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ABSTRACT. We shall give a norm inequality equivalent to the grand Furuta
inequality, and moreover show its reverse as follows: Let A and B be positive
operators such that 0 < m < B < M for some scalars 0 < m < M and
h = % > 1. Then

(r=t){(p—t)s+r}

| A2{A=2(ASB " 1om  AB)ATE}R AT |

< K(h, (p=tstr Tyoe || ASEE grotASEE |pfatin

1—t+r
for0<t<1,p>1,s>1andr >t >0, where K(h,p) is the generalized
Kantorovich constant. As applications, we consider reverses related to the
Ando-Hiai inequality.

1. INTRODUCTION

The origin of reverse inequalities is the Kantorovich inequality. It says that if
a positive operator A on a Hilbert space H satisfies 0 < m < A < M, then

(M +m)?

Al <
(A7 m) < =

(Az,z)~" for all unit vectors z € H. (K)
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The point in is the convexity of the function t — ¢t~!. Mond and Pecarié
turned their attention to the convexity of functions, and established the so called
Mond-Pecari¢ method in the theory of reverse inequalities, see [13] in detail. The
subject of this note is just on the line of Mond-Pecari¢’s idea, and our target is
the grand Furuta inequality.

Let A and B be positive (bounded linear) operators acting on a Hilbert space.
The grand Furuta inequality [10] says that

A>B>0 = A" > (AS(ASBPA ) A5 o oeer (GFI)

for0<t<1l,p>1,s>1andr >t
The inequality (GFI) is considered as a parametric formula interpolating the
Furuta inequality (FI) and Ando-Hiai one (|1.1)), respectively [9] and [1]:

A>B>0 = A" > (AiBPAS)sr (r>0, p>1) (FI)
and
A>B>0 = A >{A5(A2BPA 2) A5}y (pr>1).  (L1)
Now the Furuta inequality appeared as a useful extension of the so-called
Lowner-Heinz inequality (cf. [14]):
A>B>0 = A*>B* (0<a<l). (1.2)
This Lowner-Heinz inequality (1.2)) is equivalent to the Araki-Cordes inequality
([21, E):
| ASBPA% || < || A2BA: |7 (0<p<1). (1.3)
M.Fujii and Y.Seo [8] gave a reverse inequality of the Araki-Cordes inequality:

If A and B are positive operators such that 0 < m < B < M for some scalars
0<m<Mandh:=2 (>1), then

K(hp) | AXBAZ | < || AfBraf | (0<p<1) (1.4)
where a generalized Kantorovich constant K (h,p) is defined as follows:
1 W—h(p—1h—1\"
h—1p—1 \h»—h p
for all h(# 1),p € R and K(h,0) = K(h,1) =1, see [11] and [13].
In this note, we first give a norm inequality equivalent to the grand Furuta
inequality (GFI). Based on this, we show a reverse inequality of (GFI), in which

the generalized Kantorovich constant (1.5 is used. As an application, we obtain
reverses of a generalization of Ando-Hiai inequality ([1.1).

K(h,p) == (1.5)

2. NORM INEQUALITY EQUIVALENT TO THE GRAND FURUTA INEQUALITY

The grand Furuta inequality (GFI) is equivalent to the following norm inequal-
ity:
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Lemma 2.1. Let A and B be positive operators. Then the grand Furuta inequality
(GFI) is equivalent to

(r=t){(p—t)s+r} r 1 t

Wit < || AB{A-5(AF BTG A A5 AT |

1— t+'r

A=

for0<t<1,p>1,s>1andr >t.
Proof. Replace A to A~! and put
O = {AS(A- B 45t as )

in (2.1). Since B'~t = {A%(A—%CPA—%)SA% }ﬁ we have

| Harierah
This is equivalent to the inequality

A>C = AT > [AF(ATECPATE) AR} B0,

that is, is equivalent to the grand Furuta inequality (GFT). O

“20A2 ||

Corollary 2.2. Let A and B be positive operators. Then
BUAS |50 < || Ab(ASBreAl)r Al | (22)

1+s

A=

forp>1and s > 0.
Moreover
| A% BIAS || < || A2(A3BA%) A2 || (2.3)
for s>t >0.

Proof. Put t = 0, s = 1 in (2.1.
respectively, (2.1) implies (2.2]).

Moreover, let t be a real number satisfying s > ¢ > 0. Then ([2.2)) implies

| A B A |30 < || AT B AN || < || AF(ASBPTIAS) AT |
by £ € [0,1] and the Araki-Cordes mequahty (L.3). Furthermore, replacing B
to Bl+t and putting p = 7, we have . O

Remark 2.3. The inequality is originated by Bebiano-Lemos-Providéncia
in [3]. In our previous note [7], we call it the BLP inequality and we showed
as a generalization of the BLP inequality (2.3). Incidentally it is equivalent to
(F'I). For convenience, we give a proof of = (FI). The inequality is
rephrased by replacing A to A~! as follows:

1+t t(p+s) s

| A7 BATE i < | ATHATEBTES AT AT |

Moreover, putting

t(p+s) s 14t

C = (A 5B T A 5)s, or Bt = (ASCPA3)wis,
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it is also rephrased as
14t

| AT (ATCPAT R ATT | < || ATE0ATE |
which obviously implies the Furuta inequality (FI) by taking s =t = r.

Remark 2.4. In [I2], Furuta gave a similar inequality to (2.1)).

3. A REVERSE GRAND FURUTA INEQUALITY AND ITS APPLICATIONS

In this section, we give a reverse inequality of (2.1) by using the generalized
Kantorovich constant (1.5).

Theorem 3.1. Let A and B be positive operators such that 0 <m < B < M for
some scalars 0 <m < M and h := M > 1. Then

(r=t){(p—t)s+r}

| AS{A=5(ASB" T AB)EAE}r A3 |
< K (pEen @oOSHINT et gty g e,
N T l—t+
(3.1)

for0<t<1l,p>1,s>1and1+r > 141" >t, where K(h,p) is the generalized
Kantorovich constant defined by ((1.5)).

Proof. For p > 1 and s > 1, the Araki-Cordes inequality (1.3]) implies that

(r=t){(p=t)s+r}

[ A%{A*%( A B tar A )s *5} » A3 I

(r=t){(p=t)s+r}

< | AB{ATE(ARBT e AR ATE AT |

(r=t{p=t)str} r 1

— H AT( EBWAE)EAT HE

3 |

(p t)s (r— i){(P t)9+T} (p—t)s , 1
< || AT (AEB TR AR A ||
t)s+7" (r— t){(p t)s+r} (p—t)s+r 1
= || AT B A

Moreover, since (p—t)s+r > 1—t+r" > 0, it follows from the reverse Araki-Cordes
inequality . that

t)5+r (r—=t){(p—t)s+r} (p—t)s+r 1
2

|| A T—t+r A ps
< || AT RO R 4 5
1
< K hll tt-:_i (r—t)’ (p—t)S—i—'r’ ps H Al t+r! Bl1 tt-:-r (r— t)AliterT/ p(:zi)ts::j) .
- 1—t+7
Combining them, we have the desired inequality (3.1)). 0

From the reverse grand Furuta inequality (3.1) we have the following reverse
Furuta inequality (see [7]):
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Corollary 3.2. Let A and B be positive operators such that 0 < m < B < M
for some scalars 0 <m < M and h := % > 1. Then

| AZ(ASBPHAS)r Az || < K(h”t,]i:j) | A A | (3.2)

forallp>1ands>t>—1.

Proof. In , if we put t =0, s = 1, and replace r, v/, B and h to s, t, B
and h%, respectively, then the desired inequality holds. O
On the other hand, Ando and Hiai [I] proved
Af,B<1 = A"f,B" <1 for0<a<l1l,r>1
where Af,B := A%(A*%BA*%)QA%. This inequality is equivalent to
| A8 B" || < || AfaB [|” - (AH)

M.Fujii and E.Kamei [6] proved that (AH) is equivalent to (FI). Also they
extended (AH) as follows:

(1 cx)s+ar

| A e < | At B || (GAH)

>l
(A—a)s+ar a)s+a7‘

for r,s > 1 and 0 < o < 1. It is easy to see that the inequality (2.1]) equivalent
to the grand Furuta inequality is rewritten as follows:

Wit < || AF(AEBATE)7 A} |

1—t+r (AngsAfg) 1:t)+

for0<t<1l,p>1,s>1landr>t>0. Hereifweputa:%,thenwehave

| ASFE (A5 B A ) Tanerar A5 | ST < || AF(ATSBAT5)7A% |
(3.3)
This inequality implies (GAH) by ¢t = 1.
From the viewpoint of the Ando-Hiai inequality, we consider the following
inequality related to a reverse inequality of which is equivalent to .

Theorem 3.3. Let A and B be positive operators such that 0 <m < A, B < M
for some scalars 0 <m < M and h := % > 1. Then

/ t+r
e P O s
(1 —at)s+ ar (3.4)
< H Al t+r’ (A_iB A~ )ﬁAl t4r! ||

for0<t<1,s>1,14r>1+7r >t and 0 < a <1 where K(h,p) is the
generalized Kantorovich constant defined by ((1.5)).
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1—t+r) a(r+s)(1—t+r)

. a
Proof. In (3.1)), we replace B"~*, h"~* and p to (A"2 B*A~ )<1 afstar |~ (I—at)star
and é, respectively. Then we have

| A5(A"5BA™5)°A3 | < K (h“iii(i’i“ (1—at)s+ C“") ’

all —t+1")
| A (A5 Br A~ s ) Ehear A5 | ST

By the inversion formula (i.e., K(h", 1) = K(h, r)~r for all r # 0) [5], it implies

l—at)s+ar

a _(—at)star
e (et Lo et o) T, oot YT

Ta(l—t+1) 1—at)s+ar
and hence ({3.4]) holds. O

Remark 3.4. If r = " in (3.4)), then we have the following reverse inequality of

(3.3):

r+s O‘(l_t—i—?ﬂ) 1, t o _s(—t4r)
K(h+’(1—at)s+oﬂ“) | A3(A72BATR)" AR || o

1— t+7‘ 1— t+7‘

< AT AT B AT TR A

for0<t<1,s>1,14+r>tand 0 <a <1. Moreover, let £ = 1 in Theorem
331 As a reverse inequality of (GAH), we have

ar 1 1 1 1 s
K hrts A2(A 2 BA 2)*Az ||G-a)star
( ’O—ab+m)” 2(A72BA72)" A |
< | AF(ATEBTATE) T AR |,
that is,

ar
"(1—a)s+ar
fors>1,r>0and 0 <a <1.

K (h ) | AfB || < || AT e

>l
(1— a)s+o¢'r

Under the conditions of 0 < s < 1 and 7’ = r, we prove the following inequality
as in Theorem [3.3k

Theorem 3.5. Let A and B be positive operators on a Hilbert space H such that
0<m<A B<M for some scalars 0 < m < M andh::%>1. Then

| A |
< K<h”tva>*% | A (At Ba-tyeal |

for0<s,t<1,14+r>tand0<a <1 witha(l—1t) < (1—at)s where K(h,p)
is the generalized Kantorovich constant defined by (1.5]).

-5 o 45 P A
(3.5)
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Proof. We use the Holder-McCarthy inequality and its reverse: Let A be a positive
operator with 0 < m < A < M. Then for every vector y € H

K(h, B){Ay, p)? | y |27 < (APy,y) < (Ay,p)? |y | for0<B <1

Since % < mAt < A3BAT: < MAT < M oand || Az | < || A [ = A"
< M?" for all unit vectors x € H and v > 0, we have for any 0 < s <1

(Aﬂ(A‘%BSA §)ametar A Tx x>
< (AT BNy, )T et " g || Tt
< (AT BAT 4, z)enror | AT 0 ||2% Heltin) ) let  (—ast-atal)
< (K (hl“ 0) AR (A5 BA™3)0 Ab g, ) Transtor || Adg ||~ (anrar
« M anifar (@(1=9)(1=0) § r=ohias (s—ast—atat)
K(h”t,a)‘% | A2(A"2BA %)"Az ||%
N Tt 1-0)s ) aatar (s=0s)
= K(h, o) Taisior || A(A73 BATH) b [T adiier
Hence we obtain the desired inequality . O

Putting ¢t = 1 in (3.5)), we have an inequality given in [15]:

| A _or B*|| < K(h% o) 0 T=a)sTar | Ao B ||T=aar SsFar

(I—a)s+ar a)s+ar

for0<s<1l,r>0and 0 <a<l.
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