Bernoulli 1(1/2), 1995, 081-123

Time-scales for Gaussian approximation and
its breakdown under a hierarchy of periodic
spatial heterogeneities

RABI N. BHATTACHARYA'* and FRIEDRICH GOTZE*

lﬂfpar:nrem of Mathematics, Indiana University Bloomingron, Bloomingron IN 37405, USA
X Fakuliat fiir Marhematik, Universitit Bielefeld, Universitatsstrasse 25, 33501 Bielefeld, Germany

The solution of the 1té equation dX(¢) = &{ X(1)}dr + B{X(r)/a}dr + v/ DdB(1) is analysed for r — oc.a — o0.
In the range 1 <t < @™, X(1} is asymptotically Gaussian if # is periodic, 3 Lipschitzian; here the large-scale
fluctuations may be ignored. In the range ¢ % a°, with both b and 3 periodic and divergence-free, a integral,
Gaussian approximation is again valid under an appropriate hypothesis on the geometry of 3; here for some
coordinates of X{r) the dispersivity, or variance per unit time, mav grow at the extreme rate ((a”) while
stabilizing for others. As shown by examples, Gaussian approximation generally breaks down at intermediate
time-scales. These results translate into asymptotics of a ¢lass of Fokker—Planck equations which arise in the
prediction of contaminant transport in an aquifer under multiple scales of spatial heterogeneity. In particular,
contrary to popular belief, the growth in dispersivity is always slower than linear.
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1. Introduction

A physical law or description is in general valid only for a certain specific range of spatial and/or
temporal scales. At different ranges of scales different laws are enunciated. The present study is
motivated to a considerable extent by a problem in environmental engineering in which a hierarchy
of spatial scales arises naturally. The paper may be viewed as an analysis by probabilistic methods of
the (deterministic) Fokker—Planck equation that arises in this and similar contexts. Alternatively, it
may be regarded as an asymptotic analysis of a class of stochastic differential equations with
multiple spatial scales.

In Section 1.1 we provide an expository outline of the mathematical contents of the paper. Section
1.2 is devoted to the application mentioned above.

1.1. AN OUTLINE

Consider a class of stochastic differential equations on B*,k > 1. of the form

dX(1) = b{X(1)} di + B{X(1)/a} dt + VD dB(1), (L.1)
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where b, 3 are non-constant vector fields with bounded first-order derivatives. a a large scalar

parameter. B a standard k-dimensional Brownian motion independent of X(0), and D a k= k

symmetric positive definite matrix whose positive definite square root is denoted +/D. One may

think of (1.1) as the equation of motion of an object (e.g. a solute particle) moving in a velocity field

b(x) + Fx/a). subject to a random perturbation. The position X{-) of the object is a diffusion

process whose transition probability density p,(1: x,y) satisfies Kolmogorov's backward equation
% =Lp, = %Z D, 8°p,/8x;8x; + Z{bj{xj + 3;(x/a)}ap,/x; (1.2)
I+ 4 i

and the forward equation

o, e
Se=Lp=j Zﬂﬂ 8’ Fuxﬁhah"zdfﬁhl{b ¥)+ Gip/a)}pl. (1.3)

Imagine the object starting at a point x; at time t = (. Since the large-scale velocity 3(x/a) is nearly
constant at positions close to x;, the object in motion will be governed for an initial period of time
approximately by the equation

dY(t) = b{¥(0)} dt + B{xy/a} dt + VD dB(1),  Y(0) = x,. (1.4)

where one may replace 3(xy/a) by 3(0) to get rid of a from equation (1.4). This initial period will of
course depend on how large a is. In Theorem 3.1 in Section 3 it is shown, by an application of the
Cameron-Martin-Girsanov theorem, that the L'-distance between the transition probability
densities of X and ¥ goes to zero if 1 < a°°, ie. if 1/a”” — 0. Now if ¥(r) is asymptotically
Gaussian, it follows that Xir) has a valid Gaussian approximation with the same parameters in the
range 1 < t < @~ In particular, this is the case if b(-) is periodic. It is shown by examples in
Section 2 thart this Gaussian approximation is sometimes valid in the wider range 1 < r < a. It 15
also seen from Example 2(i) and Remark 2.5 in Section 2 that the range of validity may not extend
beyond 1< 1< a”° without the use of a centring adjustment for X(r). Whether such an
adjustment is always possible is not known to us.

After an initial period as described above, the object begins to feel the effect of the fluctuations in
the large-scale velocity field 3( - /a). The nature of these effects depends on 3, and from this point
on, unless otherwise specified, we assume that b, 3 are both periodic with a common period lattice.
Without any essential loss of generality, we take the lattice to be Z%, i.e

b(x+n) =b(x).8(x+m=pP(x) vxeR'anecZk (1.5)

Also, b and 3 are divergence-free:
& k
S dbilx)/ox; =0=Y 83(x)/0x;. (1.6)
J=l =1
Finally, assume that a is a positive integer.

Section 2 iilustratcs by examples the dramartic changes in behaviour that occur in the range
@< 1< (Ma"). Generally speaking, the Gaussian approximation breaks down in the region
between O(g) and G{al}. If, for some special structure, X(¢) becomes asymptotically Gaussian in
some part of this range, as we see in a modification of Example 1 (see Remark 2.2, and the relation
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{2.7)in Section 2), the scaling is most likely to be quite different from that in other ranges. indicating
a ‘phase change’.

It remains to analyse the behaviour of X(r) for ¢ > a”. Much effort (and all of Section 4)
goes into this analysis, From the assumptions it follows that X{-):=X(-)moda=
(X)(+)moda.... X -)moda) is a diffusion on the torus J,:= {rmoda:x EE?"} (see, for
example. Bhattacharya and Waymire 1990, p. 518). In view of (1.6}, the uniform distribution on
7., is the unique invariant probability for X{ - ). Further. for a fixed positive integer a, a central limit
theorem holds (Bensoussan er al. 1978, Chapter 3; Bhattacharya 1985):

%{xm — X(0) — (b + B)} = N(0.K), (1.7)
where = denotes convergence in law, i.e. weak convergence, N[0, K is the normal distribution with
mean vector 0 and dispersion matrix K. and for any real- or vector-valued function f on Rk,

Fe= | r)a (18)
1)
Also, the dispersion matrix K is given by
Xiciuh j_u {grady(y) - 1} D{grad v(y) - 1}  dy, (19)
Da
where <y = (%, %,.... ) is given by the unique mean-zero periodic (with period a) solutions ; of
Lyi(x) = bi(x) = b; + Bdx/a) — 5; 1<i<k (1.10)

Here L is the backward operator defined in (1.2), To derive (1.7) one may use 1t6's lemma (see, for
example, Bhattacharya and Waymire 1990, p. 585, or Rogers and Williams 1987, pp. 60-62) to write

X(1) - X(0) — (b + B) = L [b{X(s)} — b+ B{X(s)/a} — B]ds + VDB(1)

=7 (X0} =7 {XO)} - [ lerad 7(X()) ~1VD aBs).  (1.11)

The proof of (1.7) is completed by using the martingale central limit theorem (see, for example,
Bhattacharya and Waymire 1990, pp. 513-515; Billingslev 1961; or Hall and Hevde 1980, pp. 58,
59). Much of this paper is concerned with the range and nature of validity of approximation (1.7) as
a — oc, and we devote the next few paragraphs to this topic.

There is significant contact here with the theory of Diaconis (1988). The specific result that we use
{Proposition 4.3) is an extension of a result of Fill (1991). (See also Diaconis and Stroock 1991.) Like
Fill, we deal with a non-reversible Markov process X(-). But we have a continuous-parameter
Markov process, and the state space is compact — not finite. In view of (1.6), the ‘reversiblization” of
L —m Fill's (1991) terminology — is the self-adjoint operator

e ;»Z Dy ?|x,8% = §(L + L) (1.12)
Ad'

on [J,. Using an adaptation of Fill's estimate, Trotter’s product formula for semigroups. and a
bound for the fundamental solution p,(r; x,y) (see, for example, Aronson 1967, it is shown (see
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(4.48)) that

suplln | palt:x.¥) —a *|dy < cexp(—2r’at/a?), (1.13)
x | Fik

where p, is the transition probability density of X(-},a'i its invariant density, and ¢ does not
depend on a.

Although (1.13) asserts weak dependence of X{ - ) at time scales 1 > a’ in the sense that the strong
mixing rate goes to zero, much additional work is necessary to derive a meaningful Gaussian
approximation. To describe this work, it is useful and natural to consider the rescaled process
¥(1) := X(a’1)/a. satisfying

¥{1) = ¥(0) + L alb{a¥(s)} + B{¥(s)} ds + VDB(1), (1.14)

where B(1) := Bl{azrjfa is again a standard Brownian motion. Since b(a- ) and 3 are both periodic
with period 1, ¥(¢) := ¥(t)mod | is a diffusion on the unit torus 7, :== {xmod ] : x Rk} and it
has ]_ﬂbesgue measure on J; as its unique invariant probability. The generator of this dJﬂ"usmn
¥(-)is A, :==D+a{bla-)+ B} - V. Deriving a Gaussian approximation for X(7) for r = a*

ﬁquivalent m deriving it for ¥{¢) for 1 2= 1. Now for a fixed positive integer a, it fﬂlinws usmg Itn 5

lemma that {¥;(r) — ¥;(0) — at(b; + 3;)}/+/7 converges in distribution to N(0,a* ||gj.,|, D;;) as
t — o< (see Bensoussan et al. 19?8 or Bhattacharya 1982; 1985). Here g;(x) = v;(ax)/a” 15 the
unique mean-zero periodic solution of A,g; = bj(a-) — b, + 3, — 5;, and || -||, is the norm in the

complex Hilbert space

H! .= {.& = L:(J,.dx] hL LJ |"F’h{x]||2dx < oo}_.

Bh, (x) Ohs
[y S Ty Z L] at"’} aj” x, (1.15)

h7 being the complex conjugate of A;. It is necessary to derive the rate of growth of a* | g |If as
@ — oc in order to scale ¥;(r) properly and to ensure that the scaled process converges to a non-
singular Gaussian as both ¢ — oo, 1 — oc. In order to derive this growth rate one may think of the
approximation of the operator A, by A, ;=D + al[f; + 3)- V. Since b(a-) is periodic with a very
small period 1/a. b(a- ) converges weakly to b in L*(.7,,dx), as @ — oc. Lemma 4.5 estimates the
error of this @ppmxumaliﬂn An approximation to g; is then the solution A; to A,,.F: =3 -
,iifJ =~ bj(a-) — b; + 5; — §;. The advantage of looking at A, and /; is that one may then use the
spectrai method ::le'.relup-bd in Bhattacharya et al. (1989) In particular, it follows that
|| Ay 13 =i [D'l{:ﬁj — 3w ||% as @ — oo, where fy denotes the projection of f onto the null space
Nin H' of the operator D' (b + B)-V. Thus if (D~'( 5, — 3;))x # 0, then the proper scaling for
the jth coordinate of ¥(1) is { ¥;(1) — ¥;(0) — ar(b; + 3;)}/a+/1. That this works is based on Lemma
4.6 and the weak dependence esumdtes in Corollary 4.4. Theorem 4.7 can then be derived by an
appeal to a result of Gtze and Hipp (1983).

In the case (D~'(3 — 3;))y =0 and D '(3; — 3;) belongs to the range of D~'(b+3(-))-V
|lg|If and || #||T — 0 as @ — c. Indeed, Lemma 4.8 shows that in this case a®|| g/|| remains
bounded as a — oc. The proper norming is then given by {¥;(1) — ¥;(0) — at(b; + 3,)}/V1.
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Theorem 4.9. providing the appropriate result in this case, does not follow directly from Gétze and
Hipp (1983). It is proved by the classical method of omitting relatively small blocks in between
bigger blocks which are nearly independent, along with various estimates contained in the lemmas
mentioned above, Theorem 4.10 combines the two preceding theorems, assuming that for some set
J, of coordinate indices [D"{_i:'fl. — 3;))x. j € Jy, are linearly independent elements of the null space
Nof D7'(b+3)-V,and D'( 3 — 3,). j € J, are linearly independent elements of the range of
D '(b+ B3)- V. Under this assumption it is relatively simple to deduce the following results from
Theorem 4.10 (see Bhattacharya and Ranga Rao 1976, pp. 22-24):

sup | PUUX(1) —x—t(b+ B)/vT e C}) = N(0,K)(C)| =0 asa— oo,t/a® — oo, (L16)
cel

uniformly with respect to all initial states x. Here C is the class of all Borel measurable convex
subsets of %, and K is given by (1.9). The results of Gitze and Hipp (1983; 1994) and Lahiri (1993)
suggest that the left-hand side is likely to be bounded by ca/+/1. where ¢ is a constant depending only
on b Fand D,

1.2. AN APPLICATION

Consider a Fokker—Planck equation of the form

delt, ¥)

5 =L, t>0,ycR", (1.17)

subject to the initial condition

ime(r.y) =coly) ¥€ RY, (1.18)
L

where L° is as in (1.3), and ¢, is a non-negative continuous function with compact support. Then
c(t,y) has the representation

elt,y) == Lti‘o(-"}ﬂa(“-“{l'} dx. (1.19)

In view of this. the asymptotic properties of ¢(t, y) for t — oc, a — oc, are identical with those of the
distribution of X{(t) discussed in Section 1.1, provided ¢; does not depend on a. Indesd, by
multiplying ¢ by an appropriate constant if necessary. ¢(7, ¥} may be considered to be the density
of X(1), when X{0) has density cp. Hence the analysis of this paper may also be viewed as that of the
solution of (1.18) and (1.19). This is a purely mathematical application. On the other hand. such an
equation governs the concentration of a contaminant or a solute in an aquifer saturated with water
in motion in a velocity field b{x) + 3(x/a). Therefore, the application to the problem of determining
the spread of the contaminant with time is also immediate. Here ¢, represents an initial
concentration due to a localized injection of contaminants into the aquifer. The scope of this
application is, of course, limited by the model assumptions. But the present analysis provides
significant insights into the broader physical problem. We discuss this in the next paragraphs.

In order to clarify the general notion of a hierarchy of Gaussian approximations and their
associated temporal and spatial scales, we begin with Einstein’s {1905-8) diffusion equation and
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Taylor’s (1933) study of solute dispersion in a long capillary. Einstein’s equation

g—jziﬂgﬂc&v-?c >0 pck, (1.20)
governs the concentration ¢z, y) of a solute (in dilute concentration) in a homogeneous isotropic
fluid with a constant, or zero, velocity v. Here Dy is the molecular diffusion coefficient and A is the
Laplacean. This equation is derived from the fact that the total displacement of a solute molecule
aver a period of time ¢ may be viewed as the sum of a large number of nearly independent
displacements suffered by it because of its interaction with surrounding liquid molecules, provided ¢
is large compared to the time-scale of molecular interactions. By the central limit theorem. this
displacement is Gaussian, and its probability density satisfies (1.20). Integrating over the initial
concentration of solute molecules one arrives at (1.20) at the hydrodynamical scales of space and
time. Taylor's equation for the concentration of a solute immersed in a liquid flowing through a
long circular capillary of cross-section radius a under a constant pressure applied at one end is given
by

Je s + s g w5
§=%Dn&c—£-{uu(l-}‘ -2}3)(‘} 1>0,yi+yi<a”,

dc

==
Here y, is the (horizontal) coordinate along the capillary length, while y, and y; are the coordinates
of the (vertical) cross-section; uy is the maximum velocity attained at the centre of the cross-section.
The second equation in (1.21) is the no-flux boundary condition in the direction of the normal ¥ to
the boundary. The first equation is locally (i.e. within a region of diameter negligible compared to a)
the same as (1.20) with v = (v,,0,0), v, = up{1 — (¥7 + ¥3)/a’}. At times  large compared to the
time for a solute molecule to reach the capillary boundary from the centre, the horizontal
displacement becomes Gaussian, its dispersivity, i.e. variance or dispersion per unit time, being
Dy + a“ui /96D,. A probabilistic derivation of Taylor's theory, as completed by Ars (1956), is
given in Bhattacharva and Gupta (1984), based on the fact that the first coordinate of the Markov
process X(t) = (Xy(¢), Xa(r), Xa(r)) whose transition probability density satisfies (1.21) has the
representation

(1.21)

0 yi+yi=a’.

t

X,(1) = X,(0) +L

2 2
uu(l 0k A0 {53:2& {5})ds+ VDoB(1). (1.22)

Because | X>(s5). X:(s)) is an ergodic Markov process on the disc { y5 + ,1!;3 = az}. the time integral in
(1.22) becomes asymptotically Gaussian.

For solute motion in an agquifer, laboratory-scale experiments indicate that the solute concen-
tration satisfies an equation such as (1.20), but with a Dy much larger than the molecular diffusion
coefficient (Fried and Combarnous 1971). Measurements at a larger spatial and temporal scale - the
so-called Darcy scale — show a larger dispersivity than that at the laboratory scale (Fried and
Combarnous 1971). At scales much larger than the Darcy scale yet larger dispersivities are observed
(Molinary er al. 1977; Lallemond-Barres and Peaudecerf 1978; Anderson 1979). The usual way of
measuring dispersivity and its growth is to inject a tracer substance into the aquifer at a point and
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monitor the concentration distribution at regular intervals. At each of these times a Gaussian is
fitted to the observed distribution. The dispersivity in each direction is then plotted against time or
against the spatial distance between the point of injection and the fitted mean. Some authors have
devised concentration prediction formulae which are Gaussian at all times, with steadily increasing
dispersivity (see. for example, Dagan 1984).

Meither physical measurements nor theoretical considerations support the view that there can be
valid Gaussian approximations accompanied by a steady increase in dispersivity continuously in
time. Going back to the Taylor example, the Gaussian approximation for X (1) at the larger scale is
due to the ergodicity of the horizontal velocity along the particle path, causing an increase in
dispersivity. This dispersivity is not going to increase any further with time.

In our analysis Gaussian approximation holds at three scales. The first of these is at a spatial scale
at which fluctuations in b{ . ) are negligible (see (3.1)). At this scale the dispersivity is given by the
matrix D. The corresponding time-scale is determined by the time the particle can traverse only this
small spatial region, and it is o || D || ). The second scale is analysed in Section 3. Here the spatial
scale is much larger than 1 but much smaller compared to a, and the time-scale is ola*") or possibly
o{a). The enhanced dispersivity is given by (3.15), and more explicitly by Examples 1|')|i}, 2(1) in
Section 2. The third spatial scale is larger than O(a), and the time-scale larger than O(a~). This is
analysed in Section 4. The enhanced dispersivities are indicated in Theorems 4.7 and 4.9, and in
Examples 1(iv). 2(ii) in Section 2. In order to introduce even higher scales, one may simply rescale
time and space and write an equation such as (3.1) at the last scale considered, with D replaced by
the dispersivity at the third scale considered above. Such a notion of hierarchical Gaussian
approximations at widely separated scales in an aquifer was introduced in Bhattacharya and
Gupta (1983). and is rigorously analysed here for the case of periodic velocity fields. The
‘divergence-free’ condition (1.6) refers to the incompressibility of the fluid in a saturated aquifer.
In between two successive scales in the hierarchy the Gaussian approximation generally breaks
down, as shown by Example 1 (ii). (iii). The examples in Section 2 model the so-called lavered media
(Gupta and Bhattacharya 1986).

It would be an important and challenging task to extend the theory presented in this paper to
velocity fields other than periodic ones. As a first step, a central limit theorem (CLT) 15 needed for a
fixed a, or without the term 3(x/a). for such velocity fields. One class of velocity fields which has
received much attention is the class of ergodic random velocity fields. In the case where the diffusion
matrix {{a;(x)):x € R*} is an ergodic random field and the generator of the diffusion is self-
adjoint and expressible in the divergence from L = % ¥ ;18/9x;)a;;(x)8/0x;, Papanicolaou and
Varadhan (1979) and Kozlov (1980) have derived a CLT for X{7). Results from Gelhar and Axness
(1983) and Winter er al. (1984) provide strong indications that such a CLT may be valid also in the
non-self-adjoint case of a constant diffusion matrix and an arbitrary Lipschitzian ergodic random
velocity field. Finally, one may consider (deterministic) almost periodic velocity fields. Kozlov
(1979) provides a CLT in the self-adjoint case with an almost periodic diffusion matrix (a;;(x)) and
A in divergence form as above. Bhattacharya and Ramasubramanian (1988) prove a CLT in the
non-self-adjoint almost periodic case assuming a ‘resonance’ condition on rationally independent
frequencies of the almost periodic drift and diffusion coefficients.

The present study differs from earlier ones in that it looks at not one, but a hierarchy of Gaussian
approximations based on multiple scales of spatial heterogeneities, and derives the time-scales for
these approximations. One must introduce such a hierarchical structure of spatial heterogeneities in
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order to justify Gaussian approximations with enhanced dispersivities at such widely separated
scales as the laboratory scale, the Darcy scale and the field scales. See also Sposito er al. (1986) on the
existence of multiple scales in aguifers. Although the mathematical task of deriving such results for
almost periodic b, 3, or when b, 3 are ergodic random fields seems formidable, the results in the
periodic case provide valuable insights for more general situations.

We conclude with the remark that the growth in dispersivity with time (at those times where a
Gaussian approximation is valid) in the periodic case is sublinear (see also Remark 2.6 in Section 2).
This contrasts with the folklore of linear growth (see, for example, Molinary er al. 1977).

2. Examples

Example 1

In both sets of examples in this section the time ¢ and the spatial scale parameter a go to infinity
simultaneously. As the relative speeds with which ¢ and a go to infinity change, the asymptotic
behaviour of the diffusion undergoes dramatic phase changes. Consider a two-dimensional diffusion
X(t) = (X, (1), X3(t)) governed by the following stochastic differential equation with two scales of
heterogeneity:

dX, (1) = {eg + ¢y 5in (2xX5(1)) + ¢ cos (2aX5 (1) /a)} dr + dBy (1),
dXs(1) = dBs(1), (2.1)

where ¢;, ¢, are non-zero constants, @ is a ‘large’ positive integer. B(7) = (By(1). B:(1)).t =0, a
two-dimensional standard Brownian motion, and X(0) = (X,(0), X>(0)) 15 independent of
{B(1) : t = 0}. The integral form of (2.1) is

Xi(0) = X(0) + cor + J;{c! sin (2nX;(5)) + cocos (2nX,(s5)/a)} ds + By (1),

Xs(t) = X3(0) + Bs(1). (2.2)

We are interested in the asymptotic behaviour of X(¢) for ‘large’ ¢ and a. The following results are
derived under ‘Proofs” below by direct computation. For simplicity, let the initial X{0) be constant,
X(0)=x = (x1,x3).

Case (i) Ifl & t € a, ie t — o0, tf/a— 0, then

Xy (1) — xy — cpt — catcos (2nxafa) £ i
7 =N EI.:——:+ l (2.3)
uniformly for all x = (x, x;). i .
Case (ii): If a*® € 1 € a®.ie. t/a*? — oo, 1/a® — 0, then
X)) —x; —tleg + 5 !
i/a* 0

uniformly for all x = {x;, x;), with x5 in a compact set. Here £(Z ) denotes the law, or distribution,
of Z.
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Case (i ): I.f:,-’,:r1 — 8 = (0, o), then

o . o
ME":EL cos (2nBs(s)) ds) (2.5)

uniformly in x such that x» lies in a compact set.
. - b ey 2
Case (iv): If t = a”,ie. i/a” — =0, then

i) —n—ete i
2 Iy (0 1113) (2.6)

uniformly in x.

Remark 2.1

In the range 1 < 1< a, the second term in the drift velocity, namely cos(2mx;/a). is nearly
constant; hence it does not contribute to the growth of X{(¢). In general (see Sections 3 and 4), one
expecls asymptotic normality at the two ends of the spectrum: 1 €t < a, and 1 & a®, but not in
between.

Remark 2.2
If cos (2mxs /a) is replaced by sin (2mx;/a) in (2.1), then in cases (i) and (iii) cos is simply replaced by
sin, while case (iv) remains unchanged. But case (ii) changes as follows:

Case (ii)": If a < t < a°, then

X, (1) = x; — cot an’ci
%ﬂiw(ﬂ. “f) (2.7)

uniformly for all x.

Although a normal approximation holds here, the norming by e Ja is essentially different
from those in cases (i) and (iii) since 1'% /a is of larger order than /2 and of smaller order than
t in this range. Thus here also a ‘phase transition’ occurs from one scale to another. As is implicit
in the proofs below, the different natures of the limit laws in (2.4) and (2.7) arise because cos is an
even function while sin is odd. Also, the appearance of the Gaussian law in (2.7) is due to the fact
that X,(s) is Gaussian (namely, standard Brownian motion) at all scales. This is a very special
situation.

Example 2

Here dX,(¢) = {cp + ¢y sin (2nX;5(¢)) + ¢y sin (2nX5(¢)/a)} dr + dBy(1). But X;{7) is a Brownian
motion with a drift: dX5(r) = § dr + dBy(1). 8 £ 0.
Case (i): If | < 1 < a, then

Xj[r]—xl—fu:—czjrsin(h(xl:m))ds .2
g £ N(D.—'—zj+ 1) (2.8)

7 52
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Case (ii): If 1  a°, then

X|{I:|—.‘£1-(.‘(|.I£Na ci 3 ; 56
— i \YEem Tttt (29)

Remark 2.3
In the range 1 < 1 < a, the second term in the drift velocity is nearly constant and does not
contribute to the dispersivity. In the range 1 3 a”, however, both terms contribute to dispersivity,
unlike Example 1{iv). Also, the asymptotic variance per unit time, or dispersivity, is Q(1) in both
ranges here.

Proofs

Example 1

Case (i): Since ¢t — oo and t/g — 0,

E iJ s cos (2nXs(s)/a) ds — e3 /1 cos (2nx: /a)

V1o

1 ["2x] s 2ﬂ|f:|]I
g—| gy asg T2 L Sy
_v’fjn a 2(8) = x| ds av'i n"ﬁ

ar| ey
- “;E-li:;a]—o. (2.10)

Therefore, the left-hand side of (2.3) has the same asymptotic distribution as that of

ier:.si11{2:-rJ£'1[s]I",ln::L1;+ I (2.11)

N EBEM'

The first term may be expressed by Ité's lemma (see, for example, Friedman 1975, p. 90; or
Bhattacharva and Waymire 1990), p. 583) as

1 i : Lo
= {fLXz{fJ} — 60 - [ 70600 de'[-’!‘]'}-. (2.12)

where [ satisfies
Lf"(¥) = ey sin (2my) or f"(y) = 2¢, sin (2ny)
so that one may take, by integration,
c €.
S =—Zcos(2my),  f(y) =~ sin(2my) (2.13)

Using (2.13), (2.12) becomes

1 € . . | jrfl

— 4 ———(sin{2n{ B (1) + x:}) — sin (21 +— | —cos(2r{B.(s) +x:}) dB-(5). (2.14
2= { - 5k sin (20{8:(0) + x2) s 2mx) |+ [ S cos (20(Ba(9) + x2) dBa(s). (214)
The first term goes to zero almost surely, as t — oo, while the average quadratic variation of the
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stochastic integral is

.r

J cos (2n{B,(s) + x;}) d (2.15)
0
The last expression converges in probability to
C[: 2 ':'[:I
i 2(2ny) dy = —=, 2.16
i’ J{n.[]ms{ Ty) dy 2= ( )

in view of the fact that 1:031(2::.1’3{5}) = cos*(2nX> (5)) (where ¥ = ymod 1), and the diffusion X.(s)
(Brownian motion on the unit circle) is a Markov process which has the uniform distribution as its
unique invariant probability, and which satisfies Doeblin's condition. It then follows from the
martingale central limit theorem, applied to the martingale {(c, ;'::2 Jo cos (2nX;(s)) dB;(s) : ¢ = 0},
that the second term in (2.14) converges in distribution to N (0, i /2n%). Since B,(1)/+/7 is N{0,1)
and is independent of {B,(s) : 52 0}, (2.3) follows.

Case (i ): Since ¢~ faz = 1'% in this case, it follows from the calculations in case (i) that

Wlﬂ ¢y sin (2nX5(5)) ds — 0 in probability. (2.17)
Hence it is Enough to consider
e J cycos (2nX5(s)/a) ds = 2;‘ J cos (2n{B.(s)/a + x;/a}) ds. {2.18)

Now {Ba(s)/a:s = 0} L {Bs(s/a*) : s = 0}, where £ denotes equality in distribution. Therefore,
(2.18) is equal in distribution to

-f j cos (2n{By(s/a” ]'""T*fiﬂ}]'M—TEJ;.GZWS(‘?“{B’{ :"i"{;;})d‘;l

L] tfa® : ' '
e — cos 2n{By(s" )} ds', 2.19
) coslan(i(s) @19
where =~ indicates here, and elsewhere, that the difference between the two sides of the relation goes
to zero in probability or pointwise. Now by a Taylor expansion,

I r
H%L £ cos (2nB;(5)/a) dsi%jﬂ cos (2nBy(s/a’)) ds

& :.-'a':
_ ;‘;?‘;J j cos (2nBs(s')) ds”
0
(.‘2{]'2 tja? i
=-'1;’TL (1-2mBi(s') + O(Bi(s"))) ds’

o] 2c4 T:: /a® 5 1 t/a? - ) .
== T Bi(s"ds'+ 0 —J s'ds' ). 2.20
t/a®  (1fa?)? .L 2(5) F([tfaz}z 0 ) sl
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Now ‘
;J”_[sffds' = 0(t/a®) — 0,
(t/a*)* Jo '
s0 that we need to consider, apart from the non-random first term in (2.20), only the second term.
But, again by Brownian scaling, for all positive 4 one has

| A ] d ! ]
F] Ej{s’}d.r’=J B3 (1) ds. (2.21)
Note that {(1/VA)Ba(s') : 5" 2 0} £ {By(s'/A) : s' > 0}. Finally, B, (1)/(¢*/a’) = 0,(1).

Case (iii): Here, once again from the calculations in case (i), the term in (2.2) involving
sin (27X, (s)) may be neglected. since ¢ 3 t'/>. The other term may be expressed as

11 17
}—J ¢y cos (2nX5(s)/a) ds = }—-[ c2¢08 (2nBa(s)/a) ds
0 0

' 2 prja’
é%j ¢y cos (2nBy(s/a’)) ds = I-If—j cacos(2nBs(s')) ds’
0 0

&
- %J c2c0s (2nBy(s")) ds’. (2.22)
1]

Since B;(1)/1 = 6,(1), (2.5) is proved.
Case (iv): As above, because of the large scaling factor a+/1, the only term that needs to be
considered is

; I 11
ﬂLﬁL 3 cos (2mX5(s) fa) ds = mﬂj. 3 = " Xs(5)) ds (2.23)
where
LF"(y) = eacos (2my/a), (2.24)

50 that one may take

(2mcyfa). (2.25)

f(3) =Esin2ny/a), S (y) =

By 1té6"s lemma. (2.23) becomes

1 L
avi {f (Xa(1) —F(X:(0)) - Lf (X2(5)) ‘”1“3'}

= aLwﬁ ( f‘m ){cos (2nX5(1)/a) — cos (2nxs/a)}

L{J’c_ sin (2nXa(s)/a) dBa(s)

Cy

~ (- ?) ?J sin (21.Xa(s)/a) dBa(s). (2.26)
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The average quadratic variation of the second integral is

i 1 1
] sint(onBy(0) o)) as £ [ si'(an( 8 (5) +2) s
tlo tJo as a

]. I'."a': T I .Tz .
=Fj sin (211{33{3 }+:) ds’. (2.27)

Since the Brownian motion I:EII:.S )+ x;/a)mod] on the unit circle is ergodic and satisfies
Doeblin’s condition, and since t/a” — oo, the last expression in (2.27) converges in probability
(uniformly with respect to x;) to the phase average

J n’(2ry) dy =
[0.1)

The proof of (2.6) is now complete by (2.26)—(2.28) and the martingale central limit theorem. [

(2.28)

I‘-Jl'—

Remark 2.4

One may avoid I16’s lemma in these and several other cases in this paper by using the fact that the
normalized integral ¢ S jg g(U,) ds of a function g on the state space of an ergodic Markov process
U, w:th invariant probability = and infinitesimal generator A on L*(x), is asymptotically normal
N(0,5%), provided g is in the range of A. Here o = —2(f.g). where f satisfies Af =g
(Bhattacharya and Waymire 1990, p. 513; or Bhattacharva 1982).

Example 2

Case (i): First note that

El— J {sin (2nX5(s)/a) —sin (2r(x; + 58)/a) }da‘

a

M ge e m
J E|Bs(s)/a|ds < ﬂLJ ds—G(a) —0. (2.29)
Thus

v“"_
{ (t)—x;—cpt — 2 J‘: sim (27(xs +sé]|fa]|}ds

e

[

| ;
—¢ | sin(2rX5(s)) ds +—By(¢
e [ sin @ (9) ds + 228,00
| ; i 1

=— sin (2rX; ds + — B (1). 2.
e |, sin@ria(9) ds+ 8100 (2.30)
Here X,(s) = (Bs(5s) + x; +sé)mod1 is a diffusion on the circle whose generator is ]d‘;‘dx
Therefore, by Remark 2.4, the last normalized integral is asymptotically N(0,a?), where, writing
g{x) = sin (2nx). one has

-2(f.g), (2.31)
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S being a solution of the equation Af =g, i.e.

1f"(x) + &f'(x) = sin (2nx). (2.32)
By integration one obtains
oy 8 . meos (2nx)
S(x) —m(m (2x) ‘f)
_ 8 cos (2rx)  sin(2mx)
flx) = a1+n2( m 2% ) (2.33)

The invariant measure on [0, 1) is again the uniform distribution, so that a direct integration vields

- T % A 1
= 2~L&.l] fgalde= o (46) 28 +n) et

From (2.30) assertion (2.8) follows.

Remark 2.5

The centring by [y ¢; sin (2m(x; + 56) /a) ds takes into account the non-zero mean of X;(s). If we
centred by c;rsin (2mx;/a), as in Example 1(i), then the normal convergence would hold in the
narrower region | < t < a”'>.

Case (ii}: It turns out in this case that no term on the right-hand side of the expression
A1) —xy — et

= = :—-@ L {e; sin (2nX(s)) + ¢; sin (2nX5(5)/a)} ds + B;g:'

can be neglected. To see clearly the role of time-scale we use Itd’s lemma here to write the
normalized Riemann integral above as

(2.35)

JG0) -/x:(0) 17,
HEOL ) ay) (236)
where [ is a solution of
1f"(x} + 81 "(x) = ¢; sin (2rx) + 3 sin (2nx/a). (2.37)

On integration, as in case (i), we get

fi(x) = az—c_f—nz {sin (2nx) - % cos {21:::}}

caab . s .
e {a sin (2mx/a) — 5 cos [zma}} = I(x) + L(x). (2.38)
say, and
. e [cos(2nx) ___sin{er.r}} B caad a_1 @ ik
fix) = :5:_'_12{ = T G T zncos{znx;’a]+2651n[21~c,a; §

(2.39)
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Since 1 > a°, the first term in (2.36) goes to zero in probability (uniformly in x = (x;.x;) = X(0)).
The quadratic variation of the stochastic integral is given by

J! I2{X,(s)} ds + J!.rf{,n(s}} drt zjﬂr. (X3(5)} b {Xa(s)} ds. (2.40)
1] [}] 0

Under case (i) it was shown that time average of the first term in (2.40) converges in probability to
2 PR
220687 + 7).
Next,

L 1(] eca’t . cynha :
- ks = - e e 2 - A4
: L I {Xa(s)}ds : L{nz P sin (2rnX5(s5)/a) e 7 R {2:1)(_{5},-’;:)} ds.  (2.41)

The second integral is of the order O(1/a) and goes to zero. Hence

5
1 5

_Jd!f (X, (s)) ds = (é—) Hﬂ sin?(2nX5(s)/a) ds

I lo
5 £ 2 2 # &
4 (;) Hﬂ sin? (21:(3;{5;’:1') e :S )) ds

el

- (L) “TEJ”E sin® (2n(Ba(s') + =2 + as'8) ) s'. (2.42)

(]

&2 0

Since the Brownian motion (B;(s') + y)mod 1 on the unit circle has a transition probability
density which approaches equilibrium (i.e. the uniform) density exponentially fast in L'-norm,
uniformly with respect to the initial state, it follows that the time average in (2.42) (recall :;’az — 00)
approaches the equilibrium average, namely,

J_ sin®(2xy) dy =1 (2.43)
0.1 -
in probability. Therefore,
%L B {Xs(s)} ds — 32 in probability. (2.44)
It remains to consider the product term in (2.40). Clearly.,
%L LX)} a{Xa(s)} ds %L B{Xa(5)} S sin (20Xs(s)/a) ds
= é—% G—) L{sm (2nXs(s)) —g cos l:Ean{s]l]} sin (2nX,(s)/a) ds. (2.45)

Now tl'n._aj stochastic process {X.(s5)/a = (B,y(s) + x; + 56 ) /a : 5 = 0} has the same distribution as
{Bs(s/a*) + (xs + s6)/a : s = 0}. Therefore, by the time change s' = s/a°, the average time integral
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in {2.45) (as a stochastic process for 1 = 0) has the same distribution as
2 ptiat
HTJ {Sin (2r(aBy(s') + x2 + a’s'6)) — g cos (2n(aBs(s') + x2 +a’s'é ]}}
[
-sin(Zn(Bg{s’) +%+asr5)) ds’. (2.46)

In the integrand one may now replace everywhere B;(s") by Bs(s') = B,(s")mod | — the Brownian
motion on the unit circle. Note that in (2.45) we could only replace Bs(s) by E‘;{S‘J = B;(s)mod a,
but as @ increases toward infinity the approach of B,(s) to equilibrium on the circle 7, =
{xmoda: x € B'} is quite slow. Now if # is a bounded (uniformly in &) measurable function on
the unit circle, then, in view of the exponentially fast approach of Bs(s) to equilibrium uniformiy
with respect to the initial state, one has
T
sup E‘il h{By(s)}ds — J ki y) d_r! —0 as T — oo (2.47)
a T Jo [o.1)

Therefore. (2.46) goes to zero, and we have proved that the normalized stochastic integral in (2.36)
converges in distribution to N(0. (¢f /2(8* + =%)) + (¢3/26%)). Hence the right-hand side of (2.35)
converges to the normal law appearing in (2.9).

Remark 2.6

In all cases above where normal approximation holds, the dispersivity, i.e. the asymptotic variance
of X, (¢} per unit of time, is o(r). In other words, the growth in dispersivity is sublinear in all cases. To
emphasize this point we list the dispersivities here. In Example 1. the dispersivities are O(1) in case
(i), and O(a”) = o(1) in case (iv); in case (i)' it is O(1*/a*) = o(r). In Example 2, in both cases the
dispersivity is O(1).

3. The general case 1 <t < a

Consider the Itd equation
AX(1) = {b(X(1)) + B(X(1)/a)} dt + VD dB(1), (3.1)

where (i) b, 3 are Lipschitzian vector fields (i.e. functions on ®* into B¥); (ii) @ is a scalar; (iii) D is a
k = k positive definite matrix with the positive definite square root v'D; and (iv) B(1) is a standard
k-dimensional Brownian motion independent of X(0). We wish to compare the asymptotics of X{¢)
with those of ¥(t) governed by

d¥(1) = [B{X(1)} + B(0)] dr + VD dB(1) (3.2)

when a and ¢ are large, but 7 is small compared to a. Let us, for simplicity, consider the same non-
random initial points for X(¢) and ¥(1). and express (3.1) and (3.2} in integral form:

X=x;+ J‘;{b{ﬂs}} + B{X(5)/a}] ds + VDB(1), (3.3)
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Y(1) = xo + L b{ ¥(5)} + B(0)] ds + VDB(1). (3.4)

By the Cameron-Martin-Girsanov theorem (see, for example, Friedman 1975, p. 169: Gihman and
Skorohod 1979, pp. 279, 280), if fis a real-valued bounded measurable function on B, then

E{ £(X(1))} = E{f(¥(1))} exp {Z(1,q)} (3.5)
where
2(t,0)s= || (VD) '[B(¥(5)/a} - B(0)] 4B(s) 5 [ [B(¥(5)/a} — BOITDB(¥(6)/a} - B0)] ds.
(3.6)
Therefore,
E{£(X(0)} - E{S(Y()}] = [E{S(¥(1) Hexp {Z(1,a)} — 1]|. (3.7)
It is easy to see that
E{Z(t,a)} < zEjJE{|ﬂﬂwaz}m4f;3 (L E{svts}ﬁai}ds)‘]- (3.8)

where ¢; is the LiPschitzian constant for 3( .} and o is the 3!11allest eigenvalue of D. Further,
E|¥(s)|* < 3(|xp|* + €25° + I's), where ¢ = (|| ]| . + |8(0}|)* and T is the largest eigenvalue of
D. It now follows that the right-hand side of (3.8) — 0 if

tfa®? = 0. (3.9)
Therefore, exp {Z(t,a)} — 1| — 0 in probability as i‘,r'az"s — 0. Also, writing

dZ(r,a) = V(1)-dB(1) = | ¥(1)|* dt,
one has
|

Elexp {Z(t. )} = Elexp (22(1.0)}) = E[oxp{2 [ 15)-86)— [[ 7192}
L e

(el rvams - o) oo

(e ool o )

(

f

1A

)

I i /2
E exp{{c-jrrzljnflx@.z+32+|B{3}|3]ds}:|) .

Taking 1 = »(a) = O(a*'?) as @ — >, we then obtain on any given compact set of nitial values x,

FF

E(exp {Z(¢(a). 4)})* < [c"EexD{(cf'ﬂ:JJ:m B{s)|=m}]
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By Brownian scaling, the expectation on the right equals
i 5, 70 (2
Elesp{ (e/a) [ w(a)| Bls/t@) Pas}

= E[exp{(ffﬂz}*’z':a}jc: | B{SFH:MIH

I
L E{exp(r:”' L | B{s’}l|1d5’)} < oo,

where ¢" does not depend on a. This establishes the uniform integrability of (exp {Z(¢(a),a)} :
a = 1). Hence (3.7} — 0 if (3.9) holds. Indeed, the argument shows that this latter convergence is
uniform over the class of all measurable f satisfying || /|| < 1. In other words, one has the L'-
convergence

[L. 1Patrsx0.9) = pttixo.p) 1 ay — 0. (3.10)

if (3.9) holds. Here p, and p are the transition probability densities of the diffusions X(¢) and ¥(1),
respectively,

Next, assume (v) that b is periodic. Without essential loss of generality, we will assume that the
period lattice is the standard lattice Zhie

bx+m=5b(x) vVxeRFvnecZ* (3.11)
Write
y:=ymodl = (ymodl,..., yemodl)  (y=(y1,..-.3))- (3.12)
Then
Y() = 2o+ j ' B{¥(s)} ds + 18(0) + VDB(1), (3.13)
0

where ¥(s) is a diffusion on the torus 7, := {ymodl:ye R*} (see, for example, Bhattacharya and
Waymire 1990, p. 518). Let =(x) dx denote the unique invariant probability of this diffusion. It now
follows from Bensoussan et al. (1978, Chapter 3) and Bhattacharya (1985), that

¥(1) — xg — t3(0) — 1t ¢
= —N(0,C) ast— o, (3.14)

where band C = (C;;) are given by

b= J b(x)w(x)dx = (B, bs,....5;).
[0,17%

= J‘u l_é{grad w(x) — 1} D{grad ¥(x) — I} "n(x) dx. (3.15)

Here ¢ = (v, ..., Uy ), grad ¢ is the & x k matrix whose ith row is grad 4, ¢; being the mean-zero
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{under =) periodic solution of

1y, 208, Z{b{]+3r{'3}} bx)-b, 1<i<k (316

From (3.10) and (3.14) the following result is obtained.

Theorem 3.1 (a). If b, 3 are non-constant Lipschitzian vector fields, then the B -d151ancc between
the transition probability densities p,.(7; x,¥) and p(¢; x. ) of X and F goes to zero if 1/ a*? = 0.(b).
If, in addition, b is periodic with period 1, i.e. with period lattice Z*, then

I:I} =Xy ;;ﬁ{u]' = I‘bi ixr(“_. C:I' as t — 00,8 — 00, i'l,-"az"q — 0, [3.[7}

the convergence being uniform for any compact set of initial points x;.

Remark 3.1

Note that 3 is not required to be periodic in Theorem 3.1, and « need not be an integer. Also, (3.10)
does not require & to be periodic either. Thus if b, 3 are Lipschitzian then the asymptotics of X{¢)
and ¥{(¢) are the same for | < ¢ < . Indeed, as long as (3.14) holds for some b and C. (3.17) also
holds. For example, there are central limit theorems for diffusions with almost periodic coefficients,
and for diffusions whose coefficients are ergodic random fields (Papanicolaou and Varadhan 1979;
Kozlov 1980; Bhattacharva and Ramasubramanian 1988).

Remark 3.2

The range of validity of (3.17) cannot in general be extended bevond 1 < 1 < a*"*. In Example 2(i),
in Section 2, the range is extended to 1 << t < a by resorting to a more delicate centring. As
observed in Remark 2.5, with the present centring the convergence to a Gaussian would fail in
Example 2 if ¢ is not o(a>'*). Whether one may find an appropriate centring, in the general situation
studied in this section, in order to have a valid Gaussian approximation over the range 1 < 1 < ais
not clear to us. Note that if E| ¥(s)|* = O(s), instead of O(s*), then (3.8) — 0 as t/a — 0. Thus for
the special case b = 0, 3(0) = 0. one can replace 1 = o(t**) by 1 = o(a) in Theorem 3.1.

4. The general case t > a’

Consider the It equation (3.1). Throughout this section we will assume the following:

Assumptions

1. kb 3 are continuously differentiable periodic vector fields on B* having the common period lattice
Z", 1.e.

bix+n)=b(x). PBlx+a)=08(x) vxeR:neZk (4.1)
2. The vector fields b, @ are divergence-free:
divb(x) =0 = divs(x). (4.2)
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3. B(1) is a k-dimensional standard Brownian motion and D is a positive definite & = k matrix whose
positive definite square root is denoted by +/D.
4. a is a positive integer.

We will use the notation
x:=xmoda = (xymoda, x;moda, ..., xmoda). (4.3)

For the moment, let us consider a fixed positive integer a. Then X(¢) is an ergodic Markov process
having an exponentially decaying ¢-mixing rate. In view of (4.2), its unique invariant probability is
the uniform distribution on .7,. Note that for measure-theoretic purposes, i.e. for the integration of
periodic functions, we may identify 7, with [0,a)®. It is known that X(f) is asymptotically, as
[ — oo, Gaussian (Bensoussan ef al. 1978; Bhattacharya 1985). To express the parameters of this
limiting Gaussian in terms of b, 3. D, denote by L the infinitesimal generator of X{r) on
L2([0,a)%,a " dx):

Lh(x) =5 Z D,Ja 3 24 Z{b (%) + d{xfall} (44)

P J f(x)dx. (4.5)
[o.1)%

For each j there is a unique mean-zero periodic solution ~; of the equation
Lry,(x) = by(x) + B(x/a) — b, — (4.6)

This follows from the fact that the range of A is 1= — the set of all mean-zero elements of
L*([0,a)%,a*dx) (see Bhattacharya 1982; or Bensoussan et al. 1978, Chapter 3). Write « :=
7 e » TP 7). grad<y = (grad~;,....grad ), and grad«y; = (87;/dx,,..., &y;/dx). Then, by
Ito's lv:rnn"na1

X(1) - X(0) — 1(b+ ) J B{X(s)} + B{X(s)/a} — b — B]ds + VDB(1)
= L Av{X(s)}ds + vVDB(1)
= v{X(1)} - 7{X(0)} - L grad v{X(s)} VD dB(s) + VDB(1)

= y(X{(1)) — ¥(X(0)) - L grad y{X(s)} — 1 VD dB(s). (4.7)
Dividing by /7, it now follows from the martingale central limit theorem that
1 R
X=X -5+ B)} S N(0.K), (4.8)

where N(0, K ) denotes the normal distribution with mean vector 0 and dispersion matrix K given by
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(see, for example, Bhattacharya 1985)

Ki=a"* l {grad~(x) x) — I} D{grad y(x) — I}" dx
0.a)

=a" J {grad y(x}Hegrad y(x) x)} ds+ D. (4.9)

Our goal in this article is to analyse the asymptotics of the distribution of X(7) as both rand a go to
oc. Note that K depends on a, and 7, grows as a — oo. It is, therefore, convenient to introduce the
scaled process

Y1) := X(a't)/a, (4.10)
which is governed by the stochastic differential equation
d¥(1) = alb{a¥()} + B{¥(1)} dr + VD dB(1), (4.11)

where B(1) := B(a’ !},.-’a is again a standard Brownian motion on R*. Since x — blax) + B(x) is
periodic with period 1 in each coordinate (i.e. the period lattice is Ek}, the process

Y(1) .= ¥({)mod 1 = X(a*t)/a (4.12)
is a diffusion on the torus 7. Also,
X(a’f) — X(0) — a’t(b+ B) _ ¥(t) — ¥(0) —a:(ﬁ+ﬁj
ﬂ'\-"'? B vi'

The Markov process ¥(r) on 7, has the uniform distribution (on .7,) as the unique invariant
probability. Let A, denote its infinitesimal generator.

(4.13)

k

h
Adh(x) =53 Dyt Z{b )+ B} 5 @.14)

for all periodic fi: h{x +n) = hix)¥x € R* n e Z*. For each j, let g; be the unique mean-zero
periodic solution of

A, g/(x) = bilax) + B:(x) - b, - 5. (4.15)

By Itd's lemma,

Y(r) - ¥Y(0)—at(b+ B)=a J [B{a¥(s)} + B{¥(s)} — b — Blds + VDE(1)
= aLIAﬂg{ ¥(s)}ds + vVDB(t) = g{ ¥(1)} — g{ ¥(0)} -J agrad g{ ¥(s)} dB(s) + vDB(1)
=g{¥(0)} — g{ ¥(O)} J[ﬂgradg{Y (s)} = I]v'D dB(s). (4.16)

MNote that

glx) =ylax)fa® 1<j<k (4.17)
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To proceed further, we introduce the complex Hilbert spaces H#°, H' as in Bhattacharya er al.
{1989):

HY:= {h h pcrIodic.J

h(x) dx = u.J | h(x)]*dx < ::c}.
[o,1% jo.1®

(hy o = hy(x) Ay (x) dx;

0,1}

H':= {;: ﬁEHDJ |"C’.&[.r}'53d.r{x}.
jo.1)%

1 dhy(x) 8h3 (x)
'::_.ﬁ]._ hI}i = zjﬂ]}*gﬂy" a-t_,l' 3xjr dx

0,1)* 2 ' ax; 0x;

= —(Dhy, by }o. (4.18)

where [~ denotes the complex conjugate of j' and 77 is the second-order elliptic operator

a’mxi
Dh 4.19
(x) : 2 Z I @ dx; k%)
One may express the operator A, on H' as
A, =D[l+a8,] (4.20)
where I is the identity operator and S, is the operator on H' defined by

Sah(x) :== D' [B(ax) + B(x)] - Vh(x), (4.21)
WV denoting the gradient (3/8x;,....d/8x;). Note that 5, is skew symmetric and compact (see

Bhattacharva er al. 1989). Below 7 denotes the set of all positive integers.

Lemma 4.1 There exists a positive number ¢; such that

sup |lglli<er 1<j<k (4.22)
aeZL ™

Also,
gl sslgli 1<i<k, (4.23)

where o is the smallest eigenvalue of the matrix D = (D).

Proof
First note that

(Sefs fh=0 YfeH, (4.24)
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since S, 18 skew symmetric. Therefore,
I(T+aS) £ IIF=11£11F +a*lISas 117 2 ILF115. (4.25)
Mow one may express (4.15) as
(I1+aS,)g =D '[bjlax) — b + G;(x) - 3. (4.26)
By (4.25), (4£.26) and (4.18),
g1 < 101+ aSa)gllF = 1D [bla-) — b+ 8 — Bl
= (Bla-) =B+ 8 — B, —D'byla-) = b+ 8 — Bl (4.27)

On H" the largest eigenvalue of =D~ is at most (2n°a) ', Hence

g1} < 5= 18as) = &+ 8- 313
s e =2
Eﬁ[|£’;‘|:'3'}_bj|in+||*%—.%||u]
1 T - .
5 (=53 +118 = Bil§] =i (4.28)

say. Let ¢; = max {¢); : 1 < < k}. To prove (4.23), note that

llgl} = (-Dgj.g)o —Zzzr Dyjrminge | gy(m)]*

L
22mlay  |n?||gn)|* 2 27 gllc. (4.29)
m=l
O
One consequence of (4.22) is that the term ( g( ¥(1)) — g(¥(0)))/v7in (4.16) may be neglected. To

see this assume, for the sake of simplicity, that ¥(0) has the umfbrrn distribution. Then ¥{7),7 = 0,is
stationary and

2 k
E| 2 e 70} - (¥ = Y -Elg (¥} - g {¥O)} |
J=l
{Z—hg; u_jnk:!-if;. (4.30)

In order to prove the asymptotic normality of ¥(t) we will need an estimate of the rate of
convergence of the distribution of ¥(r), starting from an arbitrary state, to equilibrium. Let
po(t:x,y) denote the transition probability density of ¥. The following lemma follows from
Proposition 4.3 below, which is an extension of a result from Fill (1991} to continuous-parameter
Markov processes.
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Lemma 4.2 One has

Lm* |Balt;x,9) = 1|dy < ¢’ exp{-2nar}  ¥t>0,x€[0,1)% (4.31)
where a is the smallest eigenvalue of D = (D;;), and ¢' is a constant which does not depend on a.

Remark 4.1 .
Since X(¢) = a¥(t/a"), (4.31) is equivalent to the inequality

J_D Baltsxy) —a~¥|dy < 'exp(-2n*at/a®)  ¥i>0,x€[0,a)",
where p, is the transition probability density of X.

To state the proposition from which Lemma 4.2 follows, consider a continuous-parameter
Markov process {U(1) : t = 0} on a metric space M, which has a transition probability density
u(t; x, y) with respect to some o-finite measure » on (the Borel o-field of ) M. Suppose the process
has an invariant probability with density  (with respect to /) such that the Markov process with this
initial (invariant) distribution is ergodic. Define the transition probability density v(z: x, v) for the
‘time-reversed’ process by

vt x,¥) = %u[!:y. x). (4.32)
It is simple to check that v, like u, also has 7 as an invariant probability density. Let T, T, denote the
transition operators with kernels u, v, respectively, and let A, A denote the infinitesimal generators
of these semigroups of operators on L*( M, = dv). Define B to be the closed operator determined by

Bf=}(A+A)f VfeD,nDy, (4.33)

where, for an operator C on L*, D¢ denotes the domain of C. We assume D, N Dj is dense in L%,
Mote that B is self-adjoint. Denote by R,.r > 0, the semigroup of operators generated by B.

Proposition 4.3 Suppose B has a discrete spectrum A =0> -3 2 —A; = —A; 2 ..., O beinga
simple eigenvalue and each eigenvalue having finite multiplicity. Then for every initial distribution
with density n, the density 5, of U(1) satisfies the inequality

. x2 1/2
]I n(¥) =m(y)|v{dy) <e “"(Fm—}%lvtdﬂ) : (4.34)

Proof
Let 1.¢.9,¢5,... be a complete orthonormal sequence corresponding to the eigenvalues
0 ody > =Ny > —ha 2o € LY M, w dy) and [ die =0, then R, has the eigenfunction
expansion

Ry =Y e ™t ¢,)0n, (4.35)

n=]
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where {,} denotes the inner product on L*(M, = dv). Also, write || - || for the L*-norm. Now let
. n{x)
ha(x) = 4=—= — 1. 4,36
() = 51, (4.36)

assuming vy, £ L%, By Trotter's product formula (see Ethier and Kurz 1986, p. 33) one has, for every
¢ € L*(M, = dv),

Ry = im (T, Topn)) o = lim oo, (4.37)
J—ao : J—on
where S; := T3, T,2,. Fix t > 0, and write
(e} . n-:m:- { L';" .
o y) = ﬂm.',-'l.l'[}-:lrwm[.f]' e ) e} 0=m<2j HBE}

Then p'" = 5.n'¥! =1, and

3

r}[m]l:}_] =|n '-'”_]'|'_¥:IM|:E,'"?J-'I x, ¥ividx)

=4 n[’”_]:{x]ltll[:,.-’zj;y,:c]%p{dx}.
() : = By o
Ul V) = - 1 v(t/2f; v, %) v(dx) = Ty ™ V(). (4.39)
Thus if a; denotes the norm of §; on 17, one has
1112 =1 Ty ™ V11 = {00, 0
<g|l¢"V|? m=12,...,2j (4.40)

lterating, one gets

J{ﬂrl:.l"] = ﬂ-{.}}'}_ v(dy) = || T.__.:J{Z."] ” 2 < ﬂ'-:j I {T}II:_‘F:I = ?T(J‘]}' v(dy). (4.41)
[ ¥) ? wl v}

MNow af and exp {— At} are the norms of S;" and R,, respectively, on 1. Since the latter are self-

adjoint, it is not difficult to check using (4.37) that a/ — exp {—A,¢} as j — oc. For this use the fact

that for a self-adjeint operator € on a Hilbert space H having a non-negative spectrum,

|C|| =sup{{Cy pie e H|| || =1} Relation (441} now implies

el

J (7}:( .]-'11-[_;;-{.-1":':'_ f/td}"J E E—IJ-H‘ I (ﬂ( .1'}“-;1:{ .1":':'_ i«’[d}':l. (442}
Now use Cauchy—Schwarz to get
Jim = 79 1vtae) = [HEOZZI /ooty
ol 12
< (JM_;T@ v{dxll) : (4.43)
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Proof of Lemma 4.2

To apply Proposition 4.3 to our problem of interest, let p,t:x,¥), po(t;x,y) and p,(¢:x,y) denote
the transition probability densities of X(t), X(¢) and ¥(r), respectively. Since X(1) (being governed
by the It6 equation (3.1) and having the infinitesimal generator L in (4.4)) has a drift which is
uniformly (with respect to a) bounded, as are its first-order derivatives, it follows from the
Cameron-Martin-Girsanov theorem, or from standard estimates in partial differential equations
(see, for example, Aronson 1967) that there exist positive constants ¢, ¢’ independent of a, such that

pallix,y) <c'exp{—c|lx—y|’) vxyeR" (4.44)
It then follows that

sup a*p,(1:x,5) = sup a* Z pollix,y+an) =c" < o,
aeE+ neEF
zps[fa)
sup  fall/a*:x,p) < c”. (4.45)
agEH
x pe[i1)*
Now take M =.;=[0,1)* ¥(r)=U(r) in Proposition 4.3. Then u(r:x,y)=p,(t:x.y) =
v{t;y,x), m(y)=1, and A=A, =D+ (bla-)+8(-)):V, A=D—a (Bla-)+B3(-))-V (in
view of (4.2)), so that

-

S 1 a*
HA=-A =D=- i 4.4
A+A)=D 2; Dy, 5, % (4.46)

—Ai= sup  (f,Df )y

£ le=1,011
= sup {r;—zf:lz|.f"'r_nnllzﬂ,frw}
[[f lla=1.441 =l Fuf "
< —2r’a, (4.47)

o being the smallest eigenvalue of the matrix D). Now take r — 1/ a* for t in Proposition 4.3, and let
n(y) be p.(1/a"; x,y). Then _ .
{7?[ .!'1] = "‘rl{ -.1’1}]' Ul:d_]?}
(¥}

= [ h/eten - 1¥ e

< (e’ =17 =¢l,

say, by (4.45). Therefore, (4.34) provides the bound

up = Altixy) ~11ds
Jioiy*

en1)*r
< cexp {—2rr2r:rl[r - 1_,-’.:1:}]

< ¢'exp(—2rtat), t>1/a’, (4.48)
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where we have taken c;" = cexp (2na). To extend inequality (4.48) from 1 = 1/a® to t > 0 take
¢’ = max {e,2} exp (2n°a). Finally, since ¥(t) = X(a"t)/a, (4.31) follows from (4.48). O

The following corollary to Lemma 4.2 is fairly straightforward. To state it, let E, denote
expectation when ¥(0) = x, and E that under the uniform initial distribution. Also, let var,, cov,
denote variance and covariance under E,, while for those under E the subscript x will be dropped.
Let T, denote the transition operator

(7.1 )(x) = EL AV}, (4.49)

We will denote the ‘supremum norm’ as usual by ||+ || ., and 1 denotes expectation on [0, 1 }* under
Lebesgue measure.

Corollary 4.4 There exist positive constants ¢;(i = 1,2.3.4.5,6) independent of a such that

NTof =Fllse € &1 || exp (=207 t); (4.50)

|covs(AFEL e FONI < sl f lnllgllexp{=2a(t =)}  fort>s;  (451)
|cove( S {F(s)} g{F()) — cov (F{F9)}e{FON] € &1/ s llg lexp(~2%ar)  for 12 5:
(4.52)

“%(J;fsfi+llda-—ff)‘i < call 1oV (4.53)

1{ | cov, ( J!f{ ¥(s)} ds, J'J g{ ¥(s)} d:f) — cov ( Jr_f{ ¥(s)} ds, J.:E{ ﬂEj}dSJ EL

] ] 0 0

<es|[fll<llglle/t; (4.54)

H cm-( J:f{ ¥(s)} ds. Lig{ ¥is)} ds) - Lx (f—F)T.g—8) du

- |, = Fr =7 au| < cell Fllelllfr (4.5

Proof
Inequality (4.50) is an immediate consequence of Lemma 4.2.
To derive (4.51), write

|cov.( f{¥in)} gl V(0D | = | B[ A{¥(s)} — T F(x)][T s g{ ¥(s)} - 2101 (4.56)
Now apply (4.30) to the second factor on the right-hand side.

In order to obtain (4.52), proceed from the expression within modulus bars on the right-hand side
of (4.56) to get

cova( f{¥(s)}. 2{ ¥(N}) - E(LA¥(5)} - F1[Trag{ ¥(5)} — 2])
< e3)| /|| x |12 ||  exp (—277as) exp {=2n"a(r = 5)},

the error being caused by replacing 7, f{x) by f. Now the E, term above may be expressed as T, h(x)
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where h(y) == { f(¥) —F HT,-.g(¥) — £} so that, using (4.50),

| Th(+) — Rl < 1|11 ]| 0 exp {=20%as} < 2¢] | £ || || gl exp {—2mar}.
Since h is precisely the covariance under equilibrium, (4.52) is obtained.

Inequality (4.53) is immediate from (4.50).
To derive (4.54) write

cov, ( JI: F{¥(s)}ds, L: g{¥(s)} ds) - cuv( J:f {¥(5)}ds, J;: g{¥(s)} d.s) ‘

LrLT{covx(f{f’(s’]},g{f’[s)} ) —cov( f{F(s")}.g{ ¥(s)})} ds’ ds|

i ‘ L J, {eovslel¥s 1 AFOD = cov (o ¥}, AN} ds” ds ‘ (4.57)
In view of (4.52), the right-hand side of (4.57) is bounded by

[
263117 1 llg |l j J exp (~2ras) ds” ds
o Ja

I
= 26,11/ Il gl L SR i

< el l121)con (4.58)
from which (4.54) follows.
Finally, the ‘cov’ term in (4.55) may be expressed as

%{L:J‘: T{(f-f)T.g ~§)}duds+££ Tllg-a)|T,f —f]}duds}. (4.59)

Now, because of stationarity, il"}h =, so that

“JIJ TA(f =) (Tug —8)} duds - L (f=F)T.g—8)du

| —— - | ) | - :
=Hj ff—.f}(Tug—g;dudsl'-'_:cllufllxllgllx;LJ exp (=2n’au) du ds
i i

o
Cy 17 3 i
=5l I8l | exp(-2as) ds < cfll /Il /.

a

Corollary 4.4 paves the way for deriving central limit theorems for X(7) at time-scales ¢ % a°, by
showing that ¥(z) is weakly dependent with an exponentially decaying strong mixing rate. We still
need to find appropriate scalings under which the dispersion of the scaled X{1), or ¥(7), stabilizes
away from zero and infinity. As we shall see, the growth in the asymptotic variance of a component
of X(¢t}, or ¥{1), depends crucially on properties of the mdmdual functions 3,1 < j < k. In the first
case that we consider the asymptotic variance of X;{r) is O(a" *). while in the Secnnd caseitis O(1). In
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order to derive verifiable criteria for such growths we introduce the operator A, defined on H ! by
A, f(x) :=Df(x) +a(b+ Bx))- Vf(x)

=Dl +af] f(x). (4.60)
where § is the skew-symmetric compact operator (on H 1) defined as
Sf(x) ;=D (b+ B(x))- VS (x). (4.61)
Now let h; be the solution (in H') of
A hilx)=8(x}-58 1<j<k (4.62)

Let N denote the null space of § or, equivalently, of (5+ 8(-))-V in H'. The projection of an
element fof H' on N will be denoted by fy.

Lemma 4.5 Forall f £ H'

12
e S : . i o
(D byar) =B £l = | (by(a-) = ol < ;"”(Z |~|2e_fun}|-)

|#]|za
[ — .
i fznz{}'}uza:lfl!’- |:463.}
where o is smallest eigenvalue of D = (D;;). This implies that if ¥ C H !is relatively compact then
R 1
supl{h.[a-}—b.-,f}ul=a(-) as g — oo, {4.64)
feF 3 a

If F in (4.64) is only relatively compact in H” then the right-hand side of (4.64) is o(1).

Proof
Let f<H' One may suppose (970x{)b(x}e L[, 1)*,dx) for 1<i<k and for all
r<ky:=k/2] + 1. Then
(D' (Bila-) = b)), [ = (byla-) =By, fla=" (bila-) = &) (n) S (n) (4.65)
a=l
where

fin) = lmﬂ Flx) P05 gy, melt

By the assumption on & - ),

i n " | Bym) |
\Biim)| =) ————
23101 = 2 e
1/2 1/2
S 1
< |a| 2% | bi(m) |2
(n-m J(H) (n,='n|"'k°)
s (4.66)
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Therefore, the Fourier series

Z‘E’["} P, by(x) - E,- uniformly in x. (4.67)

ml)

In particular,

bi(ax) — b; = Zf? (m) g*mim-ex Z!;:,-{n] griaiam: x
) azl
= Z 'b‘,.(m,'{ﬂ} Ef!im-x. {468)
m=an: az=l

Hence, writing # n.d.a to indicate some coordinate of n is not divisible by a.

- 0 if |n| < a or # n.d.a,
(a) =B m=1 . (4.69)

b
( bi(nfa) otherwise.

/)
Using (4.69) in (4.65) we get
|(b;(a-) U|{Z|g{ﬂ;g

" Za

g(gulé,-{ufn,ﬁ)l (;ﬂu )

|miza " =a

< 15 llell £ 1l1/{(27%a) a},
since

ey (PSP <Y 2Dy mn  fim) R =1 £11E O

LI N
It follows from (4.16) and Lemma 4.1 that, at least under the uniform initial distribution,

{Y{r ~ Y;(0) — ar(h; + 3))} =~ — lgmdg,{r (s)}- VD dB(s). (4.70)

-

The stochastic integral on the right is a martingale whose squared wvariation, averaged over
time, is

%J;‘gradg}{f'[.sj}+ﬂgradgf{ ¥(s)} ds. (4.71)
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The expected value of (4.71), under equilibrium, is (see (4.18))

J_.ﬂ grad g;( ) - Dgrad gy y) dy = 2|/ g|I1. (4.72)
It is, therefore, important m. k.now how || gJ.||? behaves as @ — oc.

Lemma 4.6 As g — o-c,l|g.||f — (DN} = 3w ||3. where fy denotes the projection of an
element f of H, onto the null space N of the operator (b+3(:))-V or, equivalently, of
S=DNb+8(-))-V

Proof
Recall that S is a compact skew symmetric operator on H' and has, therefore, a spectral
representation (see Bhattacharya er al. 1989)

SF=3"irx(f.¢)19r (4.73)
r=1

where A,.r > 1, is a sequence of non-zero real numbers converging to zero, and ¢,.r = l,is a
sequence of orthonormal eigenfunctions of 5:

E"{;'r =i\, ¢, r=1. (4.74)
The sequence {¢, : r = 1} is complete in N —. Note that an arbitrary f € # ! has the representation

f=iv+ Z{f- G )1 O (4.75)

re=]

from which (4.73) follows, using (4.74). B B
We now show that the solution ki to the equation A,k = §(-)— 5; converges in H ' to
(D '[Si.-f- ) = 3 ))w (see (4.18)-(4.21). (4.60)-(4.62) to recall notation). One has by definition,

(1+aS)hy =D (B)(-) - 5. (4.76)
so that, expanding h; and i (3;(+)— 3;), as in (4.75), we get

o
hi= (DB )= Fn+
F=

{
]|+i|f.l'/1‘;,.l'

Therefore,
;= (DB ) = Bwlli = Z Trae' D "B(-) - 8o

— 0 as a — oo, (4.77)
Next we compare g; and h;. Writing
(I+aS,)g =D '(b{a-)} - &+ () - B), (4.78)
and comparing it with (4.76), one gets

(I+aS,) (g —h) =D "(bla-) = b)) —aD ' (bla-) — b)- V. (4.79)
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Expanding g; — /; in eigenfunctions (see (4.75)), (4.79) becomes

(g — k) = (D7 (byla-) — b))y —a(D~' (bla-) — B) - Vh)y, (4.80)
and ;
g—=h.oh = IM D\ (bi(a-) - b;). o, )y
1+m (D '(bla-)—B)-Vh). 0}, r=12.... (4.81)

The first term on the right is bounded by (1 + azkf}""lr," a, by Lemma 4.5. For the second term,
write
(D' (bla-) — b)- Vi, 0,)1 = ((ba-) — b)- Vhy, 0, )q

k k .
- _ B
=2 (am e -Banho) =3 (ba) =bi5E). @8
=1 ] =l dx fo
Since {h; (do,/0x;):a=1,2,...} is relatively compact in H® by Lemma 4.1, it follows from
Lemma 4.5 that the quantity in (4.82) is o(1) as @ — oc. Hence
{g;i—hnd )y —0 asg—oo,r=12,.... (4.83)
Since {g;:a=1.2,...}is H'-bounded by Lemma 4.1, and {k; : @ = 1,2,...} is also H '-bounded
by (4.77), {gi—h;:a=1,2,...}is rclathly weakly compact in Hl Thcrcfc:rc (4.83) implies that

(g — h;) v converges to 0 weakly in H'. Since S, is skew symmetric one may write
| g |1 = (g (I1+aS;)g;}h = gD '[ ;": a:)— b;'" Gi(-) - 5,.']':'1
~ (gD (8(+) - B
={g—h D (B(-) =B + (A D (G() - B
= (g = D7 (G(-) = B + 1P TG() = B)Iw I3
~ (g —h)x. DG+ ) = B + (DB (+) = B)wlIi, (4.84)
the symbol =~ indicating that the difference between the two sides goes to zero. The first

approximation in (4.584) uses Lemma 4.5, the second uses (4.77), wh1le the last approximation
follows from the fact that (g, — };) v~ converges to zero weakly in H'. Next, using (4.80).

(g =h)n. DB+ ) = B

= (D '(byla-) = b)) (D(B(+) = B))w)
—a(D"'(bla-) - b)-Vh;, (D~ (5(-) - B)In )y
~a{(bla+) = 8)- Vh (D7 (B(+) = F)v o

kg ) _ )
= —aZ(E{wa-} _ B}, (D (B(-) - J,-m)“

= az<b_7|:a-} - b, b %{D" (G(+) — ;1]}__.,.>“. (4.85)
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Since #7 — (D' (Bi(+) — 3;))x in H' as a — oo, and (8/8x,)(D ' (5(-) - j‘j]\- c H', it follows
that {h; (8/8x,)(D ]{;3 (+)= By :a=1,2,...} is relatively compact in H . Indeed, this follows
from the general inequality

(lellollvll + Nullillvlle) wveH. (4.86)

|} <=
1 [a ]

Here I is the largest eigenvalue of the matrix D, and o is the smallest. Thus invoking Lemma 4.5
again we see that the last expression in (4.85) is o(1). The conclusion of the lemma now follows from

(4.84). a
We are now ready to prove one of the main results of this paper.

Theorem 4.7 In addition to Assumptions 1—4 stated at the beginning of this section, assume that
for some p. 1 < p < k, the functions

{{'D'] (8 = Ej})_\- 1 = j < p} are linearly independent in & % (4.87)

where fy; denotes the projection of / on the null space N of DY b+ B)-V. Then, if r » a’, ie.

-—t-; — oo as a — oo, {4.88)
]
one has, uniformly with respect to all initial states x = X(0), the following convergence for the
vector of the first p coordinates of the solution of the Ité equation (3.1):

| - .
{0 -5 -6+ ) 1< <o} ENOE). (439)

where L, = (&) is given by
o= (D70 = B (PG = B)wh + (DB = B (DB =B 12hi<p
(4.90)

Proaf
We need to prove that an arbitrary linear combination with coefficients £, of the random vari-
ables on the left-hand side of (4.89) converges in law to a normal distribution with mean
zero and variance Z «_,. To avoid messier notation, we will prove this convergence for the
specialcase §; = 1,§ = 'U' for 1 < i+ j< p. The general case is entirely analogous. Thus we wish to
prove

|

2
il

(X)(a*t) — x) — a*t(b; + 5})) EN@.21(P7'(8 - B)xlI) (4.91)

=

a8

t— 00,8 — 20 (4.92)
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The left-hand side of (4.91) equals (with ¥(0) = x/a)

] : S
(0 = 1(0) - ar(§; + )

%J [bi{a¥(s)} + 3,{ ¥(5)} — b; —31d¢_ﬂ%ﬂ_ﬂ'
%J bi{a¥(s)} + G{¥(s)} — b —Bjds
]?I ok (4.93)

say. The &pprﬂnmaﬂon ‘=" (indicating that the difference goes to zero in probability) follows from
the fact that Bla’r)/a’/1= £ B(1)/a. Now, by Corollary 4.4 (inequality (4.53)), the last expression in
(4.93) differs by a negligible quantity O(1//7) from

%j;[hj{a?fﬁj} + 8{¥(s)} — Eyulb{a¥(s)} + 3{¥(s)}]) ds

16 . ”
=ﬁjﬂrf{r{s)} ~ Equl F{¥(5))]) ds. (4.94)
say. Write
Vywi= [ FOFO) - Bl (P0M) s r=12,.... (4.95)

We need to prove that, for every sequ&ncc of positive integers {2(a) : a = 1,2,...} going to infinity,

N(0,2|(D7NE - 8wl D). (4.96)

!_'/
s—m Z
Now the variance under equilibrium of the last expression in (4.94) is

o 3 L — o |, | -l
Fj.l:l Jﬂ LfTu'.'lrlIdHZE'L} frk_,lr‘duz—zltga.!ﬁﬂgj}0=2”gj:|r |:4.-9?}

by Corollary 4.4 ([nequdliw (4.55)) and Bhattacharya (1982) (see Remark 2.4); the error of
approximation ‘> is O(1/t) uniformly in a, as r — o0. By inequality (4.54) of Corollary 4.4, the
variance of (4. 94} is estimated by 2||g||7, also with an error O(1/7). By Lemma 4.6,
2||g_,||] 2P (8 — 31w |7 > 0. The proof of (4.96) may now be completed by the classical
method, using characteristm functions and forming approximately independent blocks omitting
smaller blocks in between (see the proof of Theorem 4.9 below). A better proof follows from
Theorem (2.10) of Gotze and Hipp (1983) (see also Lahiri 1993), which provides refinements of the
CLT. O

Remark 4.2
The requirement (4.87) holds if {3 — 5, : 1 < < p} are linearly independent elements of the null
space of (b + 3)-V (see Bhattacharya er a/. 1989, Lemma 3.1).
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Remark 4.3

All the hypotheses of Theorem 4.7 are satisfied by Example 1 in Section 2, for p = 1. Here k = 2,
b(x) = (cp + ¢ sin (2mx;), 0), Blx) = (&2 ,cos (21x,),0),D =L Note that b= (g.0).3; = (0,0},

H(x) — 3, = c3cos (2nx;) s anmhilated by (b+8(x))-V= {cu+c2cos{"m-|}ﬁ fx;. The

asymptotic variance, given by (4.89) and (4.90), is

3 cos (2mx;
— 2{cos (2mx;), D~ {ez cos (2mx3)} o = —4ﬁ'£<':05|:2rtx2}._——-——;ﬂ1 -:'>
0
¢ o2
2 3
== n—'l{cos (215}, cos (2 ) )g = 2_1;2 (4.98)

which accords with (2.6).
To prove the next main result we will need the following lemma.

Lemma 4.8 If D ]{,'_".TJ,-{ -] = ;) belongs to the range of S=D7'(b+8(:))-V, then
sup{a’||gllf:a=1,2,...} <cc. (4.99)
FProof
Let p € H' be such that D' (3,(-) — 3)) = Sp. Then, by (4.63),
|| g7 = (&, (1+aSa)g)
= (g, D' (byla-) —B)h + (g, D7 (5(+) = B

5f:|£’.-‘|||i|f’.r||ufﬂ+':EJJEP'}'J- (4.1007}
MNow write

{g}.gp} = {_g_,h. Sa'p:]'l == {gj‘ {SE =2 g:lp}l
= —(S,8;.p)1 — (g, D" (bla") — 8)- Vp)y
i, B i = = i = 1 i y
=——{-g+D7'(Ba-) b)) +D "(8(+) ~ B).ph — (8D (Bla-) — B)-Vp)

1 l = e ; . s -
=E{£j-.P}1 —E{P bi(a) — b)), o) —E{Sﬁhﬁ'}] —{g, D "(bla-)—b)-Vp),

; 1 i
<cllg ||,fa+a(F) —o+¢"|| gl /a (4,101

For the last inequality we have used Lemma 4.5, inequality (4.86) and the fact that dp/dx, € H L
r= 1200k 0 08

|{g.D ' (bla-) —B)-Vp}, =

k
<§I.',Z[br(a':| b }§f> ‘

re=]

<c’llgllh/e (4.102)
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Combining (4.100) and (4.101) we get
| ag;||f < " |lag;||; + o(1).
from which (4.99) follows. O

Theorem 4.9 below is stated somewhat differently from Theorem 4.7, in view of the fact that we
are unable to assert convergence of a’ |l g |i|2 as @ — occ. That is, we do not have an analogue of
Lemma 4.6. The result is, therefore, best stated as a normal approximation theorem rather than a
convergence theorem. For this introduce the following distance p on the space P(R*) of all
probability measures on (the Borel o-field of ) R*, Let C denote the class of all Borel measurable
convex subsets of R¥. Define

p(Q1.@2) ==sup{| Q\(C) - @x(C)|: C€C},  for 01,0, € P(RY). (4.103)
For the statement of the theorem we will write Q(a, 1) for the distribution of the random vector

{":Tg{l}f.ﬂ —X(0)—thj+3)}:p+1j< k}.

Theorem 4.9 Suppose in the hypothesis of Theorem 4.7 we replace (4.87) by the requirement that
forsomep O0<p<k-—I,

{IJ'L{,S} — 3):p+1<j <k} are linearly independent elements of the range of D' (b + 3)- V.

Then, uniformly with respect to all initial states X{0) = x. 109
p(@(a.7), N(0,E;)) — 0, (4.105)

provided 1 3 a°; here E; = (ni;) is a (k = p) x (k — p) matrix whose elements are given by
nij = {agag; ) + (agagih + Dy, p+1<ij<k (4.106)

and whose eigenvalues are bounded away from zero and infinity.

Proof
As in the case of the proof of Theorem 4.7, we will prove the appropriate convergence for one
coordinate of X, say X, instead of proving it for an arbitrary linear combination of X;s. since the
proof for the latter case is entirely analogous to that for X).

Define the random variables

V,=V,,=X(r) = X;(r—1) — (b; + 5;) — E(X;(r) — X;(r — 1) — b; — 3, X(0) = x)
. jr_]{b;ti’(s}) + B;(X(s)/a) — T,(b; + B)(+ /a))(x)} ds + (VD),(B(r) — B(r— 1))

= L{f'i*’i’{-*ﬂ — T, f(x)}ds + (VD),(B(r) - B(r - 1)), (4.107)

say. Here T, is the transition operator for X[ - ),
(T, f)(x) = E(S(X(s))| X(0) = x), (4.108)
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and (v/D); denotes the jth row of +/D. We wish to prove asymptotic normality (in the sense of
(4.105)) of

1 wla) . ) B N
Vela) (L [b{X(s)} + 8{X(s)/a} — b; = 3} ds + {xf'ﬁlljﬂ{tﬁ[a_‘.'})
wla)
Z{X gy ey TS
b e muﬁ““e “‘f "‘-“—‘E*‘-‘TS (a) such that
s = 9 o0 (4.110)

a-

First note that. in view of Remark 4.1, Corollary 4.4 is easily modified for functions of X(s). If we
continue to denote by E,, var,. cov, the expectation, variance and covariance when the initial value
15 X{L‘Il] = x (recall that the ethbnum average [ is with respect to the uniform distribution on
[0,a)*), and replace T, by T,, then Corollary 4.4 may be stated for functions of X, instead of ¥, by
simply n:placmg the time variables 1.7 — 5, on the right-hand sides of the inequalities (4.50)—(4.5353)
by t/a’, (1 — 5)/a’, respectively. In particular, it follows from the modified version of (4.53) that the
asymptotic normality of (4.109) is equivalent to that of

gl

T

i.e. the difference between (4.109) and (4.111) goes to zero if (4.110) holds. Here and elsewhere in this
proof, unless stated otherwise, we consider the initial state fixed at x.
Mext, by Itd’s lemma one obtains (4.7), so that the quantity (4.109) may be expressed as
X(1) - X,(0) - ;= §; = % X(pla)) — w(X()
v wla) wla)

(4.111)

Fia) ;
1{ J [grad v, {X(s)} — L,]v'D dB(s),
wla) 1

(4.112)

where I, is the jth row of the identity matrix L. The expected square of the first term goes to zero
uniformly with respect to the initial value X(0) = x, as @ — oc. The expected squared value of the
second term is bounded by

2
—E, (v [X{w(a)}] + 4 {X(D)}). (4.113)
r":fﬂ
Now, by (4.43), (4.17) and Lemma 4.8,
E ’\'{X }] f{! kJ‘ ,,r._EI: }d
”{ra} ! @{ﬂ:l Oa)* KR
w4 4 12 4y 2
cod 2 2 gl e e llglh
= () dr = " .Jr < i
wla) J;u.n*gJ () “Te@ T~ e
3
_Felgli g s T

&a)
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By the Markov property, El{'rf X{e(a)}]) < ci'a?|| g,||”’6 a). Thus the expected square of the
sum of the first two terms in (4.112) goes to zero umfonni}r with respect to x, as @ — =. The integral
term has the expected squared value

1 (e .
’(ﬂ]_[] 7,11 [grad il - ) - D grad i - EZ a i | (%) ds
@
1 #la) ds
ol S
1 ) . - - 5
=EJ1 (2a°[| 17 + Dy) ds = 2a°|| |1 + Dy;- fliy

The average under the integral sign for the first approximation (=) in (4.115) is with respect to the
uniform distribution on [0, aJk, By (4.45), (4.17), and Lemma 4.8,

| Ti[grad () Dgrad y(+)](»)| < ¢"a™* L » §2d(2) - D grad y(z) dz=c"a’||gllIf < el
Da

I

gc:’j 1 a@gradgjczndzgc;’*a:mih <dl, (4.116)
[0.13*

e
52;

(z) dz

where ¢).c; do not depend on a or y. Thus, from the modified version of inequality (3.50) in
Corollary 4.4 mentioned earlier, the quantity T,[ | appearing in the integrand in the second line of
(4.115) differs from the integrand on the first line by no more than ¢; exp {—2n’a(s — 1)/a’} for
some constant ¢; which does not depend on a or x. Thus the error in the first approximation is no
more than

1 [#la
—}J erexp {-2r’a(s — 1)/a’}ds <
1

&) e
J (1/2n%a) e du

wla é( )
el j 2
%—.n as @ — oo. (4.117)
The validity of the second approximation in (4.115) is obvious. Hence,
1 ]
var, v, | =242 g} + Dy, (4.118)
(V’r"ﬂ ; ) :

the difference going to zero uniformly with respect to x.
We will now prove the asymptotic normality of (4.111) by representing it approximately as the
sum of a number of nearly independent block sums. For this write

T}[HJ S |£i 4 2]
w(a) = [6""%(a)a],

o ela) o £1/8
mia) = [—I}{a}+t:.'{ﬂ]l] &% (a), (4.119)



Time-scales for Gaussian approximation

119

where [z] denotes the integer part of =, and ‘~' means that the ratio of its two sides goes to 1 (as

a — oc). Define the block sums

wia) ) wila)
Ly = Z Vi, Zy = z Veseiayiniays-- - Lmia) == Z Ve (mia)-1)(w{a) +n(a))-
r=] o] e |

The omitted block sums are

nla) mia) mia)

& = Z reda) €2 1= Z Veeastaienta)s - -+ Emia) = Z Vrsmiaksta)+(mia)=1)nia)-
r=] =1
Then
1 la) mi[a) mia)
Z,+) &
';Iiall; ua{ﬂ (Z i Z )
and

ma) mlal=1mig)=r
{z var.&, + 2 Z Z COV:EE-',.E;.;.:'}}-

mia) \?
('u’ "p{a z ) r=] ] r'=1
Applying (4.118), with n(a) in place of ¢(a), one has

mia)
Z varg, < o 28 2a% |51+ D) (@

—0

since m(a)n(a)/w(a) — 0 (and a’|| g ||7 is bounded). Also,

mig)=1 mig)=-r

(1/e@) Y. Y |cove(€, &)

r=I Fi=]

mig)=1 mia)=r

< {1/¢(a)} Z Z (var.£,) 2 (var £, )'/?

< {1/¢la)}m*(a)(2a’ || g]I] + D) n(a) — 0.
Also, by (4.118) (with y(a) in place of w(a)),

wla)

r=|

| rie(a)
)Z‘Varz '[2"" I} & 1+D i) = _(I_M)Ezﬂzllg"ll?+ﬂjj}_’u-

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)
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Finally, writing f(x) := E,exp {i€Z,/+/(a)}. and using the analogue of (4.50),

| mla) mia)-1
:E [exp{lfsznf{a H [exp{lf Z Z./ vl H Elexp {i£Z,ua)/ v/ e(a)}] ‘

mial—1
l&xp{ i€ zrfw.f-#[ﬂ}}{?'"q.ra:flif[{mlia} - 1H{e{a) + nla)} — nia)]) —_F}] ‘

r=|
< eyexp {-2nan(a)/a’}. (4.127)
In this manner one gets

mela) mia)
{cxp(laz.z /Vela HE[exp{-EZ”fxf }l) H

rm]

< ¢ymia) exp {En‘&n[a),r'az} — 0 as a — oo, {4.128)

Combining (4.122), (4.123)-(4.126), (4.128), it follows that the asymptotic distribution of
(1//e(@) T2 V,. under the initial state X{0) = x, is the same as the sum of m{a) i.i.d.
random xanables each having the same distribution as that of Z,//(a) under equilibrium.

Remark 4.4
Condition (4.104) is equivalent to {5; — 3;:p+1 <j <k} being linearly independent elements of
the range of (b+ 3): V.

Remark 4.5

It may appear, going through the proof of Theorem 4.9, that no use is made of the fact that the
smallest eigenvalue of I, is bounded by that of D from below. Since Lemma 4.8 does not assert
convergence of the matrix with elements (ag; ag;}; + (ag;.ag;); to a non-singular matrix, the
presence of D in (4.106) turns out in fact to be crucial for the validity of assertion (4.105) of the
theorem. For example, if £, converged to the matrix with all zero elements, (4.1035) would not hold
and one would not be able to derive a theorem such as Theorem 4.10 below,

Remark 4.6

In Example 2. Section 2, we have k= 2,b(x) = (¢ + ¢; sin (2nx3), 8 ), B(x) = (cz sin (2mx,),0),
D=1b=(c;.6).8=1(0,0);3(x) = 3 = ¢;sin(2rx;) belongs to the range of {brﬁ[ )V =
{co + casin (2mx,)}8/8x, + 6(8/8x,). The asymptotic variance, given by (4.106), is 2a” || g, ||T + 1,
where g, is the mean-zero periodic solution of (see (4.13))

,—I} (a;i'fgx} +3'§:[2x]) +alcg + ¢y sin (2max;) + ¢; sin (21\*2}}&3‘]:}
- a1 3
+ :‘iag][ J-—q sin (2max;) + o3 sin (2mx;). (4.129)

iy
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From this it follows that g, is a function of x; alone. Write g,(x) = f{x;). Then (4.129) becomes
LF"(x2) + abf '(x2) = ¢y sin (2maxy) + ¢; sin (2mx2),

or

flix)=

Xy «ﬁ E -
{sjn (2max,) — sl f'zﬂ'ﬂ'}'} - = : {.:z sin (2mx,) — g cos ij:xg}}.

1
a(6* + n?) & n’ + alb?

Hence, fora > 1,

1 o s
&l = Ej.iU]'{'f (x2])" doxy

3| —

cid? . cin’ c36’at e
{zafqa? P A YTy B T N e uifﬁ]f}
B ef N 3
T 4462+ n2) | 4(n? + a2

Therefore,

cf cia’
4(6%2 +n?)  4(x® + a%8?)

atllg i =

o
467 +n7)  45%
Hence the asymptotic variance is as given by (2.9).
Finally, we may combine Theorems 4.7 and 4.9 to express the asymptotic normality of X{(¢) either

in the form (4.105), or in the form of convergence in distribution to N(0,I) of an appropriate linear
transformation. Here and in the statement below 1 is the k x & identity matrix.

Theorem 4.10 Under the hypotheses of Theorems 4.7 and 4.9,

] 1/2

= 0 o
S| (X(1) — x — t(B+ 3)) 5 N(0,1), (4.130)
V1 —1/2

0 L,
provided 1 = a°, i.e. if
a— 00, 4 — 0. (4.131)
[

Proof

The method of proof of Theorem 4.9 works for an arbitrary linear combination of the coordinates
of X(). Also, since the null space and range of D' (b + 3) - ¥ are orthogonal in ' 1t Is simple to
check that the asymptotic covariance between ¢ ]-'EEI:X,-[{} - x; = t(b; + 3;)) and :""%J{}{rj =y
E{E_,+3fﬂisolla]i1‘l5#5p.p+1£_,r’-4_:k_ O
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Remark 4.7

In Examples | and 2 (in Section 2) b, 3, are constants, so that neither (4.87) nor (4.104) holds. Here
X,(#) is Gaussian (i.e. a Brownian motion) at all times, and the method of proof of Theorem 4.9 still
works for such cases. In general, one needs simply to augment the matrix I, in order to include
coordinates X, (1) for which 3, are constants.
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