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INNERNESS OF HIGHER DERIVATIONS
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Abstract. Let A be an algebra. A sequence {dn} of linear mappings on A is
called a higher derivation if dn(ab) =

∑n
k=0 dk(a)dn−k(b) for each a, b ∈ A and

each nonnegative integer n. In this paper a notion of an inner higher derivation
is given. We characterize all uniformly bounded inner higher derivations on
Banach algebras and show that each uniformly bounded higher derivation on
a Banach algebra A is inner provided that each derivation on A is inner.

1. Introduction

Let A be an algebra. A linear mapping δ : A → A is called a derivation if it
satisfies the Leibniz rule δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A. A typical example
of a derivation is δa0 : A → A given by δa0(a) = a0a − aa0, where a0 ∈ A.
A derivation of this form is called inner. One of the important questions in
the theory of derivations is that “When are all bounded derivations on a Banach
algebra inner?” Forty years ago, R. V. Kadison [3] and S. Sakai [10] independently
proved that every derivation on a von Neumann algebra M is inner; see also [8].
Let σ : A → A be a homomorphism. As a generalization of the notion of a
derivation, a linear mapping D : A → A is called a (σ, σ)-derivation if it satisfies
the generalized Leibniz rule D(ab) = D(a)σ(b) + σ(a)D(b) for all a, b ∈ A (see
[7]).

If we define a sequence {dn} of linear mappings on A by d0 = I and dn = δn

n!
,

where I is the identity mapping on A and δ is a derivation on A, then the Leibniz
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rule ensures us that dn’s satisfy the condition

dn(ab) =
n∑

j=0

dj(a)dn−j(b) (∗)

for each a, b ∈ A and each nonnegative integer n. This motivates us to consider
the sequences {dn} of linear mappings on an algebra A satisfying (∗). Such a se-
quence is called a higher derivation. Higher derivations were introduced by Hasse
and Schmidt [1], and algebraists sometimes call them Hasse-Schmidt derivations.
If δ : A → A is a derivation then dn = δn

n!
is a higher derivation, though this

is not the only example of a higher derivation. Let A be a unital algebra. A
higher derivation {dn} is called inner in the sense of Roy and Sridharan, RS-
inner, if d0 = I and there is a sequence {an} in A with a0 = 1, such that∑n

k=0 dk(a)an−k = ana for each a ∈ A (see [9]). In this paper we give an alterna-
tive definition of innerness.

Among higher derivations we are interested in uniformly bounded higher deriva-
tions on a Banach algebra. A higher derivation {dn} is called uniformly bounded
if there is an M > 0 such that ‖dn‖ ≤M for each n. A natural question is “When
are all uniformly bounded higher derivations on a given Banach algebra inner?”

Indeed many mathematicians have shown that higher derivations are bounded
(but possibly not uniformly bounded) in special cases. Loy [4] proved that if A is
an (F )-algebra which is a subalgebra of a Banach algebra B of power series, then
every higher derivation {dn} : A → B is automatically continuous. Jewell [2],
showed that a higher derivation from a Banach algebra onto a semisimple Banach
algebra is continuous provided that ker(d0) ⊆ ker(dn), for all n > 1. Villena [11],
proved that every higher derivation from a unital Banach algebra A into A/P ,
where P is a primitive ideal of A with infinite codimension, is continuous. As
a consequence of the Jewell theorem [2], each higher derivation on a C∗-algebra
is automatically continuous. Also in [5] and [6], the first-named author gives a
characterization of higher derivations and prime higher derivations on an algebra
A in terms of derivations on A, provided that d0 is the identity mapping on A.
A sequence {dn} of linear mappings on an algebra A is called a prime higher
derivation if dn(ab) =

∑
k|n dk(a)dn

k
(b) for each a, b ∈ A and each n ∈ N.

In the first section, we use the generating function of a uniformly bounded
higher derivation to find some elementary facts concerning uniformly bounded
higher derivations. We give a notion of innerness and state a characterization of
uniformly bounded inner higher derivations in terms of their generating functions.
In the second section, we show that each uniformly bounded higher derivation on
an algebra A is inner provided that each derivation on A is inner.

2. Characterization of Uniformly Bounded Inner Higher
Derivations

Throughout the paper, A is a unital Banach algebra with unit 1 and I is
the identity mapping on A. If {Tn} is a uniformly bounded sequence of lin-
ear mappings on A, then the function ψ(t) =

∑∞
n=0 Tnt

n is well defined for
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|t| < 1. Moreover, the m-th derivative of ψ exists and obtained by ψ(m)(t) =∑∞
n=m

n!
(n−m)!

Tnt
n−m. We use these facts during the paper.

Definition 2.1. LetA be a Banach algebra and d = {dn} be a uniformly bounded
higher derivation on A. The generating function of {dn}, denoted by α, is defined
for |t| < 1 by αt =

∑∞
n=0 dnt

n.

Recall that the Cauchy product of two sequences {an} and {bn} is the sequence
{cn} defined by cn =

∑n
k=0 akbn−k. We denote cn by (a∗b)n. Note that we formally

have (
∞∑

n=0

ant
n

)(
∞∑

n=0

bnt
n

)
=

∞∑
n=0

(a ∗ b)nt
n.

Lemma 2.2. Let A be a Banach algebra and {dn} be a uniformly bounded higher
derivation on A with the generating function α. Then αt is a homomorphism on
A for |t| < 1.

Proof. For each a, b ∈ A, we have

αt(ab) =
∞∑

n=0

dn(ab)tn =
∞∑

n=0

(
n∑

k=0

dk(a)dn−k(b)

)
tn = αt(a)αt(b).

�

Recall that if a0 is a fixed member of A, then the inner derivation δa0 con-
structed via a0 is defined by δa0(a) = a0a− aa0 for all a ∈ A.

Example 2.3. Let {dn} be the sequence defined recursively on A by ndn =∑n
k=1 δak

dn−k with d0 = I, where {ak} is a sequence in A. Then {dn} is a higher
derivation.

To show this we use induction on n. For n = 0 we have d0(ab) = ab =

d0(a)d0(b). Let us assume that dk(ab) =
∑k

i=0 di(a)dk−i(b) for k < n. Thus we
have

ndn(ab) =
n∑

k=1

δak
dn−k(ab)

=
n∑

k=1

δak

n−k∑
i=0

di(a)dn−k−i(b)

=
n∑

k=1

n−k∑
i=0

[akdi(a)dn−k−i(b)− di(a)dn−k−i(b)ak]

=
n∑

k=1

n−k∑
i=0

[akdi(a)dn−k−i(b)− di(a)akdn−k−i(b)]

+
n∑

k=1

n−k∑
i=0

[di(a)akdn−k−i(b)− di(a)dn−k−i(b)ak].
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We therefore have

ndn(ab) =
n∑

i=0

(
n−i∑
k=1

δak
dn−k−i(a)

)
di(b)

+
n∑

i=0

di(a)

(
n−i∑
k=1

δak
dn−k−i(b)

)

=
n∑

i=0

(n− i)dn−i(a)di(b)

+
n∑

i=0

di(a)(n− i)dn−i(b)

=
n∑

i=0

idi(a)dn−i(b) +
n∑

i=0

(n− i)di(a)dn−i(b)

= n
n∑

i=0

di(a)dn−i(b).

Remark 2.4. The first five terms of {dn} are

d0 = I, d1 = δa1 , d2 =
1

2
δ2
a1

+
1

2
δa2 ,

d3 =
1

6
δ3
a1

+
1

6
δa1δa2 +

1

3
δa2δa1 +

1

3
δa3 ,

d4 =
1

24
δ4
a1

+
1

24
δ2
a1
δa2 +

1

12
δa1δa2δa1 +

1

12
δa1δa3

+
1

8
δa2δ

2
a1

+
1

8
δ2
a2

+
1

4
δa3δa1 +

1

4
δa4 .

Taking idea from Example 2.3, we give an alternative definition of inner higher
derivations.

Definition 2.5. A uniformly bounded higher derivation {dn} on an algebra
A is called inner if there is a bounded sequence {an} in A such that ndn =∑n

k=1 δak
dn−k. In this case we say that {dn} is constructed via {an}.

Proposition 2.6. Let {dn} be a uniformly bounded higher derivation on a unital
Banach algebra A with the generating function α. Then {dn} is inner if and only
if there is a sequence {an} in A with a0 = 0 such that α′t = 1

t
(
∑∞

n=1 δant
n)αt for

|t| < 1.

Proof. We have

1

t

(
∞∑

n=1

δant
n

)
αt =

1

t

(
∞∑

n=0

δant
n

)(
∞∑

n=0

dnt
n

)
=

∞∑
n=0

(
n∑

k=0

δak
dn−k

)
tn−1,

and the latter is equal to α′t =
∑∞

n=1 ndnt
n−1 if and only if d is inner. �
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Theorem 2.7. Let {dn} be an inner higher derivation on a Banach algebra A
constructed via a mutually commuting bounded sequence {an} in A with a0 = 0.
Then

dn =
n∑

m=1

∑
Pm

i=1 ki=n

δak1
. . . δakm

m!k1 . . . km

.

Proof. Since an’s are mutually commuting, so are δan ’s. We can therefore deduce

that exp(
∑∞

n=1
δan

n
tn) satisfies the differential equation α′t = 1

t
(
∑∞

n=1 δant
n)αt,

for |t| < 1, mentioned in Proposition 2.6. Thus we have

αt = exp

(
∞∑

n=1

δan

n
tn

)
=

∞∑
m=0

(
∑∞

n=1
δan

n
tn)m

m!
.

But (
∞∑

n=1

δan

n
tn

)m

=
∞∑

n=m

 ∑
Pm

i=1 ki=n

δak1
. . . δakm

k1 . . . km

 tn.

Hence
∞∑

n=0

dnt
n = αt

=
∞∑

m=0

(
∑∞

n=1
δan

n
tn)m

m!

=
∞∑

m=0

1

m!

∞∑
n=m

 ∑
Pm

i=1 ki=n

δak1
. . . δakm

k1 . . . km

 tn

=
∞∑

n=0

 n∑
m=1

∑
Pm

i=1 ki=n

δak1
. . . δakm

m!k1 . . . km

 tn.

�

Example 2.8. Let {dn} be an inner higher derivation on a Banach algebra A
constructed via a mutually commuting bounded sequence {an} in A. The first
five terms of {dn} are

d0 = I, d1 = δa1 , d2 =
1

2
δ2
a1

+
1

2
δa2 ,

d3 =
1

6
δ3
a1

+
1

4
δa1δa2 +

1

4
δa2δa1 +

1

3
δa3 =

1

6
δ3
a1

+
1

2
δa1δa2 +

1

3
δa3 ,

d4 =
1

24
δ4
a1

+
1

12
δ2
a1
δa2 +

1

12
δa1δa2δa1 +

1

12
δa2δ

2
a1

+
1

8
δ2
a2

+
1

6
δa1δa3 +

1

6
δa3δa1 +

1

4
δa4

=
1

24
δ4
a1

+
1

4
δ2
a1
δa2 +

1

8
δ2
a2

+
1

3
δa1δa3 +

1

4
δa4 .
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3. The Result

Let σ : A → A be a homomorphism. A linear mapping D : A → A is called
a (σ, σ)-derivation if it satisfies the generalized Leibniz rule D(ab) = D(a)σ(b) +
σ(a)D(b) for all a, b ∈ A. It is called inner if there is an a0 ∈ A such that
D(a) = a0σ(a)− σ(a)a0 for all a ∈ A.

Lemma 3.1. Let A be a Banach algebra and {dn} be a uniformly bounded higher
derivation on A with the generating function α. Then α′t is an (αt, αt)-derivation.

Proof. By Lemma 2.2, for each a, b ∈ A we have αt(ab) = αt(a)αt(b). Taking the
derivative we have the result. �

More generally, we have the following useful result. Note that if σ : A → A
is an isomorphism then for each (σ, σ)-derivation D, the mapping Dσ−1 is an
ordinary derivation. Thus if σ is an isomorphism and each derivation on A is
inner, then each (σ, σ)-derivation on A is inner. We use this fact in the following
theorem. In fact, since αt is an isomorphism we can therefore deduce that if each
derivation on A is inner, then each (αt, αt)-derivation is also inner.

Theorem 3.2. Let A be a Banach algebra and {dn} be a uniformly bounded higher

derivation on A with the generating function α. Then α
(m)
0 = m!dm. Moreover,

if each derivation on A is inner then

α
(m+1)
t =

m∑
i=0

(
m

i

)
δai,t

α
(m−i)
t ,

for some sequence {am,t} in A.

Proof. We use induction on m. Note that α
(0)
t = αt and α

(1)
t = α′t. Thus Lemma

3.1 implies that α
(1)
t is an (α

(0)
t , α

(0)
t )-derivation and the assumption guarantees

the existence of a mapping ϕ from the real numbers into A such that α
(1)
t (a) =

ϕ(t)α
(0)
t (a)−α(0)

t (a)ϕ(t). Choosing a mapping ϕ satisfying the later equation and
taking a0,t = ϕ(t) we have the result in the case m = 0.

Now suppose that the result holds for m− 1. Define βt by

βt = α
(m+1)
t −

m−1∑
i=0

(
m

i

)
δai,t

α
(m−i)
t .

Let a, b ∈ A. Taking the consecutive derivatives from αt(ab) = αt(a)αt(b) we
have

α
(m+1)
t (ab) =

m+1∑
i=0

(
m+ 1

i

)
α

(i)
t (a)α

(m+1−i)
t (b).

We therefore can write

βt(ab) =
m+1∑
i=0

(
m+ 1

i

)
α

(i)
t (a)α

(m+1−i)
t (b)

−
m−1∑
i=0

(
m

i

)
δai,t

[m−i∑
j=0

(
m− i

j

)
α

(j)
t (a)α

(m−i−j)
t (b)

]
.
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Since δai,t
’s are derivations, we have

βt(ab) =
m+1∑
i=0

(
m+ 1

i

)
α

(i)
t (a)α

(m+1−i)
t (b)

−
m−1∑
i=0

(
m

i

)m−i∑
j=0

(
m− i

j

)[
δai,t

(α
(j)
t (a))α

(m−i−j)
t (b) + α

(j)
t (a)δai,t

(α
(m−i−j)
t (b))

]
.

We write

βt(ab) = Aαt(b) + αt(a)B + Cα′t(b) + α′t(a)D +
m−1∑
r=2

Erα
(r)
t (b) +

m−1∑
s=2

α
(s)
t (a)Fs

and evaluate the coefficients. We have

A =

(
m+ 1

m+ 1

)
α

(m+1)
t (a)−

m−1∑
i=0

(
m

i

)(
m− i

m− i

)
δai,t

α
(m−i)
t (a) = βt(a).

By the same argument B = βt(b). Also

C =

(
m+ 1

m

)
α

(m)
t (a)−

m−1∑
i=0

(
m

i

)(
m− i

m− i− 1

)
δai,t

α
(m−i−1)
t (a)− α

(m)
t (a).

Note that the last term is obtained from i = 0 and j = m, since δa0,tαt(b) = α′t(b).
By the inductive hypothesis we thus have

C = (m+ 1)α
(m)
t (a)−

m−1∑
i=0

(
m

i

)(
m− i

m− i− 1

)
δai,t

α
(m−i−1)
t (a)− α

(m)
t (a)

= m
[
α

(m)
t (a)−

m−1∑
i=0

(
m− 1

i

)
δai,t

α
(m−1−i)
t (a)

]
= 0.

By the same argument D = 0. To evaluate Er’s we split the first summation and
write

βt(ab) =
m+1∑
i=0

(
m

i− 1

)
α

(i)
t (a)α

(m+1−i)
t (b) +

m+1∑
i=0

(
m

i

)
α

(i)
t (a)α

(m+1−i)
t (b)

−
m−1∑
i=0

(
m

i

)m−i∑
j=0

(
m− i

j

)[
δai,t

(α
(j)
t (a))α

(m−i−j)
t (b) + α

(j)
t (a)δai,t

(α
(m−i−j)
t (b))

]
.

Looking to the first and the last summation we have

Er =

(
m

m− r

)
α

(m+1−r)
t (a)−

m−r∑
i=0

(
m

i

)(
m− i

m− i− r

)
δai,t

α
(m−i−r)
t (a)

=

(
m

m− r

)[
α

(m−r+1)
t (a)−

m−r∑
i=0

(
m
i

)(
m−i

m−i−r

)(
m

m−r

) δai,t
α

(m−r−i)
t (a)

]
=

(
m

m− r

)[
α

(m−r+1)
t (a)−

m−r∑
i=0

(
m− r

i

)
δai,t

α
(m−r−i)
t (a)

]
= 0.
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By the same argument Fs = 0. This implies βt(ab) = βt(a)αt(b) + αt(a)βt(b), i.e.
βt is an (αt, αt)-derivation. Hence there is an am,t ∈ A such that βt = δam,tαt.
We therefore have the result. �

Corollary 3.3. Let A be a Banach algebra with the property that each derivation
on A is inner. Then each uniformly bounded higher derivation on A is inner.

Proof. Put t = 0 in Theorem 3.2. Then for ak+1 =
ak,0

k!
we have the result. �

Remark 3.4. The Kadison–Sakai theorem ensures us that if M is a von Neumann
algebra then each derivation on M is inner. We can therefore deduce that each
uniformly bounded higher derivation on a von Neumann algebra is inner.

References

1. H. Hasse and F.K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential
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