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ABSTRACT. We show that there is an affine order isomorphism between com-
pletely positive maps from a C*-algebra A to the C*-algebra L(H) of all
bounded linear operators on a Hilbert space H, u-covariant with respect to
a C*-dynamical system (G, «, A) and wu-covariant completely positive maps
from the crossed product A x,, G to L(H), which preserves the Lebesgue de-
composition.

1. INTRODUCTION AND PRELIMINARIES

This note is motivated by the applications of the theory of completely positive
maps to quantum information theory (operator valued completely positive maps
on C*-algebras are used as mathematical model for quantum operations [9]) and
quantum probability [8].

A completely positive map from a C*-algebra A to the C*-algebra L(H) of all
bounded linear operators on a Hilbert space H is a linear map ¢ : A — L(H)
such that for all positive integers n, the maps ™ : M, (A) — L(H") defined by

Qp(n) <[aij]2j:1) = [p (aijﬂ?,j:l 5
where M,,(A) denotes the C*-algebra of all n x n matrices over A, are positive,

that is o™ <<[aij]" >* [ai;]? ) > 0 for all [a;]’._, € My,(A). In [11] it is

ij=1 ij=1 ij=1
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shown that a completely positive map ¢ : A — L(H) is of the form
p(a) = V:CI)W (a) Vs,

where @, is a *-representation of A on a Hilbert space H, and V, is a bounded
linear operator from H to H,. The cone CP(A, H) of completely positive maps
from A to L(H) defines a natural partial order relation and this relation is char-
acterized by the Radon-Nikodym derivatives. In general, the Radon-Nikodym
derivative is not a bounded linear operator. Two completely positive maps from
A to L(H) are comparable (with respect to the order relation) if and only if
the Radon—Nikodym derivative is a bounded linear operator (see, [, 3, &]). But
not all completely positive maps can be compared. In [I, 3, 4, 8] is introduced
the notion of absolute continuity for completely positive maps and it is shown
that given two completely positive maps ¢ and 6 from A to L(H), which are
not comparable, then ¢ is absolutely continuous with respect to # if and only
if the Radon—Nikodym derivative of ¢ with respect to 6 is a unbounded posi-
tive self-adjoint operator. In [8], Parthasarthy extended the classical Lebesgue
decomposition theorem for the unital operator valued completely positive maps
on C*-algebras. In Section 2 of this note, we extend these results to the case of
operator valued covariant completely positive maps on C*-algebras.

A C*-dynamical system is a triple (G, «a, A), where G is a locally compact
group, A is a C*-algebra and « is a continuous action of G' on A (this is, g — oy
is a group morphism from G to the group of automorphisms of A and the map
g — ag4(a) from G to A is continuous for all a € A). Let g — u, be a unitary
representation of G on a Hilbert space H. A completely positive linear map
¢: A— L(H) is u-covariant with respect to the C*-dynamical system (G, a, A)
if

p (ag (a)) = ugp (a) uy
for all g € G and for all a € A. Paulsen [7] obtained a covariant version of the
Stinespring construction. Let ¢ : A — L(H) be a u-covariant completely positive
map. If (®,,v¥, H,,V,) is the covariant Stinespring construction associated to
¢, the map @ : C.(G, A) — L(H) defined by

B(f) = / o (@) ugdy

G

where C.(G, A) denotes the vector space of all continuous functions from G to
A with compact support and dg denotes a left Haar measure on GG, extends to a
completely positive map from the crossed product A x, G of A by a to L(H), de-
noted also by @ (see, for example, [0, 10]). Moreover, the Stinespring construction
associated with @ is unitarily equivalent with (®, x v¥, H,, V,,), where @, x v¥
is the integral form of the covariant representation (@, v?, H,). In Section 3, we
show that the map ¢ — ¢ from wu-covariant completely positive maps from A to
L(H) to u-covariant completely positive linear maps from A x, G to L(H) is an
affine order isomorphism, which preserves the Lebesgue decomposition.
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2. COVARIANT COMPLETELY POSITIVE MAPS

Let (G,a, A) be a C*-dynamical system and let ¢ — u, be a unitary rep-
resentation of G on a Hilbert space H and let CP ((G,«a, A), H,u) = {p €
CP (A, H);p is u-covariant with respect to (G, a, A)}.

In [7, Theorem 2.1] and [2, Theorem 4] it is given a covariant version of the
Stinespring construction. Let ¢ € CP ((G,a, A), H,u). Then there is a quadruple
(®,,v?, Hy, V,,) consisting of a covariant representation (®,,v%, H,) of (G, a, A)
and an element V,, in L(H, H,) such that

(1) Voug = 0§V, for all g € G;

(2) ¢ (a) =V P, (a)V, for all a € A;

(3) [@,(A)V,H| = H,, where [®,(A)V,H] denotes the closed linear sub-
space of H, generated by {®, (a) V,&;a € A, € H}.

Moreover, the quadruple (@, v¥, H,, V) is unique with the properties (1) —(3)
in the sense that if (®,v, K, V) is another quadruple consisting of a covariant
representation (®,v, K) of (G, a, A) and an element V in L(H, K'), which verifies
the relations (1) — (3), then there is a unitary operator U : K — H,, such that

(1) ®(a) =U*®, (a) U for all a € A,
(2) vy = UvfU for all g € G;
(3) V=U"V,.

Let 9,0 € CP ((G,«a, A), H,u). Wesay that p < 8if0—p € CP ((G,, A), H,u).
This relation is a partial order relation on CP ((G,a, A), H,u). We say that ¢
is uniformly dominated by 6, and we write ¢ <y 0, if there is A > 0 such that
¢ < M. This relation is a partial preorder relation on CP ((G,«, A), H,u).
Clearly, if ¢ < 6, then ¢ <, 6.

Suppose that ¢ <; 0. Then there is a bounded linear operator Jy () : Hy —
H,, such that Jy (@) (®g (a) Vy€) = D, (a) V,,€ for all € € A. Moreover,

Jo () Py (a) = @y, (a) Jy () foralla e A

and

Jo (@) v) =i Jy () forall g € G.

Let Ag () = Jo ()" Jo (p). Then Ay () is a positive element in @y (4) Nov? (G)’
and

v (a) =V Ay (p) Py (a) Vy for all a € A.

Moreover, Ay () is unique with these properties. If ¢ < 6, then Ay (¢) < Ip,.
The positive linear operator Ay () is called the Radon—Nikodym derivative of ¢
with respect to 6.

In [5] it is shown that the map ¢ +— Ay () from {¢ € CP ((G, o, A) , H,u) ;¢ <
0} to {T € @y (A)' Nv? (G)';0 < T < Ip,} is an affine order isomorphism and its
inverse is given by T+ 0p, where 07 (a) = VTP (a) Vp for all a € A.

In the same manner, it can be shown that the map ¢ — Ay (¢) from {p €
CP((G,a, A) , H,u) ;0 <y 0} to {T € Py (A) N0’ (G)';0 < T} is an affine order

isomorphism.
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Let ¢,0 € CP((G,a,A),H,u) with ¢ < 6. As in the case of completely
positive maps from A to L(H) we can recover the covariant Stinesprning con-
struction of ¢ from the covariant Stinespring construction of 6 (see, [3]). Since
Ao (p) € Do(A) N (G), Prer(an(o): Prtgereraote) € Po(A) N1’ (G)' and

q)9|H96ker(Ag(<p)) , vﬂHeeker(Ag(@) ,Hyg ©ker (Ag (p))) is a covariant representa-

tion of (G, a, A). Moreover, Py, cker(ay(0) Do (90)% Vo € L(H,HySker (Ag (¢)). A
simple calculus shows that

?(0) = (Prtgotertau(en 0 ()7 V) @l crananen (@) (Prtscrertantono (9) Vo)
for all a € A and

1 1
(PHeeker (Bo(p) Do ()2 Ve) L PN (P HoGker(80(2)) Do ()2 Vb)

for all g € G, and since

_(I)9|H9@ker(Ag(<p)) (A) (PHg@ker Ao(e)) Do ()2 Vg) H]
= |Prorerag(e) Po (4) Ag (¢)2 VoH }

[ 1
= [Prjoreras(0) Do () Po (A) Vol }

= |PasoreraoionDa (¢)* Ho|
= HySker (Ag(p))

1 .
<‘I’9‘Haeker(Ae(«p V] tyorer(a oy  Ho O Ker (B0 (9)) Prayorer(ao(en Do () Ve) is

the covariant Stinespring construction associated to .
Let 0,0 € CP((G,a,A),H,u). We say that ¢ is uniformly equivalent to 0,
and we write ¢ =y 0, if ¢ <y 0 and 0 <y .

Proposition 2.1. Let 9,0 € CP ((G,a, A), H,u). If ¢ =, 0, then the covariant
representations ((IDQ,U(’,HQ) and (®,,v%, H,) of (G,a, A) associated to § and ¢
are unitarily equivalent.

Proof. Since ¢ =y 6, Jy(p) is invertible [3]. Then Agy(p) is invertible and so
there is a unitary operator U : Hy — H,, such that Jy (¢) = UNg(p)2. Moreover,
Udg(a) =P, (a)U for all a € A [¢]. Let g € G. From
(U05) (B0(9)@o (a) Vo) = Ug(i)3 @ (0 (a)) 0§Vt
= Jy () Qo (g (a)) Vouy
Dy, (g (@) Vipugg
= vy Py (a) v Vouel = 07 P, (a) Vi€
= vgJo () By (a )Vef
= (u5U) (Ao(9)* Py () Vi)
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for all @ € A and for all £ € H, and taking into account that Ag(cp)% is surjective
and [®y (A) VyH] = Hy, we deduce that Uvf = v#U. Therefore, the covariant
representations ((139,1)0, H@) and (®,,v%?, H,) of (G, a, A) associated to 6 and ¢
are unitarily equivalent. O

Let p,0 € CP ((G,a, A), H,u). We say that ¢ is 0-absolutely continuous, and
we write ¢ < 6, if there is an increasing sequence (y,), in CP ((G,«, A), H,u)
such that ¢,, <y @ for all positive integers n and the sequence (¢, (a)), converges
to ¢ (a) with respect to the strong topology on L(H) for each a € A.

Lemma 2.2. Let ¢ € CP (A, H) and let {on}n be an increasing sequence in
CP(A,H). Then {p,(a)}, converges strongly to ¢ (a) for each a € A if and
only if v, < @ for all positive integers n and the sequence {A, (¢n)}n converges
strongly to Iy .

Proof. Let [a;]]._, € M;y(A). It is not difficult to check that the sequence

{gpﬁfm (([aw];nj 1) laij]i 5y }n converges strongly to (™ <<[aw]72 1) [aij];),;:l)’

and since {90% ™ <<[a”]zn] 1) [aij]?;.ﬂ)} is an increasing sequence of positive

operators, oi!" ((lail7yy ) laglfoy) < ¢ ((laalf ) [a)7), ) for all pos-

itive integers n. Therefore, ¢ — ¢, € CP (A, H) and so ¢, < ¢ for all positive
integers n. From

1A (9n) Dy (a) Vi€ — @y ( )V<p§“2
= ((Un — Ay (pn)) Py (@) Vo, (T — Ay (90) Py (@) ViE)
< ((Tr — Ay (¢n)) By (@) Vi€, Dy (a) Vipk)
= <V; (g — Ay (o)) @, (a”a) Vs@fﬂ@
= [{(¢(a"a) = ¢n (a"a)) £, &)
< (e (a*a) = ¢u (a”a)) ]| [I€]]

for all £ € H, for all @ € A and taking into account that [®, (A) V,H| = H,, we
deduce that the sequence {A, (¢,)}, converges strongly to /.

Conversely, if ¢, < ¢ for all positive integers n and if the sequence {A,, (¢,)}n
converges strongly to I, then it is easy to verify that {¢, (a)}, converges strongly
to ¢ (a) for each a € A. O

Remark 2.3. Let ¢,0 € CP ((G,«a,A), H,u). Then ¢ is §-absolutely continuous
if and only if there is an increasing sequence {¢,}, in CP ((G,a,A), H,u) such
that ¢,, <y 6 and ¢,, < ¢ for all positive integers n and the sequence {A, (¥,)}n
converges strongly to I.

As in the case of completely positive maps on C*-algebras [3, Theorem 2.11]
or [3], we have the following theorem.

Theorem 2.4. Let ¢,0 € CP ((G,a, A), H,u) and let (CDQ,UG,HQ,VQ) be the
Stinespring construction associated to 0. Then o is O-absolutely continuous if

and only if there is a unique positive selfadjoint linear operator Ag () in Hy such
that
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Ag (i) is affiliated with @ (A)";
(2) @y (A)VyH is a core for Ay (p)
1
(3) Do ()2 Vo € L(H, Hp);
1 1

(4) ¢ (@) = (D0 ()2 Va) @y (a) (A9 ()2 Vi) for all a € A

To prove the theorem, it remains to show that Ay (¢) is affiliated with v? (GQ)

By the proof of Theorem 7.13 [3], Ag(¢) = A, (0)_% A, (p) A, (9)_% , where
p = ¢+ 6 and A, () is supposed to be injective. Then, modulo a unitary

equivalence, Hy = H, and v’ = v*. From v/A, (0)% = A, (9)% vf for all g € G,
we deduce that A, (9)_% vIA, (9)% = vf for all g € G, and then

W8 (¢) (2, (0)

NG

I

/

N

<1>p(a)vpg> = WA, (0) 2

for all a € A, for all ¢ € H and for all g € G. Therefore, Ay (¢) is affiliated with
v? (G)" and the theorem is proved. O

Let ¢,0 € CP((G,a, A), H,u). We say that ¢ is 0-singular if the only ¢ €
CP((G,a, A), H,u) such that ¢ < ¢ and ¢ <6 is 0.
The following theorem extends [3, Theorem 3.1].

Theorem 2.5. Let ¢,0 € CP((G,a,A),H,u). Then there are pq. and ¢, in
CP((G,a,A), H,u) such that

(1) @ue is O-absolutely continuous and s is 0-singular;

(2) © = Pac T Ps;

(3) @ac is mazimal in the sense that if 1 is 0-absolutely continuous and ¢ <

Dac, then ¥ = @ge.

Proof. By [3, Theorem 3.1], there are ¢,., ps € CP (A, H) such that ¢ = @,
+ s, Pac 18 B-absolutely continuous and maximal, in the sense that if o is a
completely positive map from A to L(H), 6-absolutely continuous and o < g,
then o = .., and ¢, is f-singular. Moreover,

Pac (@) = VA, (9) Prcker a,(0)Pp (@) V,
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and
s (a) =V, Bera,(p)®p (@) V)
for all @ € A, where p = ¢ + 6. Then

Pac (O‘g (a)) = ( )PHpekerA ) Pp (ag (a Vs
= (90) PHp@kerA () Vg (I’p( )

V*UpAp (v) PHp@kerAp(ap)(I)p (a)

= ugV* p (©) P, cker A, (o )(I)p( )

and
ps(ag (@) =V, Pern, )P (ag(a) Vy =V, Pera, vy, (a) v)-1V,
= V0P 5, (0P, (a) vgp,le
= gV, Peern,(p)®p (@) Voug-1 = ugps (a) ug-

for all g € G and for all a € A. Therefore, @ue, s € CP (G, o, A), H,u) .
Let v € CP ((G,«, A), H,u) such that 1 is f-absolutely continuous and ¢ <
©ac- Then, by [3, Theorem 3.1], ¢ = p,, and the theorem is proved. O

Let ¢,0 € CP ((G,a, A), H,u). The decomposition ¢ = .. + @5 is called the
0-Lebesgue decomposition of ¢, .. is called the absolutely continuos part and
©s is the singular part of ¢ with respect to 6.

As in the case of completely positive maps on C*-algebras [3], we have

Corollary 2.6. Let ¢,1,0 € CP ((G,a, A),H,u). If p = poc + ps and P = 1,

+ 1 are the 0-Lebesgue decomposition of ¢ and 0. Then

1) ¢ is 0-singular if and only if .. =0

2) ¢ is O-absolutely continuous if and only if 5 =0

3) (ty),. = twae for each positive number t

4) Yac + Voe < (0 +1),., where (@ +1),, is the absolutely continuous part
of v + 1 with respect to 0

(5) If ¢ < o, then Yac < Poc.

(
(
(
(

3. COVARIANT COMPLETELY POSITIVE MAPS AND CROSSED PRODUCTS

Let ¢ € CP((G,a,A),H,u). If (®,,v%, H,,V,) is the covariant Stinespring
construction associated to ¢, the map ¢ : C.(G, A) — L(H) defined by

B(f) = / o(F(9))ugdy

where C.(G, A) denotes the vector space of all continuous functions from G to
A with compact support, extends to a completely positive map from A x, G to
L(H), denoted also by @ (see, for example, [0, 10]). Moreover, the Stinespring
construction associated with @ is unitarily equivalent with (&, x v¥, H,, V),
where @, x v¥ is the integral form of the covariant representation (®,,v¥, H,).

Proposition 3.1. Let § € CP ((G,a, A), H, u).
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(1) The map ¢ — § is an affine order isomorphism from {p € CP((G,«a, A),
H,u): ¢ <0} to{peCP((Ax,G), H):p<8}.

(2) The map ¢ — @ is an affine order isomorphism from {¢ € CP((G,«, A),
Hou): ¢ <y 0} to {p € CP((AxaG), H);p <y b}

Proof. (1) Let (<I>9,v ,Hg,Vg) be the covariant Stinespring construction associ-
ated to 6 and let ¢ € CP ((G,, A), H,u) with ¢ < 6. Then

gt <<[fij]§f}:1)* [fij]$:1>

= @(Zfi*fkj ] [/¢<<Zfiﬁ*fkj> )“gdg]
k=1 ij=1 G k=1 i,j=1
/G k=1 Jij=1
- | frson (3o o) v
RS k=1 dij=1
= |V5h (90)/ Dy (Z il # fkj) (9) ) vgVedy
L ¢ k=1 dij=1

m

= Vra () (@0 x o) Zﬁﬁj*fkj)v@

/[’7]:1

= 1> (20 (0) (Bo x 0) (fir) Vo)™ (®o x 0°) (fuz) Vi

k=1

(20 x7) () Vol ') [0iada (D] (@0 X 7) (i) V.
(@0 % ") () Vol ) [(@0 x ) (i) Vol

m

A
| N N T

= Vi > (®o x o) (fin)" (@0 x %) (fis) Vi

k=1

= |V; (@ x o) <Z *fkj>v

m

1,j=1

- @\(Z fjf *fk]>] — ptm) <([fzy];m]:1) [fz]]” 1>mj .
L \k=1 ij=1

for all [fi;]7,_, € My (Ce(G, A)) and so 0 — 3 € CP((Ax,G),H). Therefore,
the map ¢ — @ is well defined.
Clearly,

o —

p+o=p+7
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and .
Ap = Ap
for all p,0 € CP ((G,a, A), H,u) and for all positive numbers A.
Let ¢ € CP (G, A) H,u). If ¢ =0, then

Vi (@ x v%) ()" (P x v%) (2)V,, = @ (272) = 0
for all x € G x4 A and so (P, x v¥) (x)V, =0 for all x € G x, A. But
()€ =VoPe(a)Vl = Vo lim (@ X v7) (esia (a))Vel = 0

where {e;}; is an approximate unit for A x,, G and iy4 is a non-degenerate faithful
homomorphism from A to the multiplier algebra of A x, G, (ia(a)f)(g9) = af(g)
for all g € G and for all f € C.(G, A) (see, for example, [12, Proposition 2.40]),
for all @ € A and for all £ € H. Therefore ¢ = 0, and so the map ¢ — @ from
CP((G,a,A),H,u) to CP((A x4 G), H) is injective.

To prove the assertion (1) it remains to show that the map ¢ — @ is surjective.
Let p € CP((AxoG),H), p<8. Then

p(2) = Vi Bg (p) (@0 x o) (Vs
for all € G x, A. Consider the map ¢ : A — L(H) defined by
¢ (a) = V5 A5 (p) Po(a)Ve.
Since Az (p) € (<I>9 X 119) (G x4, A) and since (<I)9 X ve) (Ax,G) = &g (A) N
v(G), Ay (p) € Py (A) and so ¢ € CP (A, H). Moreover,
o0y (@) = Vil (o) Dol @)V = Vi By (p) o0 Ba(a) () Ve
= Viudg () Bola) (1) Vo = Vi g (0) @)V = wyge(a
for all @ € A and for all g € G. Therefore, p € CP ((G,«, A),H,u), and ¢ < 6.

Moreover,

3(f) = / o (F(9))uydg = / Vi A (9) Bo(f(9))Viugdy

G G

— VA (p) /G Do(f(9))11Vadg

= Vi (p) (9 x ") (/)Va=p(f)
for all f € C.(G,A), and so the map ¢ — @ from {p € CP((G,a, A),H,u);

0 <0} to{peCP((AxaG),H);p< 8} is surjective.
(2) It follows in the same manner as assertion (1). O

Corollary 3.2. Let p,0 € CP ((G,«, A) , H,u) such that p < 0 or p <y 0. Then
A5 (P) = Dg ().

Corollary 3.3. Let p,0 € CP((G,a, A),H,u). Then ¢ =y 0 if and only if
P=ub.
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Let f € C.(G,A) and g € G. Then the map f, : G — A defined by f, (t) =
f (g7't) is an element in C.(G, A).

A completely positive map p : A x, G — L(H) is u-covariant if p (oy 0 f;) =
ugp (f) for all f € C.(G,A) and for all g € G (see [10]).

Let CP ((A X, G),H,u) ={p € CP((A X, G),H);p is u-covariant}. In [10]
it is shown that there is an isomorphism between the unital completely positive
maps from a unital C*-algebra A to L(H), u-covariant with respect to the C*-
dynamical system (G, «, A) and the normalized u-covariant completely positive
maps from A x,G to L(H). In the following theorem we extend this result.

Theorem 3.4. The map ¢ — @ is an affine order isomorphism from {CP((G, «,
A),H,u); <} to {CP ((A X, G), H,u) ; <} respectively from {CP ((G,«a, A), H,u) ;
<y}t to {CP((A xoG),H,u); <y}

Proof. Let ¢ € CP ((G,a, A) ,H,u), f € C.(G,A) and g € G. Then
%) o = sds = g -1 g—1 <d
Glayof,) /GsO(Oég(fg(S)))u s /G’“ o (f (57'5)) uyrupds
_— /G o (f (6)) undt = 4,3 (f)

Therefore, the map ¢ — @ is well defined.

According to Proposition 3.1, to prove the theorem it is sufficient to show that
the map is surjective. Let p € CP ((A X, G),H,u) and let (®,, H,,V,) be the
Stinespring construction associated to p. By [12, Proposition 2.40] there is a
covariant representation (®,v, H,) of (G, «, A) such that & x v = .

Consider the map ¢ : A — L (H) defined by

p(a) =V ®(a) V),

Clearly, ¢ is completely positive. To show that ¢ is u-covariant with respect to
(G, a, A) it is sufficient to show that V,u, = v,V for all g € G, since
plag(a) = Vj®(ag(a)V, =V, v,®(a) vV,
= u,V, o (a) Vyug-1 = ugp (a) ug-1.

By the Stinesprig construction, H, is the completion of the pre-Hilbert space
(A X G) ®ag H with the pre-innner product given by

(za&yen) =(pyz)n).

Moreover, Vy(r®@&+N) = p(2)€, where N = {r ® £ € (A X, G) Qay H;
(r®&rx®E) =0} and @,(z) (YR E+N)=ay@{+ N forallz,y e Ax, G
and for all £ € H.

Let f € C.(G,A), g € G, £ € H and {e;}ic; an approximate unit for A x,, G.
Then

(ugV?) (f ®E+N) = ugp(f)€
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and

(Vo) (FoE+N) = vy (lme, (eig (9) (f © € +N))

= V; (tmeiia () f @ €+ )
<1izmei (agofg)®§+N>
— ‘/Yp*(agofgéz)g‘{'/\/’):p(&gofg)gv

where ig is an injective strictly continuous homomorphism from G to the unitary
group from the multiplier algebra of A x, G such that iz (g) f = o, o f, for all
f € C.(G, A) (see, for example, [12, Proposition 2.40]). But

p(agofg)fzugp(f)§

and so u,V = V v, Therefore, V,u, = v,V, for all g € G, and so ¢ €
CP((G,a,A), H,u). Moreover,

3(f) = / o ( (9)) uydg = /G VI (£ (9)) Vyugdy

= [V U ) eds =V @ <0 (1),
= VIR, (f)V, = p(f)

for all f € C. (G, A). Therefore, p = p and the map ¢ — ¢ from CP( (G, «, A),
H,u) to CP((A X, G), H,u) is surjective. O

Theorem 3.5. Let 9,0 € CP ((G,«a, A), H,u). Then

(1) @ is 0-absolutely continuous if and only if ¢ is g—absolutely continuous;
(2) ¢ is O-singular if and only if ¢ is 0-singular.

Proof. (1) First, we suppose that ¢ is #-absolutely continuous. Then, by Re-
mark 2.3, there is an increasing sequence {¢, }, in CP ((G,«a, A) , H,u) such that
on, <y 0 and ¢, < ¢ for all positive integers n and the sequence {A, (¢y,)}n
converges strongly to Iy. By Proposition 3.1, {,}, is an increasing sequence
in CP (A x, G, H) such that @, <y 0 and 7, < { for all positive integers n.
But, for each positive integer n, A, (¢,) = Az (¢,) (Corollary 3.2), and then the
sequence {p, (z)}, converges strongly to ¢ (z) for all z € G x,, A. Therefore,
is g—absolutely continuous. R

Conversely, suppose that @ is #-absolutely continuous. T/lgen there is an in-
creasing sequence {p,}, in CP (A x, G, H) such that p, <y 0 and p, < @ for all
positive integers n, and the sequence {A, (p,)}, converges strongly to /. Since
{pn}n is an increasing sequence in CP (A x,, G, H), by Proposition 3.1, there is
an increasing sequence {p,}, in CP ((G,a, A), H,u) such that p, = p, for all
positive integers n. Moreover, ¢, <; 0 and ¢, < ¢ for all positive integers n,
and since A, (¢n) = Az (Pn) = Az (pn) for all positive integers n, the sequence
{A, (¢n)}n converges strongly to Iy. Therefore, ¢ is #-absolutely continuous.
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(2) Suppose that ¢ is f-singular. Let p € CP (A x, G, H) such that p < @, 0.
Then p € CP (A X, G, H,u) and there is v» € CP ((G,«, A), H,u) such that
J = p. By Theorem 3.4, ¢ < ¢, 0 and then ¢ =0 and so p = 0.

Conversely, suppose that ¢ is é\—singular. If ¢ <, 0, then QZ <@, 5, whence it
follows that gZ =0 and so ¢ = 0. O

Corollary 3.6. The map ¢ — ¢ fromCP ((G,a, A), H,u) toCP ((A X, G), H,u)
preserves the Lebesque decomposition.

Proof. Let ¢,0 € CP((G,a,A),H,u) and let ¢ = ¢,. + ¢sbe the Lebesgue
decomposition of ¢ with respect to #. Then @ = @, + @, and moreover,

P is B-absolutely continuous. Let p € CP ((A X, G), H), f-absolutely con-
tinuous such that p < @ac. Then p € CP((A X, G), H,u) and so there is a

v € CP((G,a,A), H,u) such that ¢ = p. By Theorem 3.5, ¢ is #-absolutely
continuous and ¥ < @, and by the uniqueness of the Lebesgue decomposition,
) = @ae. Therefore, p = Pae and then P,. = Pae and the corollary is proved. [
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