(k) = h(k)Eϕ−1(Σ)(EA(u2)) ◦ ϕ−1(k) =
1

mk

∑
j∈ϕ−1(k)

(EA(u2))(j)mj.

Example 4.5. Let X = (−∞, 0] ∪ N, where N is the set of natural numbers.
Let µ be the Lebesque measure on (−∞, 0] and µ({n}) = 1

2n , if n ∈ N. Define
u(x) = 1 and ϕ : N → N as: ϕ(1) = ϕ(2) = ϕ(3) = 1, ϕ(4) = 2, ϕ(5) = ϕ(6) = 3,
ϕ(2n + 1) = 5, for n ≥ 3, ϕ(2n) = 2n − 2, for n ≥ 4, and ϕ(x) = 5x for all
x ∈ (−∞, 0]. Then a simple computation gives J = h = 7

4
χ{1} + 1

4
χ{2} + 3

8
χ{3} +

1
3
χ{2n+1: n≥3} + 1

4
χ{2n: n≥4} + 1

5
χ(−∞,0]. Thus ‖Cϕ‖e = 3−

1
p on Lp(X, Σ, µ) for

1 < p < ∞.
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