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Abstract. This article presents an interaction between functional homomor-
phisms, dynamical systems and differential equations. The exponential func-
tions play pivotal role in this interaction.

1. Introduction

Let X and Y be topological rings. Then consider the following four types of
mappings from X to Y .

(1) h1 : X → Y such that h1(x + y) = h1(x) + h1(y)
(2) h2 : X → Y such that h2(x + y) = h1(x).h2(y)
(3) h3 : X → Y such that h3(x.y) = h1(x) + h2(y)
(4) h4 : X → Y such that h4(x.y) = h4(x).h4(y), for every x, y ∈ X.

These mapping are homomorphisms under different (or same) algebraic oper-
ations on X and Y . For example, a mapping satisfying (1) and (4) is a ring
homomorphism. If it satisfies only (1), then it is a group homomorphism from
(X, +) to (Y, +). The mapping satisfying (2) is a homomorphism from the ad-
ditive group (X, +) to multiplicative semigroup (Y, ·). These types of mappings
and their combinations give rise to what is known as functional equations in
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analysis and they have connections with several areas of mathematics and math-
ematical physics. They have been the subject matter of study for the last two
centuries or so and a lot of mathematics has been developed around them. The
homomorphisms of type (2) are of special significance as they make contact with
time dependent systems describing changes in nature. In this article we shall
restrict our attention to this type of homomorphisms. By a functional homo-
morphism we shall mean a function f : X → Y satisfying to the equation (FH)
f(x + y) = f(x)f(y) for every x, y ∈ X. A solution of this equation is a homo-
morphism from additive group (X, +) to multiplicative semigroup (Y, ·). In order
to have more fruitful interactions with application oriented mathematics we shall
consider only continuous homomorphisms, i.e. continuous functions from X to Y
satisfying (FH). In this article, which is expository in nature, we shall describe a
relation between functional homomorphisms, semigroups of operators on Banach
spaces and dynamical systems.

2. Preliminaries

Let G be a topological group with e as the identity, let X be a topological
space and π : G×X → X be a continuous map such that

(1) π(e, x) = x for every x ∈ X
(2) π(st, x) = π(s, π(t, x)) for every s, t ∈ G and x ∈ X

Then the triple (G, X, π) is called a transformation group, X is called the state
space (or phase space) and π is called an action or a motion on X. For x ∈ X,
let the map πx : G → X be defined as πx(t) = π(t, x) for every t ∈ G. Then
πxis called the motion through x and the range of πx is called the orbit of x.Thus
orbit x = {π(t, x) : t ∈ G}. For t ∈ G define the map πt : X → X as πt(x) =

π(t, x) for every x ∈ X. The map πt is a homeomorphism and (πt)−1 = πt−1
.

The set {πt : t ∈ G} is a subgroup of the group of all homeomorphisms of X.
The study of motions, orbits and orbit spaces comes under topological dynamics
[2]. If G = (R, +) or G = (Z, +), the corresponding transformation group is
called a dynamical system. The transformation group (R, X, π) is known as
continuous dynamical system, whereas (Z, X, π) is called a discrete dynamical
system. It is well known that every discrete dynamical system on X comes from
a homeomorphism of X. Thus there is one-to-one correspondence between the
set of all homeomorphisms of X and the set of all discrete dynamical systems
on X. For details see [2]. If R is replaced by R+ or Z is replaced by Z+, then
we get a future dependent semidynamical system. Every discrete semidynamical
system comes from a continuous self map of X. In this note our concern is
with semidynamical system on Banach spaces which we shall also call dynamical
system. If X is a Banach space and π(t, αβ + βy) = απ(t, x) + βπ(t, y), for
t ∈ R, α, β ∈ C and x, y,∈ X, then (R+, X, π) is called a linear dynamical
system. If X is a Banach space, then by B(X) we shall denote the Banach
algebra of all continuous linear operators on X. If A ∈ B(X), then etA is defined

as etA =
∑∞

n=0
(tA)n

n!
. This series is convergent in B(X) and thus etA ∈ B(X)

for every t ∈ R. If we define, πA : R × X → X as πA(t, x) = etA(x), then
(R+, X, πA) is a linear dynamical system on X. If πd

A : Z × X → X is defined
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as πd
A(m, x) = Am(x), then (Z+, X, πd

A) is a discrete linear dynamical system.
Thus every bounded linear operator on a Banach space X induces at least two
dynamical systems. It turns out that most of the linear dynamical systems are
induced by operators. The functional homomorphisms play important role in this
process. By a semigroup of operators on a Banach space X, we mean a functional
homomorphism T : R+ → B(X) such that T (0) = I, the identity operator. The
range {T (t) : t ≥ 0} of T is a multiplicative abelian semigroup of B(X). The
semigroup T is called c0−semigroup if it is continuous with respect to the strong
operator topology on B(X). If T is continuous with respect to norm topology on
B(X), then it is called uniformly continuous semigroup. Usually, a semigroup T
is denoted as {T (t) : t ≥ 0}, which is nothing but the image of T in B(X). It is a
family of bounded operators {Tt : t ≥ 0} on X such that T0 = I and Ts+t = TsTt

for s, t ∈ R+. If A ∈ B(X), and T (t) = etA, then T is a c0−semigroup on
X. Every c0−semigroup T on X gives rise to a dynamical system, where action
is given by πT (t, x) = T (t)(x) = Tt(x) for t ∈ R+ and x ∈ X If A ∈ B(X),
then the following initial value problem is known as Abstract Cauchy Problem.
d
dt

x = Ax, x(0) = x0 Here x is a differentiable function from R+ to X. If A is the
generator of a c0− semigroup T : R+ → B(X), then x(t) = T (t)x0 is a solution
of the Abstract Cauchy Problem.

3. Some classical Solutions of (FH)

In 1821, A. Cauchy made study of functional homomorphisms from R to C.
He suggested that all such homomorphisms are exponential functions. In the
following theorem we record the result of A. Cauchy.

Theorem 3.1. (A. Cauchy) If T : R → C is a continuous functional homo-
morphism, such that T (0) = 1, then there exists a ∈ C, such that T (t) = eat

for every t ∈ R. It is clear that the T (t) = eat is a functional homomorphism
and satisfies the initial-value problem, d

dt
T = aT, T (0) = 1. These are the only

functions satisfying the initial value problem and a = T´(0), where T´ denotes the
derivative of T .

Note. Every continuous functional homomorphism from R+ to C is also dif-
ferentiable. The above result of Cauchy is true for all continuous functional
homomorphisms from the additive group C to multiplicative group C\{0}. Ev-
ery functional homomorphism T gives rise to dynamical system, where orbit of a
state x0 ∈ C is given by {T (t)x0 : t ∈ R}.

4. Functional homomorphisms in higher dimensions

The result of the last section has been extended to higher dimensions. Let
X = Cn, the n−dimensional Banach space of n−tupples of complex numbers
with the pointwise vector operations and the usual norm. Let A be an n×n ma-
trix. then A is a bounded linear operator from the Cn to Cn. Let Bn(C) denote

the Banach algebra of all n×n matrices with operator norm, i.e. ‖A‖ = sup
x6=0

‖Ax‖
‖x‖ .
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If A ∈ Bn(C), then etA is also a matrix given by etA =
∞∑

n=0

(tA)n

n!
. It is very difficult

to compute the matrix etA If A is a diagonal matrix with diagonal (α1,α2, . . . αn),
then etA is also a diagonal matrix with diagonal (eα1t, eα2t, . . . . . . , eαnt). If A =[

0 1
−1 0

]
then etA is rotational matrix

[
cos t sin t
− sin t cos t

]
. The matrix etA for every

A ∈ B2(C) has been computed [3]. Let T : R → Bn(C) be a functional homo-
morphism taking 0 to the identity matrix I. Then the same question regarding
characterization of such homomorphisms can be asked, i.e. find all continuous
functional homomorphisms T : R → Bn(C). This question was answered in 1887
by Peano. This is recorded in the following theorem.

Theorem 4.1. (Peano). Let T : R → Bn(C) be a continuous functional ho-
momorphism such that T (0) = I. Then there exists a unique A ∈ Bn(C) such
that T (t) = etAfor every t ∈ R. Futhermore, T is differentiable function and is a
solution of d

dt
T = AT, T (0) = I and any solution of the above initial value problem

is of this type [3]

Let (R, Cn, π) be a linear dynamical system. For every t ∈ R, define the map
πt : Cn → Cn by πt(x) = π(t, x) for x ∈ Cn. Then πt is a linear operator on Cn,
i.e. πt is an invertible n× n matrix. Let T : R → Bn(C) be defined as T (t) = πt,
for t ∈ R. Then T is a functional homomorphism T (t) = etA for some unique
A. It is interesting to note that the set of functional homomorphisms, the set
of linear dynamical systems on Cn, and the set of solutions of the initial value
problem d

dt
T = AT, T (0) = I, A ∈ Bn(C), are equipotent and they are closely

related. Let T : R → Bn(C) be a continuous functional homomorphism, let
πT : R×Cn → Cn be defined as πT (t, x) = T (t)x. Then πT is a linear dynamical
system. Conversely, every linear dynamical system on Cn is of this type. This we
shall show in the following theorem,

Theorem 4.2. (a) Let π : R× Cn → Cn be a continuous map. Then (R, Cn, π)
is a linear dynamical system if and only if there exists a continuous functional
homomorphism T : R → Cn such that π = πT .

(b) Every continuous functional homomorphism T : R → Bn(C) is the only
solution of d

dt
T = AT, T (0) = I where A = T́ (0).

(c) A solution of the initial value problem gives rise to a linear dynamical
system on Cn.

Proof. (a) If π is a motion on Cn, then let πt : Cn → Cn, defined as πt(x) = π(t, x)
is a linear operator on Cn and hence πt ∈ Bn(C). Let T : R → Bn(C) be
defined as T (t) = πt. Then T is a continuous functional homomorphism and
πT (t, x) = T (t)x = πt(x) = π(t, x) for all t ∈ R and x ∈ X. Hence π = πT . The
converse is obvious.

(b) If T : R → Bn(C) is a continuous homomorphism, then result follows
from Peano’s theorem. Consider the initial value problem, d

dt
T = AT, T (0) = I,

A ∈ Bn(C). By Peano’s theorem we know that T (t) = etA is a solution of the
initial value problem. Let π = πT Then π is a motion on Cn and u(t) = etAx0
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is the orbit function of state x0 and satisfies the Abstract Cauchy Problem on
Cn, d

dt
u = Au, u(0) = x0.

Note. The above results are valid for n−dimensional Banach spaces also.

5. Functional homomorphisms in infinite dimensional Banach
spaces

In this section we assume that X is an infinite dimensional Banach space. There
are three nice operator topologies on B(X), namely uniform operator topology,
strong operator topology and weak operator topology. To include a larger class
of functional homomorphisms we shall take their domain as R+, the semigroup
of positive reals with usual topology. If T : R+ → B(X) is a functional homo-
morphism, then uniform, strong and weak operator topologies on B(X) give rise
to three continuities of T, namely uniform continuity, strong continuity and weak
continuity. The characterization of uniformly continuous functional homomor-
phisms is similar to the finite dimensional case . This is given in the following
theorem.

Theorem 5.1. Let X be any Banach space and let T : R+ → B(X) be a uniformly
continuous functional homomorphism with T (0) = I. Then there exists a unique
A ∈ B(X) such that

(a) T : R+ → B(X) is differentiable
(b) T (t) = etA for every t ∈ R+

(c) The orbit function u : R+ → X, given by u(t) = T (t)x is differentiable for
every x ∈ X and satisfies the initial value problem, du

dt
= Au, u(0) = x

An outline of the proof.

If T is uniformly continuous, then the operator S(t), given by S(t) =

t∫
0

T (s)ds

is invertible for small t. Now T (t) = S(t0)
−1S(t0)T (t) = S(t0)

−1

t+t0∫
t

T (s + t)ds

for t ≥ 0. Now d
dt

T (t) = lim
h→0+

T (t+h)−T (t)
h

= T́ (0)T (t). This shows that T is

differentiable and satisfies the differential equation d
dt

T (t) = AT, T (0) = I, where
A = T́ (0). Hence by uniqueness of solution we have T (t) = etA. This proves (a)
and(c). The proof of (c) is easy.

Note. The operator A(= T́ (0)) is called the generator of the semigroup T .
There is one-to-one correspondence between the set of all uniformly continuous
functional homomorphisms and linear (semi)dynamical systems on X. Thus the
concept of uniformly continuous semigroups is equivalent to linear dynamical sys-
tems on a Banach space X. If T : R+ → B(X) is strongly continuous functional
homomorphism with T (0) = I, then the generator of T may not be a bounded
operator, and hence representation of T as T (t) = etA may not be possible as was
done in case T is uniformly continuous. We shall present an analogous character-
ization for strongly continuous functional homomorphisms. The (infinitesimal)
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generator A of T : R+ → B(X) is defined as Ax = lim
t→0+

T (t)x−x
t

. Then the domain

D(A) of A is the set D(A) = {x ∈ X : lim
t→0+

T (t)x−x
t

exists}. A is a linear and

closed operator, not necessarily bounded and D(A) is a dense subspace of X. For
details see [1, 3]. A is called the generator of T . The resolvent set ρ(A) is the set
of all those complex numbers λ such that the operator λI − A : D(A) → X is a
bijection. The spectrum of A, denoted by σ(A) is C\ρ(A). The resolvent operator
R(λ, A) for λ ∈ ρ(A) is defined by R(λ, A) = (λI−A)−1. By the closed graph the-
orem R(λ, A) is a bounded operator. If λ and µ are in ρ(A), then it is easy to show
that (µ−λ)R(λ, A)R(µ, A) = R(λ, A)−R(µ, A). Let T be a strongly continuous
homomorphism from R+ to B(X) with T (0) = I and let A be the infinitesimal
generator of T . Let x ∈ D(A). Then the orbit map Tx : R+ → X defined as
Tx(t) = T (t)x is differentiable and d

dt
Tx(t) = T (t)Ax = AT (t)x (T (t)x ∈ D(A)).

If S is another strongly continuous homomorphism with S(0) = I having the same
infinitesimal generator A, then it turns out that S(t)x = T (t)x for all x ∈ D(A).
Since D(A) is dense, we conclude that S = T . Thus the infinitesimal generator
determine the strongly continuous functional homomorphism uniquely. In case
the infinitesimal generator A is bounded, the strongly continuous functional ho-
momorphism is uniformly continuous and hence T (t) = etA for t ∈ R+. For every
strongly continuous functional homomorphism there exists M ≥ 1 and ω ∈ R
such that ‖T (t)‖ ≤ Meωt for every t ∈ R+ [6, 9]. Every strongly continuous func-
tional homomorphism from R+ to B(X) gives rise to a densely defined closed
operator on X, namely its generator. The following theorem characterizes such
operators generating strongly continuous functional homomorphisms.

Theorem 5.2. (Miyadera and Phillips). Let A be a linear operator on a
Banach space and let M ≥ 1 and ω ∈ R. Then the following are equivalent.

(a) A generates a strongly continuous homomorphism T : R+ → B(X) such
that ‖T (t)‖ ≤ Meωt.

(b) A is closed, densely defined and λ > ω, it is true that λ ∈ ρ(A) and
‖[(λ− ω)R(λ, A)]n‖ ≤ M for every n ∈ N .

(c) A is closed, densely defined operator and for every complex number λ such
that Re λ > ω, it is true that λ ∈ ρ(A) and ‖R(λ, A)n‖ ≤ M

(Re λ−ω)n for every

n ∈ N .

Note. The above theorem is a generalization of famous Hille–Yosida theorem
proved in 1948 [4], which characterizes strongly continuous functional homomor-
phisms. If {An} is a sequence of bounded operators on X such that lim

n
Anx = Ax,

for every x ∈ D(A), then the generalized exponential function for A is defined as
etA = lim

n
etAn and it may give rise to a strongly continuous functional homomor-

phism. This generalization of exponential function for unbounded operator on
X help in giving the following characterization of strongly continuous functional
homomorphisms [3].

Theorem 5.3. Let T : R+ → B(X) be a strongly continuous function. Then T
is a functional homomorphism with T (0) = I and ‖T (t)‖ ≤ 1, if and only if
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T (t) = etA for some closed, densely defined operator A on X with property that
λ > 0 implies λ ∈ ρ(A) and ‖λR(λ, A)‖ ≤ 1.

An outline of the proof.
If T : R+ → B(X) is a strongly continuous homomorphism with T (0) = I,

then infinitesimal generator A of T is closed, densely defined operator on X with
the property given above. If An = nAR(n, A), then An is a bounded operator on
X and etAn ∈ B(X) for every t ∈ R+. Let Tn(t) = etAn . Since An → A pointwise
on D(A), we have T (t)x = lim

n
Tn(t)x = lim etAnx = etAx. Thus T (t) = etA.

Conversely, If T (t) = etA for some closed, densely defined operator A, then by
definition of etA, T (t) = lim

n
etAn , where An = nAR(n, A). Since etAn is uniformly

continuous functional homomorphism and An → A pointwise, we conclude that
T is strongly continuous, T (t + s) = T (t)T (s) and T (0) = I. This takes care of
the outline of the proof. An interaction of strongly continuous homomorphisms,
linear dynamical systems and abstract cauchy problem is given in the following
theorem.

Theorem 5.4. (a) Every strongly continuous homomorphism T : R+ → B(X)
gives rise to the linear dynamical system πT on X defined as πT (t, x) = T (t)x for
every t ∈ R+and x ∈ X. Conversely, for every dynamical system π on X, there
exists a strongly continuous homomorphism T : R+ → B(X) such that π = πT .

(b) If T : R+ → B(X) is a strongly continuous homomorphism and A is infini-
tesimal generator of T , then the Abstract Cauchy Problem d

dt
u(t) = Au(t), u(0) =

x has a solution given by u(t) = T (t)x.
(c) The Abstract Cauchy Problem has a unique solution if A is densely defined

closed operator with property λ > 0 implies λ ∈ ρ(A) and ‖λR(λ, A)‖ ≤ 1 (i.e.
A is a generator of a strongly continuous homomorphism).

This survey completes the characterization of continuous homomorphisms from
R+ → B(X). A lot of work has been done in the last 50 years or so and many
applications of concrete homomorphisms have been obtained. For details we refer
to [5, 7, 8].
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