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Abstract. An eigenvalue problem is considered where the eigenvalue appears
in the domain and on the boundary. This eigenvalue problem has a spectrum
of discrete positive and negative eigenvalues. The smallest positive and the
largest negative eigenvalue λ±1 can be characterized by a variational principle.
We are mainly interested in obtaining non trivial upper bounds for λ−1. We
prove some domain monotonicity for certain special shapes using a kind of
maximum principle derived by C. Bandle, J.v. Bellow and W. Reichel in [J.
Eur. Math. Soc., 10 (2007), 73–104]. We then apply these bounds to the trace
inequality.

1. Introduction and preliminaries

Let D ⊂ RN be a bounded domain with a Lipschitz boundary and denote by n
its outer normal. The eigenvalue problem we are interested in is

4ϕ+ λϕ = 0 in D,
∂ϕ

∂n
= λσϕ on ∂D. (1.1)

Here σ is a real number. Notice that λ0 = 0 and ϕ0 =const. is always a solution.
It was proved in [1], cf. also [5] that problem (1.1) has a discrete spectrum
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consisting of non negative eigenvalues

λ0 = 0 < λ1 < λ2 ≤ λ3 ≤ . . . if σ ≥ 0

and of positive and negative eigenvalues if σ is negative. Taking into account
their multiplicity they can be ordered as follows:

. . . ≤ λ−n ≤ . . . ≤ λ−2 ≤ λ−1 < 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . .

Except for N = 1 both the positive and the negative parts of the spectrum
contains infinitely many eigenvalues tending to ±∞. As for the classical eigen-
value problems the eigenvalues and eigenfunctions can be obtained by a minimum
maximum principle [1]. We shall describe it for λ±1 and σ < 0 which will be the
main topic of this paper. For this purpose we introduce the following notation.
For u, v ∈ W 1,2(D) set

a(u, v) :=

∫
D

uv dx+ σ

∫
∂D

uv ds,

< u, v >:=

∫
D

(∇u,∇v) dx.

The number

σ0(D) := − |D|
|∂D|

will play an essential role in our considerations. It turns out cf. [3] that

1

λ1(D)
= sup

K
a(v, v), if σ < σ0 < 0, (1.2)

1

λ−1(D)
= inf

K
a(v, v) if σ0 < σ < 0,

K := {v ∈ W 1,2(D), < v, v >= 1}.

From here it follows [1] that
(i) If σ < σ0 then ϕ1 is of constant sign and λ1 is simple, whereas ϕ−1 changes
sign.
(ii) If 0 > σ > σ0 then ϕ−1 is of constant sign and λ−1 is simple, whereas ϕ1

changes sign.
(iii) If σ = σ0 both ϕ1 and ϕ−1 change sign.

From (1.2) we get trace inequalities of the type

|σ|
∮

∂D

v2ds ≥
∫

D

v2 dx− 1

λ1(D)

∫
D

|∇v|2 dx if σ < σ0 < 0

|σ|
∮

∂D

v2ds ≤
∫

D

v2 dx+
1

|λ−1(D)|

∫
D

|∇v|2 dx if σ0 < σ < 0. (1.3)

In order to exhibit these inequalities we need a lower bound for λ1(D) and an
upper bound for λ−1(D). Such bounds were given in [3] forλ1(D). In particular
it was shown that among all domains of fixed volume λ1 is smallest for the ball.
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Notice that unlike the case with Dirichlet boundary conditions the eigenvalues
are in general not monotone with respect to the domain. An exception is when D
is contained in a ball B, D ⊂ B. Then [3], λ1(D) ≥ λ1(B) and λ−1(D) ≥ λ−1(B).

In this note we give some estimates from above for λ−1 and compare the cor-
responding trace inequality (1.3) with a result of Horgan [4].

2. Main results

Let us start with two examples.

2.1. Ball. Consider the the ball BR centered at the origin and of radius R and
let (r, θ), r ∈ [0, R], θ ∈ SN−1 be its polar coordinates. The critical value is

σ0 = −R
N
.

Separation of variables ϕ(x) = w(r)α(θ) yields

w′′ +
N − 1

r
w′ +

(
λ− ν

r2

)
w = 0, ∆θα+ να = 0,

where ∆θ is the Laplace-Beltrami operator on SN−1 with eigenfunction α and
eigenvalue ν. Hence α must be a spherical harmonic and ν = νk = k(k+N − 2),
k = 0, 1, 2, . . .. We are interested only in the case where the eigenfunctions do
not change sign. Therefore ν = 0 and α = 1. The equation for w then becomes

w′′ +
N − 1

r
w′ + λw = 0 in (0, R),

w′(R) = σλw(R).

By the usual transformation z(r) = r
N−2

2 w(r) one finds

z′′ +
z′

r
+
(
λ− ((N − 2)/2)2

r2

)
z = 0 in (0, R),

z′(R) =
(
σλ+

N − 2

2R

)
z(R).

Solutions are of the form

z(r) =


J(N−2)/2(

√
λr) if λ > 0,

I(N−2)/2(
√
−λr) if λ < 0,

r(N−2)/2 if λ = 0,

where Jν is the regular Bessel function of index ν and Iν is the regular modified
Bessel function of index ν. The eigenvalues λ±1 are determined by the equations

J ′(N−2)/2(
√
λR)

J(N−2)/2(
√
λR)

=
σλ+ N−2

2R√
λ

if λ > 0,

I ′(N−2)/2(
√
−λR)

I(N−2)/2(
√
−λR)

=
σλ+ N−2

2R√
−λ

if λ < 0.

If follows from the remark at the end of the Introduction that λ±1 is a decreasing
function of R.
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2.2. N-dimensional rectangle. Consider the rectangle R := {x ∈ RN : |xi| <
ai}, i = 1, 2 . . . N . Separation of variables yields for the eigenfunctions corre-
sponding to λ±1

ϕ1 =
N∏

i=1

cos(
√
ω1xi), λ1 =

N∑
i=1

ωi,

ϕ−1 =
N∏

i=1

cosh(
√
ν1xi, λ−1 = −

N∑
i=1

νi

where

−
√
ωi tan(

√
ωiai) = λ1σ,

√
νi tanh(

√
νiai) = λ−1σ. (2.1)

For a cube Ca where ai = a, we get ωi = ω and νi = ν for all i where

− tan(
√
ωa) = N

√
ωσ, tanh

√
νa = N

√
νσ. (2.2)

The critical value for R is

σ0 = −

(
N∑

j=1

1

aj

)−1

.

It follows from the previous remark that ωi 6= 0, i = 1. . . . .N exist only if σ < σ0

and νi 6= 0, i = 1, . . . , N exist only if σ > σ0.

Monotonicity Let a1 ≤ a2 ≤ . . . aN . Since x→ x tan(ax) and x→ tanh(ax)
are increasing functions of a for fixed x > 0, we deduce that ω1 ≥ ω2 ≥ · · · ≥ ωN

and ν1 ≥ ν2 ≥ · · · ≥ νN .

Lemma 2.1. (i) If σ < σ0 then

λ1(CaN
) ≤ λ1(R) ≤ λ1(Ca1).

(ii) Let σ > σ0. Then

λ−1(CaN
) ≤ λ−1(R) ≤ λ−1(Ca1).

Proof. (i) The inequality ω1 ≥ ωi implies
√
ω1 tan(

√
ω1a1) = λ1|σ| ≤ Nω1|σ|.

Let ω∗ be the solution
√
ω∗ tan(

√
ω∗a1) = Nω∗|σ|.

Note that for positive a, the function x→ tan(xa)
x

is increasing in (0, π/2a). Hence
ω1 ≤ ω∗ and by (2.1)

√
ω∗ tan(

√
ω∗a1 ≥

√
ω1 tan(

√
ω1a1 = λ1|σ|.

The first assertion now follows from (2.2). The proof of the second assertion is
similar with the inequality signs reversed.

(ii) The inequality ν1 ≥ νi implies
√
ν1 tanh(

√
ν1a1) = λ−1|σ| ≤ Nν1|σ|.
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Let ν∗ be the solution
√
ν∗ tanh(

√
ν∗a1) = Nν∗|σ|.

Note that for positive a, the function x → tanh(xa)
x

is decreasing in R+. Hence
ν1 ≥ ν∗ and by (2.1)

√
ν∗ tanh(

√
ν∗a1 ≤

√
ν1 tanh(

√
ν1a1 = λ−1|σ|.

The first conclusion follows from (2.2). The second assertion is obtained by the
same argument. �

2.3. General domains.

2.3.1. Scaling. Let α > 0 be an arbitrary fixed number. Put y = αx. If (ϕ, λ) is
a solution of (1.1) then ψ(y) = ϕ(y/α) satisfies

4ψ +
λ

α2
ψ = 0 in αD,

∂ψ

∂n
= α−1λσψ on ∂(αD).

Hence λα−2 corresponds to the eigenvalue in αD with σ replaced by ασ. It was
shown in [2] that for σ ∈ R− the functions σ → σλ±1(σ) are continuous and
strictly increasing. Hence for α > 1

λ±1(D)

α
≥ λ±1(αD).

From this inequality we obtain that for any domainD and any α > 1 the following
monotonicity result

λ1(D) ≥ λ1(αD).

Such a conclusion can not be drawn for λ−1.

Open problem Does λ−1(D) ≥ λ−1(αD) hold for all domains?

Remark 2.2. It is not difficult to see that the above inequality holds for the balls
and the rectangles.

2.3.2. Positivity principle and upper bounds for λ−1. Nontrivial upper bounds for
λ−1 can be obtained from the positivity principle derived in [2].

Lemma 2.3. Assume σ ∈ (σ0, 0). If there exists a positive solution u of

4u+ λu ≤ 0 in D,
∂u

∂n
≥ λσu on ∂D,

then λ ≥ λ−1.

Theorem 2.4. Let D be a star-shaped domain and BR the greatest ball inscribed
in D. Suppose that ( x

|x| , n) ≥ α on ∂D and that σ′ := σα−1 ≥ σ0(BR) = −R/N .

Let λ′−1(BR) be the largest negative eigenvalue of (1.1) corresponding to σ′. Then

λ−1(D) ≤ λ′−1(BR).



EIGENVALUE ESTIMATES 73

Proof. Let u be the eigenfunction of BR corresponding to λ′−1(BR) with σ replaced
by σ′ := σ/α. This eigenfunction can be extended to r > R (cf. Section 2.1).
From the monotonicity of λ′−1(BR) with respect to R (cf. [3]) it follows that the
function r → u′(r)/u(r) is increasing. This can also be seen directly from the

following simple argument. Consider the function v = u′(r)
u(r)

. It satisfies

v′ + v2 +
N − 1

r
v + λ′−1 = 0 in R+, v(0) = 0.

Near r = 0 obviously v increases. Suppose that v is not monotone. Then there
exists a point r′ where v assumes a local maximum. This is not possible because
v′′(r′) = N−1

r′
v(r′) > 0. On ∂D we have

∂u

∂n
= u′(r)(

x

|x|
, n)
∣∣∣
∂D
≥ λ′−1σ

′αu(r)
∣∣∣
∂D

= λ′−1σu(r)
∣∣∣
∂D
.

The assertion now follows from Lemma 2.3. �

A similar result can be obtained if we inscribe instead of a ball a rectangle R
as in Section 2.2.

Theorem 2.5. Let D be convex and R ⊂ D. Assume that for i = 1, . . . N ,
sign(ni)=sign(xi) on ∂D. (This can always be achieved in convex domains.) Let
λ′′−1 be the first negative eigenfunction of R with σ replaced by σ′′ := σβ−1, where

β = min∂D

∑N
i=1 |ni|. Suppose that σ′′ > σ0(R). Then

λ−1(D) ≤ λ′′−1(R).

Proof. Let ϕ be the positive eigenfunction corresponding to R (cf. Section 2.2).
Then since R is contained in D we have, using the same notation as in Section
2.2.

ϕ−1∂ϕ

∂n

∣∣∣
∂D

=
N∑

j=0

nj
xj

|xj|
|νj| tanh(

√
|νj|xj) ≥ βσ′′λ′′1 = σλ′′−1.

The conclusion follows now from Lemma 2.3. �

Remark 2.6. From the last theorem we see immediately that if R′ and R are two
rectangles such that R′ ⊂ R then λ−1(R) ≤ λ−1(R

′).

Open problem Is it possible to find other domains beside of balls and rect-
angles for which inclusion results as in Theorems 2.4 and 2.5 hold?

3. Trace inequalities

It is well-known that for Lipschitz domains a function v ∈ W 1,2(D) has a trace
which satisfies the following inequality: for any given ε > 0 there exists a positive
number c(ε) independent of v such that∮

∂D

v2 ds ≤ ε

∫
D

|∇v|2 dx+ c(ε)

∫
D

v2 dx. (3.1)
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The smallest such constant will be denoted by c∗(ε). For star-shaped domains
Horgan [4] has shown that

c∗(ε) ≤ N

A
+

T 2

A2ε
where A = min∂D(x, n) and T = max

∂D
|x|. (3.2)

Equations (3.1) and (3.2) can be used to estimate λ−1(D) from above provided

|σ| < A/N . Namely, choosing ε = T 2

A2(|σ|−1−N/A)
, we obtain

1

λ−1(D)
=

∫
D

ϕ2
−1 dx+ σ

∮
∂D

ϕ2
−1 ds ≥

σT 2

A2(|σ|−1 −N/A)
.

Observe that this is a rather crude bound because the inequality (3.1) is not
optimal in contrast to (1.3) which is attained for v = ϕ−1. Another disadvantage
is that this estimate does not yield an upper bound if −σ0 < σ < −A/N . From
(1.3) we get we obtain∮

∂D

v2ds ≤ 1

|σλ−1(D)|

∫
D

|∇v|2 dx+ |σ|−1

∫
D

v2 dx if σ0 < σ < 0.

It turns out [2] that

σλ−1(D;σ) ↗, lim
σ→σ+

0

σλ−1(D;σ) = 0 lim
σ→0−

σλ−1(D;σ) = ∞.

Consequently for any given ε > 0 we can find σ0 < σε < 0 such that
σελ−1(D;σε) = ε.

Corollary 3.1. Let D be an arbitrary (not necessarily star-shaped) Lipschitz
domain. Let σε be the unique solution of σλ−1(D) = ε−1. Then the optimal
constant c∗(ε) in (3.1) is |σ−1

ε |. The equality sign holds for the corresponding
eigenfunction ϕ−1.

Under the conditions of Theorem 2.4 we can replace λ−1(D) by the upper
bound λ′−1(BR). If σ̃ε is the solution of σλ′−1(BR) = ε−1 then the optimal constant
satisfies

c∗(ε) ≤ 1

|σ̃ε|
.
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