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HOMOMORPHISMS OF l1-ALGEBRAS ON SIGNED
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Communicated by L. Székelyhidi

Abstract. Let {Rn} and {Pn} be two polynomial systems which induce
signed polynomial hypergroup structures on N0. We investigate when the Ba-
nach algebra l1(N0, h

R) can be continuously embedded into or is isomorphic
to l1(N0, h

P ). We find sufficient conditions on the connection coefficients cnk

given by Rn =
∑n

k=0 cnkPk, for the existence of such an embedding or isomor-
phism. Finally we apply these results to obtain amenability-properties of the
l1-algebras induced by Bernstein-Szegő and Jacobi polynomials.

1. Introduction and preliminaries

The L1-algebras of (signed) hypergroups show very distinctive properties com-
pared with those of L1-algebras of groups. The large number of l1-algebras of
(signed) polynomial hypergroups (which are determined by a sequence {Rn}n∈N0

of orthogonal polynomials) show a broad diversity of properties. Thus, they are
highly suitable to illustrate the difference between groups and hypergroups.

The purpose of this paper is to derive sufficient conditions for the existence
of homomorphisms and isomorphisms between the l1-algebras of two (signed)
polynomial hypergroups. The results are applied to transfer amenability and
related properties from one l1-algebra to another.

Isomorphisms of hypergroups are studied in [4]. However, the main results there
deal with isometric isomorphisms. Isometric isomorphisms between L1-algebras
are quite rare, which is not surprising since the basic translation operators are
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in general not unitary and the values of characters are in general not of modulus
1. Here we consider isomorphisms between L1-algebras which are in general non-
isometric.

During the past forty years there have been many results characterizing various
amenability properties of Banach algebras, in particular L1-algebras on groups,
see the extensive list of references in [5]. Only very recently the investigations of
the amenability of L1-algebras of polynomial hypergroups have been started, see
[12, 13].

Consider a sequence {Rn}n∈N0 of real polynomials, deg Rn = n, orthogonal with
respect to a probability measure with compact and infinite support πR ∈M1(R),
i.e. ∫

R
RnRmdπR = δnmh−1

n for m, n ∈ N0,

where h−1
n = ‖Rn‖2

L2(R,πR) > 0. We assume that the normalization Rn(1) = 1,

n ∈ N0, is possible. A recurrence relation of the following form is implied: R0 =
1, R1(x) = 1

a0
(x− b0),

R1Rn = anRn+1 + bnRn + cnRn−1 for all n ∈ N, (1.1)

where an, bn, cn ∈ R and an 6= 0, cn 6= 0. This three term recurrence can be
extended to the product formula

RmRn =
n+m∑

k=|n−m|

g(m, n, k)Rk, m, n ∈ N0,

where all g(m, n, k) are real, g(m,n, |n − m|) 6= 0, g(m, n, n + m) 6= 0 and∑n+m
k=|n−m| g(m, n, k) = 1 because of our normalization.

If for the linearization coefficients holds
∑n+m

k=|n−m| |g(m, n, k)| ≤ M for n,m ∈
N0 and some M > 0, then a commutative signed polynomial hypergroup structure
is induced on N0 : The involution is taken as the identity and the convolution
ω : M(N0)×M(N0) →M(N0) as

εn ∗ εm =
n+m∑

k=|n−m|

g(m, n, k)εk for n, m ∈ N0,

where εk is the point measure at k ∈ N0. Thus the neutral element is ε0. If
g(m, n, k) ≥ 0 for k = |n − m|, . . . , n + m, n,m ∈ N0, then a polynomial
hypergroup structure is induced on N0. In this case

∑n+m
k=|n−m| |g(m, n, k)| =∑n+m

k=|n−m| g(m, n, k) = 1 and M = 1. Signed hypergroups are for example treated

in [16, 17] or [15] and summed up in [18]. More on the subject of (polynomial)
hypergroups can be found in [10, 11] or [3].

For the signed polynomial hypergroup induced by {Rn}n∈N0 we consider for m ∈
N0 the translations Tm : lfin(N0) → lfin(N0), Tmf(n) =

∑n+m
k=|n−m| g(m, n, k)f(k),

where lfin(N0) is the space of sequences with only finitely many non-zero entries.
The Haar measure on N0 with respect to these translations is (hn)n∈N0 , where
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h0 = 1. Let lp(N0, h) = {(f(n))n∈N0 :
∑∞

n=0 |f(n)|phn < ∞} . The Plancherel

isomorphism F−1 : L2(R, dπ) → l2(N0, h) is given by f̌(k) =
∫

R fRkdπ. We
define a norm on l1(N0, h) by ‖f‖1 = M ·

∑∞
n=0 |f(n)|hn. For n ∈ N0 we set

εn = δn

hn
, δn := (δnk)k∈N0 , with norm ‖εn‖1 = M · 1

hn
hn = M. Observe that

ε̂n = Rn|D. The convolution on l1(N0, h) given by f ∗ g(n) =
∑∞

k=0 Tnf(k)g(k)hk

turns l1(N0, h) into a commutative Banach algebra with unit ε0 (but note that
‖ε0‖1 = M). Its structure space ∆(l1(N0, h)) can be identified with a compact
set D ⊂ C characterized in the following two ways:

D = {z ∈ C : |Rn(z)| ≤ C for all n ∈ N0 and some C > 0}
= {z ∈ C : |Rn(z)| ≤ M for all n ∈ N0} .

Furthermore, supp π is a closed subset of D. The Gelfand transform F : l1(N0, h)
→ C(D), v̂ =

∑∞
k=0 v(k)Rk|D hk, coincides with the inverse Plancherel isomor-

phism on l1(N0, h) ⊂ l2(N0, h), which justifies using the same notation. The
corresponding Wiener algebra is A(D) := F(l1(N0, h)) with norm ‖v̂‖ := ‖v‖1.
By [10] l1(N0, R) is semisimple.

To avoid confusion we frequently write DR, hR
n , εR

k etc. stressing the depen-
dence on the polynomial system {Rn}n∈N0 that induces the signed hypergroup.

2. Homomorphisms and Isomorphisms

The first aim of this section is to find a homomorphism between l1-algebras on
signed polynomial hypergroups whose connection coefficients fulfill certain re-
quirements. Afterwards we will give conditions such that the constructed homo-
morphism is an isomorphism.

Lemma 2.1. Let {Rn}n∈N0 and {Pn}n∈N0 be polynomial sequences inducing signed
polynomial hypergroups. A bounded linear map S : l1(N0, h

R) → l1(N0, h
P ) is a

homomorphism of Banach algebras if and only if

(1) Sε0 = εP
0 and

(2) S(ε1 ∗ εn) = Sε1 ∗P Sεn for all n ∈ N0.

Proof. If S : l1(N0, h
R) → l1(N0, h

P ) is a homomorphism of Banach algebras, then
(i) and (ii) are clearly valid. We show that these conditions are sufficient. From
our two assumptions it immediately follows that S(ε0 ∗ εn) = Sεn = Sε0 ∗P Sεn

and S(ε1 ∗ εn) = Sε1 ∗P Sεn for all n ∈ N0. Let k ≥ 1 and suppose as induction
hypothesis that S(εj ∗ εn) = Sεj ∗P Sεn for all 0 ≤ j ≤ k and n ∈ N0. First we
obtain

S(ε1 ∗ εk ∗ εn) = anS(εk ∗ εn+1) + bnS(εk ∗ εn) + cnS(εk ∗ εn−1)

= anSεk ∗P Sεn+1 + bnSεk ∗P Sεn + cnSεk ∗P Sεn−1

= Sεk ∗P S(ε1 ∗ εn) = Sε1 ∗P Sεk ∗P Sεn

= S(ε1 ∗ εk) ∗P Sεn
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and furthermore

Sεk+1 ∗P Sεn =
1

ak

· S(ε1 ∗ εk − bkεk − ckεk−1) ∗P Sεn

=
1

ak

· S ((ε1 ∗ εk − bkεk − ckεk−1) ∗ εn) = S(εk+1 ∗ εn).

Hence we have shown that S(εk ∗ εn) = Sεk ∗P Sεn for all k, n ∈ N0. Since S is
assumed to be bounded, for v, w ∈ l1(N0, h

R), v =
∑∞

k=0 vkεk, w =
∑∞

n=0 wnεn,
it follows that

S(v ∗ w) =
∞∑

k=0

∞∑
n=0

vkwnS(εk ∗ εn) =
∞∑

k=0

∞∑
n=0

vkwnSεk ∗P Sεn = Sv ∗P Sw.

�

Given a family of orthogonal polynomials {Pk}k∈N0 and a polynomial Rn of
degree n we consider the linear combination Rn =

∑n
k=0 cnkPk. In all the following

we define cnk = 0 for k > n which enables us to write Rn =
∑∞

k=0 cnkPk.
The following theorem is more general than [9, Theorem 3.1], since we do not

impose conditions on the dual objects.

Theorem 2.2. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials
inducing signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. If there is

C > 0 such that
n∑

k=0

|cnk| ≤ C for all n ∈ N0, (2.1)

then the linear operator S : l1(N0, h
R) → l1(N0, h

P ) determined by Sεn :=∑n
k=0 cnkε

P
k is a continuous homomorphism of Banach algebras with dense range.

Furthermore, DP ⊆ DR and Ŝf = f̂ |DP for all f ∈ l1(N0, h
R).

Proof. Let v =
∑N

n=0 vnεn ∈ l1(N0, h
R); then ‖v‖1 = MR

∑N
n=0 |vn|. By

‖Sv‖ =

∥∥∥∥∥
N∑

n=0

n∑
k=0

vncnkε
P
k

∥∥∥∥∥ ≤ MP

N∑
n=0

n∑
k=0

|vn||cnk| ≤
MP

MR
‖v‖1 · C

the linear map S is bounded on a dense subset of l1(N0, h
R) and can thus be

uniquely extended to a bounded linear operator on l1(N0, h
R). Condition (2.1)

implies DP ⊆ DR for the following reason: If z ∈ C such that |Pk(z)| ≤ MP for
all k ∈ N0, we obtain |Rn(z)| = |

∑n
k=0 cnkPk(z)| ≤

∑n
k=0 |cnk| ·MP ≤ C ·MP for

all n ∈ N0. (i) in Lemma 2.1 is fulfilled since R0 = 1 = P0, which means c00 = 1
and Sε0 = εP

0 . Now consider (ii) in Lemma 2.1. For n ∈ N0 we observe that

Ŝεn =
∑n

k=0 cnkε̂P
k =

∑n
k=0 cnkPk|DP = Rn|DP . Therefore

̂S(ε1 ∗ εn) = anŜεn+1 + bnŜεn + cnŜεn−1 = anRn+1|DP + bnRn|DP + cnRn−1|DP

= (R1 ·Rn)|DP = R1|DP ·Rn|DP = Ŝε1 · Ŝεn

and S(ε1 ∗ εn) = Sε1 ∗P Sεn for all n ∈ N0, since l1(N0, h
P ) is semisimple. Thus

S is a continuous homomorphism of Banach algebras. S has dense range since
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the polynomials are dense in A(DP ). Finally, for f =
∑∞

k=0 fkεk ∈ l1(N0, h
R)

it follows that Ŝf = limN→∞
̂

S
(∑N

k=0 fkεk

)
= limN→∞

∑N
k=0 fkRn|DP = f̂ |DP ,

where the limits are w.r.t. ‖ ‖DP ,∞. �

Remark 2.3. (i) Condition (2.1) is in particular fulfilled when the connection co-
efficients are nonnegative; in this case our normalization yields that

∑n
k=0 |cnk| =∑n

k=0 cnk = 1, n ∈ N0. The non-negativity of connection coefficients has for ex-
ample been studied by Askey and Gasper in [2], Szwarc in [20], Trench in [21] or
Wilson in [23].
(ii) If supp πR ⊂ DP , then S is injective. In fact, in this case it follows from

Ŝf = f̂ |DP = 0 that f̂ |supp πR = 0. This is only possible if f = 0.

A Banach algebra A is called regular, if for every closed subset V of ∆(A) and
α ∈ ∆(A) \ V there is a ∈ A with â|V = 0 and â(α) 6= 0. Note that l1(N0, h)
is regular whenever the Haar measure h is of polynomial growth, see [22]. If
l1(N0, h) is regular, then supp π = D.

Proposition 2.4. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polyno-
mials inducing signed polynomial hypergroups such that (2.1) is fulfilled. Suppose
that l1(N0, h

R) is regular. Then S in Theorem 2.2 is injective if and only if
DP = DR. Furthermore l1(N0, h

P ) is also regular.

Proof. Suppose that DP ⊂ DR but DP 6= DR. DP is closed in DR. For all
α ∈ DR \ DP there is f ∈ l1(N0, h

R) such that f̂ |DP = 0 and f̂(α) 6= 0. Since

Ŝf = f̂ |DP , this means that S is not injective. On the other hand, S is obviously
injective for DP = DR. Now take a closed subset V ⊂ DP and α ∈ DP \V. There

is f ∈ l1(N0, h
R) such that f̂ |V = 0 and f̂(α) 6= 0. The same is true for f̂ |DP , so

l1(N0, h
P ) is also regular. �

Let us for a moment consider the semigroup N0. The induced convolution on
l1(N0, 1), where 1 denotes the constant sequence with entries one, is determined by
εn∗εm = εn+m for all n, m ∈ N0. The structure space ∆(l1(N0, 1)) can be identified
with the closed unit disc D ⊂ C. The Gelfand transform reads F : l1(N0, 1) →
C(D), v̂(x) =

∑∞
k=0 v(k)xk|D and thus maps l1(N0, 1) onto the space of absolutely

convergent Taylor series on D [5, Example 2.1.13(v)]. In this sense one can say
that the semigroup N0 is induced by the family of polynomials {xn}n∈N0 . The
analogue of (1.1) reads x1 · xn = xn+1, i.e. an = 1 and bn = cn = 0 for all n ∈ N0.

Corollary 2.5. Let {Pn}n∈N0 be a symmetric family of orthogonal polynomials
inducing a polynomial hypergroup, i.e. bn = 0 for all n ∈ N0 in (1.1). Let
furthermore l1(N0, 1) carry the convolution structure of the semigroup N0. Then

S : l1(N0, 1) → l1(N0, h
P ) determined by Ŝf = f̂ |DP is a continuous homomor-

phism of Banach algebras with dense range.

Proof. Lemma 2.1 and Theorem 2.2 also hold true if one replaces {Rn}n∈N0 by
{xn}n∈N0 , l1(N0, h

R) by l1(N0, 1) and DR by D; the proofs are exactly the same
ones. The connection coefficients in xn =

∑n
k=0 cnkPk are all nonnegative. Indeed,
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x = P1(x) and using the recurrence

cn+1,0 = cn1c
P
1 , cn+1,1 = cn2c

P
2 + cn0,

cn+1,k = cn,k+1c
P
k+1 + cn,k−1a

P
k−1, 2 ≤ k ≤ n− 1,

cn+1,n = cn,n−1a
P
n−1, cn+1,n+1 = cnna

P
n ,

the non-negativity of cnk follows by induction. An application of Theorem 2.2
concludes the proof. �

Next we want to obtain sufficient conditions for S of Theorem 2.2 to be an
isomorphism. Let us at first consider two families of orthogonal polynomials
{Rn}n∈N0 and {Pn}n∈N0 inducing signed polynomial hypergroups with dπP =
fdπR for some f ∈ L2(DR, dπR). Since both measures are probability measures,
f ≥ 0 πR-a.e. For the representation Rn =

∑n
k=0 cnkPk one gets for all k, n ∈ N0

that

cnk

hP
k

= (FP )−1Rn(k) =

∫
R

PkRndπP =

∫
R

fPkRndπR = (FR)−1(f · Pk)(n).

In particular we obtain for k = 0 that the Plancherel transform f̌ ∈ l2(N0, h
R)

reads f̌(n) = cn0, n ∈ N0, and thus
∑∞

n=0 |cn0|2hR
n < ∞. The converse of this

observation is also true in the following sense.

Proposition 2.6. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomi-
als inducing signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. Suppose

that
∑∞

n=0 |cn0|2hR
n < ∞ and define f ∈ l2(N0, h

R) by f(n) = cn0, n ∈ N0. Then

(1) (FR)−1(f̂ · Pk)(n) = cnk

hP
k

= (FP )−1Rn(k) for all k, n ∈ N0.

(2) dπP = f̂dπR. In particular, f̂ ≥ 0 πR-a.e. and supp πP ⊂ supp πR.

Proof. Note that f̂ ∈ L2(DR, dπR) ⊂ L1(DR, dπR). In order to prove the first

statement we have to show that cnk

hP
k

=
∫

DP PkRndπP =
∫

DR f̂PkRndπR for all

k, n ∈ N0. Fix n ∈ N0. For k = 0 the equality holds true by definition of f. For
k ∈ N0 we know that∫

DR

f̂RkRndπR =

|k+n|∑
j=|k−n|

gR(k, n, j)

∫
DR

f̂P0RjdπR =

|k+n|∑
j=|k−n|

gR(k, n, j)cj0

=

|k+n|∑
j=|k−n|

gR(k, n, j)

∫
DP

P0RjdπP =

∫
DP

RkRndπP . (2.2)

Writing Pm =
∑m

k=0 dmkRk it follows that for all m ∈ N0,∫
DR

f̂PmRndπR =
m∑

k=0

dmk

∫
DR

f̂RkRndπR =
m∑

k=0

dmk

∫
DP

RkRndπP

=

∫
DP

PmRndπP =
cnm

hP
m

.
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For the second statement consider the compact set supp πR∪ supp πP ⊂ R. From
the case k = 0 in (2.2) we obtain that the bounded Borel measures dπP and f̂dπR

coincide on the dense subset span ({Rn}) of C(supp πR∪ supp πP ). This means
they have to be equal. �

Theorem 2.7. Let {Rn}n∈N0 and {Pn}n∈N0 be families of orthogonal polynomials
inducing signed polynomial hypergroups such that Rn =

∑n
k=0 cnkPk. Suppose that

(1)
∑n

k=0 |cnk| ≤ C for all n ∈ N0.

(2)
∑∞

n=k |cnk|h
R
n

hP
k
≤ C̃ for all k ∈ N0.

(3) By Proposition 2.6 we know that dπP = f̂dπR, where f ∈ l1(N0, h
R) ⊂

l2(N0, h
R) is defined by f(n) = cn0, n ∈ N0, and f̂ ≥ 0 is continuous.

Suppose that f̂ > 0 on supp πR.

Then S : l1(N0, h
R) → l1(N0, h

P ), Sεn =
∑n

k=0 cnkε
P
k , in Theorem 2.2 is an

isomorphism of Banach algebras. Furthermore, DP = DR and Ŝ(g) = ĝ for all
g ∈ l1(N0, h

R).

Proof. Applying Theorem 2.2 it suffices to show that for Pk =
∑k

n=0 dknRn holds∑k
n=0 |dkn| = 1

MR‖(FR)−1Pk‖1 ≤ const. for all n ∈ N0. Since f̂ > 0, f is invert-

ible in l1(N0, h
R) and (‖(FR)−1Pk‖1)k∈N0 is bounded if and only if (‖(FR)−1(f̂ ·

Pk)‖1)k∈N0 is bounded. By Proposition 2.6 and our second assumption we obtain

1

MR
‖(FR)−1(f̂ · Pk)‖1 =

∞∑
n=0

|(FR)−1(f̂ · Pk)(n)|hR
n =

∞∑
n=k

|cnk|
hR

n

hP
k

≤ C̃

for all k ∈ N0. �

In the case of hypergroups the isomorphism above is isometric if and only if
f̂ = 1, i.e. in the trivial case. In fact, it follows from [4] that an isometric
isomorphism l1(N0, h

R) → l1(N0, h
P ) maps point measures onto point measures.

For our isomorphism this is only possible if Rn = Pn for all n ∈ N0.

3. Application to Amenability-properties

Now we apply the constructed homomorphism to transfer amenability and related
properties from one l1-algebra to another. These properties are usually hard to
verify directly, whereas the approach via inheritance under homomorphisms is a
practicable alternative.

Let A be a commutative Banach algebra. A is called amenable if every bounded
derivation from A into a dual Banach-A-bimodule is inner. A is weakly amenable
if every bounded derivation from A into a symmetric Banach-A-bimodule is inner.
Finally, let α ∈ ∆(A) be a character. A is α-amenable if every bounded derivation
from A into a Banach-A-bimodule Xα such that a ·x = 〈α, a〉 ·x, a ∈ A, x ∈ Xα,
is inner. Thus amenability of A implies weak and α-amenability.

Proposition 3.1. Let A and B be Banach algebras, and let θ : A → B be a
continuous homomorphism with θ(A) = B.
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(1) Suppose that A is amenable. Then B is amenable.
(2) Suppose that A is commutative and weakly amenable. Then B is weakly

amenable.
(3) Suppose that A is commutative and let α ∈ ∆(B). Suppose further that A

is θ∗α-amenable. Then B is α-amenable.

(i) and (ii) are well known; see for example [5, Proposition 2.8.64]. A proof of
(iii) can be found in [8, Proposition 3.5].

We can now use the homeomorphism of Theorem 2.2 to apply Proposition
3.1. In [12] l1(N0, h

T ) has been shown to be amenable, where {Tn}n∈N0 are the
Chebyshev polynomials of the first kind; up to now this is the only example of an
amenable l1(N0, h

R). There is an abundance of polynomial sequences {Rn}n∈N0

such that the connection coefficients Rn =
∑n

k=0 cnkTk, n ∈ N0, are non-negative,
see [14], i.e. the assumption of Theorem 2.2 and the first condition of Theorem
2.7 are fulfilled. In the following example we will make use of the isomorphism
of Theorem 2.7 and subsequently apply Proposition 3.1.

Example 1. Bernstein-Szegő polynomials: Given a polynomial H : C → C,
H(z) =

∑r
k=0 αkz

k, r ≥ 1, with real coefficients αk, 0 ≤ k ≤ r, such that H has
no zeros for |z| ≤ 1 and H(0) > 0, define ρ : [−1, 1] → R, ρ(cos t) := |H(eit)|2.
ρ is strictly positive in [−1, 1]. The Bernstein-Szegő polynomials {Bρ

n}n∈N0 are
defined as the ones orthogonal with respect to the probability measure πρ on
[−1, 1], where dπρ := cρ · ρ(x)−1(1− x2)−

1
2 dx = cρ · ρ(x)−1dπT . It is stated in [19,

Chapter 2.6], or more explicitly in [7], that

Bρ
n =

r∑
k=0

αkTn−k for n ≥ r,

where {Tn}n∈N0 are the Chebyshev polynomials of the first kind. Because of
our normalization we can suppose

∑r
k=0 αk = 1. Using this representation a

straightforward (but tedious) calculation shows that for every admissible ρ the
Bernstein-Szegő polynomials {Bρ

n}n∈N0 induce a signed polynomial hypergroup.
Furthermore, hn = const. for n ≥ r [7]. Thus, all requirements of Theorem 2.7
are fulfilled.

Corollary 3.2. For every admissible ρ, l1(N0, h
Bρ

) is isomorphic to l1(N0, h
T ).

In particular, l1(N0, h
Bρ

) is amenable.

Example 2. Jacobi polynomials: For (α, β) ∈ J ′ := {(γ, δ) ∈ R2 : γ ≥ δ > −1} ,

the Jacobi polynomials {P (α,β)
n }n∈N0 are orthogonal on [−1, 1] with respect to

the probability measure dω(α,β) = C(α,β) · (1 − x)α(1 + x)βdx. For (α, β) ∈
J := {(α, β) ∈ J ′ : α + β + 1 ≥ 0} , the Jacobi polynomials {P (α,β)

n }n∈N0 induce
a polynomial hypergroup, see [10].

In [12] l1(N0, h
P (α,α)

) has been shown to be not weakly amenable, where {P (α,α)
n }

are Ultraspherical polynomials and α ≥ 0. Via Theorem 2.2 we can transfer this
property to a large region of parameters of Jacobi polynomials.
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Corollary 3.3. The Banach algebra l1(N0, h
P (α,β)

) is not weakly amenable when-
ever α + β ≥ 0 or −α + β + 1 ≤ 0.

Proof. In [12] it has been shown that l1(N0, h
P (α,α)

) is not weakly amenable for

α ≥ 0. By [1, Theorem 7.1] we get that in P
(α,β)
n =

∑n
k=0 cnkP

(0,0)
k all connection

coefficients are positive whenever α + β ≥ 0, (α, β) ∈ J. Thus by
∑n

k=0 |cnk| =∑n
k=0 cnk = 1, n ∈ N0, we can apply Theorem 2.2 and obtain that l1(N0, P

(α,β))
is not weakly amenable whenever α + β ≥ 0, (α, β) ∈ J. Next we consider
(α, β) ∈ J with −α + β + 1 ≤ 0. Then (α, β + 1) ∈ J and with β > −1 it follows

that α + β + 1 ≥ 2(β + 1) > 0, so l1(N0, h
P (α,β+1)

) is not weakly amenable as
seen in the first part of this proof. By [1, (7.32) and following] we see that in

P
(α,β)
n =

∑n
k=0 cnkP

(α,β+1)
k again all connection coefficients are positive. Another

application of Theorem 2.2 completes the proof. �

Note that l1(N0, h
P (α,β)

), α + β ≥ 0 or −α + β + 1 ≤ 0, is not weakly amenable

because l1(N0, h
P (0,0)

) is not weakly amenable. Also because of Theorem 2.2 the

non x-amenability for x ∈ (−1, 1) of l1(N0, h
P (0,0)

) is inherited by l1(N0, h
P (α,β)

).

Nevertheless, l1(N0, h
P (0,0)

) is (−1)-amenable, whereas l1(N0, h
P (α,β)

) lacks this
property whenever α 6= β, see [6, Example 4.6].

Example 3. Associated Legendre polynomials: The associated Legendre polyno-
mials {P ν

n}n∈N0 are orthogonal w.r.t. dπν = |2F1(
1
2
, ν; ν+ 1

2
; exp(2i arccos x))|−2dx

on [−1, 1]. They define polynomial hypergroups whenever ν ≥ 0. For ν = 0 we
obtain the classical Legendre polynomials. The connection coefficients in

P ν
n =

n∑
k=0

cnkP
0
n

are non-negative, see [9].

Corollary 3.4. The Banach algebra l1(N0, h
P ν

) is not weakly amenable for all
ν ≥ 0.

Although l1(N0, h
P ν

) is not weakly amenable, it is point-amenable for all ν ≥ 0
which has been shown in [13]. So they share this property with the classical
Legendre polynomials.
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