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In this paper we establish the existence and uniqueness of a solution for different types of stochastic
differential equation with random initial conditions and random coefficients. The stochastic integral is
interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are
mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich
integral.
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1. Introduction

Suppose that W � fW t, t 2 [0, 1]g is a standard Wiener process. The trajectories of W do
not have bounded variation, and stochastic integrals such as

� 1
0 φs(ω) dWs(ω) cannot be

defined pathwise. A natural approach to define stochastic integrals of non-adapted processes
(Nualart and Pardoux 1988) is to take the limit in probability of

� 1
0 φs _W n

s ds, where
W n

� fW n
t , t 2 [0, 1]g is a sequence of polygonal approximations of W. This definition

generalizes the Stratonovich integral in the case of adapted processes, but it is not easy to
obtain L p estimates for this type of integral unless the integrand is a continuous
semimartingale or it has bounded variation paths.

Using the techniques of the Malliavin calculus, one can decompose the Stratonovich
integral as the sum of the Skorohod integral (the adjoint of the derivative operator) plus a
complementary term expressed in terms of the trace of the derivative operator. Furthermore
it is possible to derive a change-of-variables formula for the Skorohod and Stratonovich
integrals (Nualart and Pardoux 1988; Russo and Vallois 1993).

The Stratonovich integral follows the rules of the ordinary calculus. This property can be
used to formulate and solve stochastic differential equations in the Stratonovich sense. In
the case of a random initial condition and constant coefficients, a solution of the form
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X t � j t(X 0) can be obtained as the composition of the stochastic flow j t(x) associated
with the coefficients, with the initial condition X 0 (Millet et al. 1992). In order to show the
uniqueness of this solution, and to handle the case of a random drift, Ocone and Pardoux
(1989) have established a generalized Itô–Ventzell formula, using the techniques of the
Malliavin calculus. In the one-dimensional case this approach can be applied in connection
with Doss representation of the solution (Kohatsu-Higa and León 1997).

In this paper, by means of a direct approach, we construct a solution for the following
types of stochastic differential equation with random coefficients, and we show the
uniqueness of this solution in the class of processes that are limits of the corresponding
approximated equations.

(i) In Section 2 we discuss one-dimensional stochastic differential equations with
random initial conditions and random coefficients using the approach introduced by Doss
(1977).

(ii) Section 3 is devoted to the particular case where the diffusion coefficient is linear
but depends on the time variable.

(iii) Finally in Section 4 we consider two examples of anticipating multidimensional
Stratonovich stochastic differential equations that can be treated with our direct approach.
First we consider the case of non-random diffusion coefficient, random drift and random
initial condition. These equations have been treated by Ocone and Pardoux (1989) by the
technique of the stochastic calculus of variations. Secondly, we discuss the equations with
boundary conditions studied by Garnier (1995).

In the one-dimensional case (Sections 2 and 3) we shall suppose that the stochastic
differential equation is driven by a continuous local martingale. The proof of the main
results are based on the classical stochastic calculus and the definition of the Stratonovich
integral.

2. One-dimensional equations in the Stratonovich sense

Let Z � fZ t, t 2 [0, 1]g be a continuous semimartingale defined on a filtered probability
space (Ω, F , P, fF t, t, 2 [0, 1]g) satisfying the usual conditions. Suppose that Z has a
canonical decomposition of the form

Z t � M t � At,

where M � fM t, t 2 [0, 1]g is a continuous local martingale such that M0 � 0 and
hMi t �

� t
0 ms ds, and A � fAt, t 2 [0, 1]g is a continuous and bounded variation process.

Given a partition π � f0 � t0 , t1 , . . . , t n � 1g we introduce the polygonal
approximation of the martingale M associated with π by

Mπ
t �

� t

0

Xnÿ1

i�0

M ti�1 ÿ M ti

ti�1 ÿ ti
1( t i , ti�1](s) ds:

We shall make use of the following notion of stochastic integration with respect to M.
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Definition 2.1. Let Y � fYt, t 2 [0, 1]g be a measurable stochastic process such that
� 1

0 jYsj ds ,1 a.s. The Stratonovich integral of Y with respect to M, denoted by
� t

0 Ys � dM s, is the continuous stochastic process defined by

lim
jπj#0

P sup
0< t<1

�
�
�
�

� t

0
Ys � dM s ÿ

� t

0
Ys _Mπ

s ds

�
�
�
�
. E

 !

� 0,

for all E. 0, where jπj � max0<i<nÿ1 (ti�1 ÿ ti), and _Mπ
s stands for dMπ

s =ds, provided that
this limit exists.

Consider the following stochastic differential equation:

X t � X 0 �

� t

0
b(X s) dAs �

� t

0
σ (X s) � dM s, (2:1)

where X 0 is a given random variable (we do not assume it to be F 0 measurable). The
coefficients b, σ : Ω 3 R ! R are measurable functions verifying the following properties.

(i) For all ω 2 Ω and x, y 2 R we have

jb(ω, x) ÿ b(ω, y)j < K(ω)jx ÿ yj,

for some random variable K.
(ii) For all ω 2 Ω the mapping x 7! σ (ω, x) is of class C2

b (i.e., it has bounded and
continuous derivatives of first and second order).

By a solution of (2.1) we mean a continuous stochastic process X � fX t, t 2 [0, 1]g
such that fσ (X t), t 2 [0, 1]g is Stratonovich integrable with respect to M in the sense of
Definition 2.1, and (2.1) holds for all t 2 [0, 1]. Under the above assumptions we can prove
the following result.

Theorem 2.2. Let X 0 be a random variable and b, σ : Ω 3 R ! R measurable functions
verifying hypotheses (i) and (ii). Then there exists a solution X to (2.1).

Proof. We shall make use of the representation of the solution in the adapted case given by
Doss (1977). In order to simplify the notation we shall omit the dependence of the
coefficients on ω. Let h(x, y) be the solution of

@h

@ y
(x, y) � σ (h(x, y))

h(x, 0) � x:

Define f (x, y) � b(h(x, y)) exp (ÿ
� y

0 σ 9(h(x, z)) dz). Note that

@h

@x
(x, y) � exp

� y

0
σ 9(h(x, z)) dz

� �

:
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Let Y � fYt, t 2 [0, 1]g be the unique solution of

Yt � X 0 �

� t

0
f (Ys, M s) dAs:

Define X t � h(Yt, M t) and Xπ
t � h(Yt, Mπ

t ) for any partition π � f0 � t0 , t1 , . . .

, t n � 1g of [0, 1]. Clearly

lim
jπj#0

sup
0< t<1

jX t ÿ X π
t j � 0,

for all ω 2 Ω. The process X π
t can be decomposed as follows:

X π
t �X 0 �

� t

0
σ (X π

s ) _Mπ
s ds �

� t

0
b(h(Ys, M s))

3 exp
�Mπ

s

M s

σ 9(h(Ys, z)) dz

 !

dAs :� A1
t � A2

t ,

where

A1
t �

� t

0
σ (X π

s ) _Mπ
s ds

�

� t

0
fσ (X π

s ) ÿ σ (X s)g _Mπ
s ds �

� t

0
σ (X s) _Mπ

s ds :� B1
t � B2

t :

Using the fact that sup0<s<1 jMπ
s ÿ Msj converges to zero as jπj tends to zero, we easily

deduce that

lim
jπj#0

sup
0< t<1

�
�
�
�
A2

t ÿ X 0 �

� t

0
b(X s) dAs

� ��
�
�
� �

0,

for all ω 2 Ω. As a consequence,

lim
jπj#0

sup
0< t<1

�
�
�
�
A1

t ÿ X t ÿ X 0 ÿ

� t

0
b(X s) dAs

� ��
�
�
� �

0,

for all ω 2 Ω. Hence, taking into account Definition 2.1, in order to show that the process X t

satisfies (2.1) it only remains to prove that B1
t converges to zero in probability, uniformly in t,

as jπj tends to zero. We can write

σ (X π
s ) ÿ σ (X s) � σ (h(Ys, Mπ

s )) ÿ σ (h(Ys, M s))

� σ 9σ (X s)(Mπ
s ÿ M s) � 1

2fσ (σ 9)2
� σ 2σ 0g(h(Ys, î))(Mπ

s ÿ M s)
2,
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where î belongs to the interval defined by Mπ
s and M s. We have

�
�
�
�

� t

0
fσ (σ 9)2

� σ 2σ 0g(h(Ys, î))(Mπ
s ÿ M s)

2
_Mπ

s ds

�
�
�
�

< C(ω)
� t

0
j
_Mπ

s j(Mπ
s ÿ M s)

2 ds

< C(ω) sup
juÿvj<jπj

jM u ÿ Mvj

� t

0
j
_Mπ

s j jM
π
s ÿ M sj ds: (2:2)

The last factor in the above expression can be estimated as follows:
�1

0
j
_Mπ

s j jM
π
s ÿ Msj ds <

Xnÿ1

i�0

j∆i M j

∆i t

� t i�1

t i

j∆i M j

∆i t
(s ÿ ti) � jM s ÿ M ti j

� �

ds

< 1
2

Xnÿ1

i�0

j∆i M j
2
�

Xnÿ1

i�0

sup
s2[ t i, t i�1]

(M s ÿ M ti )
2, (2:3)

where ∆i t � ti�1 ÿ ti and ∆i M � M ti�1 ÿ M ti . As a consequence we deduce that

lim
K"1

sup
π

P

�1

0
j
_Mπ

s j jM
π
s ÿ M sj ds . K

 !

� 0:

Hence (2.2) converges to zero in probability, uniformly in t, as jπj tends to zero. Finally, the
convergence to zero of the term

� t
0 σ 9σ (X s)(Mπ

s ÿ M s) _Mπ
s ds follows from Lemma 2.3

below. u

Lemma 2.3. Let Φ � fΦ t, t 2 [0, 1]g be a continuous stochastic process. Then

lim
jπj#0

P sup
0< t<1

�
�
�
�

� t

0
Φs(Mπ

s ÿ M s) _Mπ
s ds

�
�
�
�
. E

 !

� 0,

for all E. 0.

Proof. Fix a partition π � f0 � t0 , t1 , . . . , t n � 1g and consider the partition given by
s j � j=m, 0 < j < m. We can make the following estimation:
�
�
�
�

� t

0
Φs(Mπ

s ÿ M s) _Mπ
s ds

�
�
�
�

<
Xmÿ1

j�0

�
�
�
�
Φs j

� s j�1^ t

s j^ t
(Mπ

s ÿ M s) _Mπ
s ds

�
�
�
�

�

�
�
�
�

Xmÿ1

j�0

� s j�1^ t

s j^ t
(Φs ÿ Φs j )(Mπ

s ÿ M s) _Mπ
s ds

�
�
�
� :�

C1(t) � C2(t):

We have that lim
jπj#0 P(sup0< t<1 jC1(t)j. E) � 0 for all E. 0. In fact,

� s j�1^ t

s j^ t
(Mπ

s ÿ M s) _Mπ
s ds � 1

2f(Mπ
s j�1^ t)

2
ÿ (Mπ

s j^ t)
2
g ÿ

� s j�1^ t

s j^ t
M s _Mπ

s ds:

Then, applying a result of Yor (1977), and using the absolute continuity of the quadratic
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variation of hMi, we deduce that
� s j�1^ t

s j^ t M s _Mπ
s ds converges in probability, uniformly in t as

jπj tends to zero, to

1
2f(Mπ

s j�1^ t)
2
ÿ (Mπ

s j^ t)
2
g:

For the term C2(t) we have

jC2(t)j < sup
jsÿ tj<1=m

jΦs ÿ Φ tj

�1

0
jMπ

s ÿ Msj j _Mπ
s j ds,

and this converges to zero in probability, uniformly in t, as m tends to infinity, namely,

lim
m!1

lim
jπj#0

P( sup
0< t<1

jC2(t)j. E) � 0,

for all E. 0, taking into account the estimate (2.3). u

Using the same method of proof as in Theorem 2.2 one can deduce an Itô formula for
f (X t), for f 2 C2. This remark is also valid for the equations to be studied in the
subsequent sections.

Now we shall state the conditions for uniqueness of solutions to (2.1). Let A be the set
of continuous processes X such that there exists an approximation sequence of processes
M n with absolutely continuous trajectories, verifying the following properties.

(a) M n
t ! M t for all t, a.s.

(b) The unique solution X n of the equation

X n
t � X 0 �

� t

0
b(X n

s ) dAs �

� t

0
σ (X n

s ) _M n
s ds,

converges to X t for each t, a.s.

Theorem 2.4. Under the assumptions of Theorem 2.2, the solution to (2.1) is unique in the
class A .

Proof. It is not difficult to prove that X n
t � h(Y n

t , M n
t ) where Y n

t satisfies

Y n
t � X 0 �

� t

0
f (Y n

s , M n
s ) dAs:

Using the particular expression for the function f and the convergences of X n and M n we
can show that there exists a random variable K1 such that

j f (Ys, M n
s ) ÿ f (Y n

s , M n
s )j < K1jYs ÿ Y n

s j, a:s:

Then from Gronwall’s lemma it follows that Y n
t ! Yt for all t, a.s. Therefore, by definition of

A one has that X � h(Y , M) and therefore the uniqueness follows. u

In the multidimensional case, similar results can be obtained under the Frobenius
condition.
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3. An anticipating semilinear equation

In this section we study a semilinear equation that is different from the case studied in the
previous section. The equation we study here is

X t � X 0 �

� t

0
b(s, X s) dAs �

� t

0
σ s X s � dM s, (3:1)

where M is a continuous local martingale such that M0 � 0 and hMi t �
� t

0 ms ds, and A is a
continuous bounded variated process. The coefficients b: Ω 3 [0, 1] 3 R ! R and
σ : Ω 3 [0, 1] ! R are measurable functions such that the following hold.

(H1) For all ω 2 Ω, s 2 [0, 1] and x, y 2 R we have

jb(ω, s, x) ÿ b(ω, s, y)j < K(ω)jx ÿ yj,

jb(ω, s, 0)j < K(ω),

for some random variable K.
(H2) σ is Stratonovich integrable and the family of random variables

îπ :�

�1

0

�
�
�
�

� r

0
σ s _Mπ

s ds ÿ

� r

0
σ s � dM s

�
�
�
�
jσ r _Mπ

r j dr,

where π runs over the set of all partitions of [0, 1], is bounded in probability, namely,
limK"1 supπ P(jîπj. K) � 0.

(H3)

lim
jπj#0

P sup
0< t<1

�
�
�
�

� t

0

� r

0
σ s _Mπ

s ds ÿ

� r

0
σ s � dM s

� �

σ r _Mπ
r dr

�
�
�
�
. E

 !

� 0,

for all E. 0.

It is not difficult to see that, in the case when σ is absolutely continuous and
� 1

0 j _σ sj ds ,1, then the conditions (H2) and (H3) are satisfied. Now we define the class
where existence and uniqueness will be given. Let A be the class of continuous processes
X such that the following is true.

(H4) σ t X t is Stratonovich integrable, and

lim
jπj#0

lim
jπ9j#0

P

�
�
�
�

� t

0
σ s X s exp ÿ

� s

0
σ r _Mπ

r dr

� �

( _Mπ9
s ÿ

_Mπ
s ) ds

�
�
�
�
. E

 !

� 0, (3:2)

for any t 2 [0, 1] and E. 0.

Theorem 3.1. Assume conditions (H1)–(H3). Then, there is a unique solution to (3.1) in the
class A . Furthermore this solution is given by

X t � exp
� t

0
σ s � dM s

� �

X 0 �

� t

0
exp

� t

u
σ s � dM s

� �

b(u, X u) dAu: (3:3)
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Proof. First, it is clear that X in (3.3) is well defined. In order to show that X belongs to the
class A and satisfies (3.1) we first claim that for any continuous process Φ �

fΦs, s 2 [0, 1]g we have

lim
jπj#0

P sup
0< t<1

�
�
�
�

� t

0
Φsσ s exp

� s

0
σ r _Mπ

r dr

� �

ÿ exp
� s

0
σ r � dM r

� �� �

_Mπ
s ds

�
�
�
�
. E

 !

� 0, (3:4)

for any E. 0. This follows by using a similar argument as in the proofs of Theorem 2.2 and
Lemma 2.3, using assumptions (H2) and (H3) and developing the exponential up to the
second order.

Let us now show the Stratonovich integrability of σ X . Consider the approximation
� t

0
σ s X s _Mπ

s ds �

� t

0
σ r exp

� s

0
σ r � dM r

� �

X 0 �

� s

0
exp ÿ

�u

0
σ r � dM r

� �

b(u, X u) dAu

� �

_Mπ
s ds:

From (3.4) with

Φ t � X 0 �

� s

0
exp ÿ

�u

0
σ r � dM r

� �

b(u, X u) dAu

we get that

sup
0< t<1

�
�
�
�

� t

0
σ s X s _Mπ

s ds ÿ Bπ
t

�
�
�
�

converges in probability to zero as jπj tends to zero, where

Bπ
t �

� t

0
σ s exp

� s

0
σ r _Mπ

r dr

� �

X 0 �

� s

0
exp ÿ

�u

0
σ r � dM r

� �

b(u, X u) dAu

� �

_Mπ
s ds:

Next one uses integration by parts to deduce that
� t

0 σ s X s _Mπ
s ds converges in probability,

uniformly with respect to t to

X t ÿ X 0 ÿ

� t

0
b(u, X u) dAu:

This proof also shows that X satisfies (3.1).
Assuming that X satisfies (3.1), and σ X is Stratonovich integrable, let us show that (3.2)

holds. One can write, using integration by parts as well as (3.1),

lim
jπ9j#0

� t

0
σ s X s exp ÿ

� s

0
σ r _Mπ

r dr

� �

_Mπ9
s ds

�

� t

0
σ s X s exp ÿ

� s

0
σ r _Mπ

r dr

� �

Mπ
s ds ÿ X 0 � X t exp ÿ

� t

0
σ s _Mπ

s ds

� �

ÿ

� t

0
exp ÿ

� s

0
σ r _Mπ

r dr

� �

b(s, X s) dAs, (3:5)
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in the sense of the convergence in probability. Taking the limit as jπj tends to zero, and using
(3.3), one obtains (3.2).

Now we proceed with the proof of the uniqueness. For this, let X 2 A such that it
satisfies (3.1). As before the limit (3.5) holds. Finally, taking the limit as jπj tends to zero
in both members of (3.5) and using (3.2) we deduce that X satisfies (3.3). u

4. Multidimensional Stratonovich equations

In this section we shall present two cases of multidimensional Stratonovich equations where
we can use the technique introduced in Section 2 in order to establish the existence and
uniqueness of a solution. We shall assume that W � fW t, t 2 [0, 1]g is an m-dimensional
Wiener process defined on a filtered probability space (Ω, F , P, fF t, t 2 [0, 1]g).

4.1. STRATONOVICH EQUATIONS WITH RANDOM DRIFT AND INITIAL CONDITION

We shall deal with the case of a multidimensional Stratonovich stochastic differential
equation driven by W, where σ is a deterministic function, the coefficients b and σ depend on
the time variable, and b and X 0 may be random. Consider the stochastic differential equation
in Rd :

X t � X 0 �

� t

0
b(s, X s) ds �

Xm

i�1

� t

0
σ i(s, X s) � dW i

s, (4:1)

where X 0 2 L0(Ω; Rd), and b: Ω 3 [0, 1] 3 Rd
! Rd and σ i: [0, 1] 3 Rd

! Rd, 1 <
i < m are measurable functions. Ocone and Pardoux (1989) proved by means of a
generalized version of the Itô–Ventzell formula that (4.1) possesses a unique non-exploding
solution provided that X 0 and b are smooth in the sense of Malliavin calculus. By a solution
of (4.1) we mean a d-dimensional continuous process X � fX t, t 2 [0, 1]g such that
σ i(s, X s) is Stratonovich integrable with respect to W i in the sense of Definition 2.1, properly
extended to multidimensional processes, and (4.1) holds a.s. for all t 2 [0, 1]. Define

m(t, x) � 1
2

Xm

i�1

@σ i

@x
σ i

� �

(t, x):

Theorem 4.1. Assume that σ i(t, :) 2 C3(Rd , Rd) for t 2 [0, 1], 1 < i < m, σ i(t, :) has
bounded partial derivatives of first order and σ i(t, 0) is bounded. Also suppose that
m(t, x) is Lipschitz in x uniformly with respect to t, b(ω, t, x) is C1 in x, σ (t, x) is of class
C1 in t, and

(i) for all E. 0, jb(ω, t, x)j < CE(1 � jxj1ÿE), for all (ω, t, x) 2 Ω 3 [0, 1] 3 Rd ;
(ii) |(@b/@x)(ω, t, x)| < CK (ω), for all (ω, t, x) 2 Ω 3 [0, 1] 3 Rd with jxj < K.

Then there exists a solution to (4.1).
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Proof. Let j t(x) denote the flow defined by the adapted equation

j t(x) � x �

� t

0
σ i(s, js(x)) � dW i

s

� x �

� t

0
σ i(s, js(x)) dW i

s �

� t

0
m(s, js(x)) ds,

where we make the convention of summation over repeated indices. Under the hypothesis of
the theorem, j t is a C1 diffeomorphism of Rd and (@j t=@x)ÿ1 exists. Let
Y � fYt, t 2 [0, 1]g be the unique solution of

dYt

dt
�

@j t

@x

� �
ÿ1

(Yt)b(t, j t(Yt)),

Y0 � X 0: (4:2)

Existence and uniqueness of a solution to (4.2) follows from the fact that
(@j t=@x)ÿ1(x)b(ω, t, j t(x)) is C1 in x and a.s. locally bounded together with its derivative
in x. The fact that the solution is global follows from the estimate

�
�
�
�

@j t

@x

� �
ÿ1

(x)b(ω, t, j t(x))

�
�
�
�

< KE(ω)(1 � jxj1ÿE), for all t,

which can be deduced from our hypothesis as in the case of Ocone and Pardoux (1989,
p. 64).

Now we shall show the existence of a solution to (4.1). Define X t � j t(Yt) and
X π

t � j
π
t (Yt) where π � f0 � t0 , t1 , . . . , t n � 1g is a partition of [0, 1], and

j
π
t (x) � x �

� t

0
σ i(s, js(x))( _W i

s)
π ds: (4:3)

We have

dX π
t �

@j
π
t

@x
(Yt)

@j t

@x

� �
ÿ1

(Yt)b(t, j t(Yt)) dt � σ i(t, j t(Yt))( _W i
t)

π dt:

As (jπ
t (x), (@jπ

t =@x)(x)) converges to (j t(x), (@j t=@x)(x)) in probability uniformly for
(t, x) 2 [0, 1] 3 [ÿK, K]d , for all K . 0, when jπj tends to zero, we then have that

X π
t ! j t(Yt)

and

@j
π
t

@x
(Yt)

@j t

@x

� �
ÿ1

(Yt) ! I

in probability, uniformly in t 2 [0, 1]. Hence
� t

0
σ i(s, js(x))( _W i

s)
π ds ! X t ÿ X 0 ÿ

� t

0
b(s, js(Ys)) ds,

in probability, uniformly for t 2 [0, 1]. u

242 A. Kohatsu-Higa, J.A. León and D. Nualart



The uniqueness is done in a similar way as in the one-dimensional case. For this let A

be the class of continuous processes X such that there exists an approximation sequence of
processes W n with absolutely continuous paths such that the following hold.

(a) W n
t ! W t for all t, a.s.

(b) The unique solution X n of the equation

X n
t � X 0 �

� t

0
b(s, X n

s ) ds �

� t

0
σ i(s, X n

s ) _W i,n
s ds,

converges to X t for each t, a.s.
(c) (jn

t (x), (@jn
t =@x)ÿ1(x)) converges to (j t(x), (@j t=@x)ÿ1(x)) uniformly in t and for x

in compacts. Here j
n
t is defined through (4.3) using W n instead of W π.

Note that for any refining sequence fπng of partitions of [0, 1] such that jπnj # 0, W π n

satisfies properties (a) and (c) above if σ and b are three times differentiable with Lipschitz
derivatives as can be seen in Kunita (1990, Section 5.7).

Theorem 4.2. Under the assumptions of Theorem 4.1, there is a unique solution to (4.1) in
the class A .

Proof. The proof in this case is similar to the one-dimensional case. It is not difficult to see
that X n

� j
n(Y n) where Y n solves (4.2) with j replaced by j

n. Using properties (b) and (c)
above, it follows that the solution has to be unique. u

4.2. STOCHASTIC DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

We shall use our techniques to prove existence and uniqueness for stochastic differential
equations with boundary conditions of the type

X t � X 0 �

� t

0
b(X s) ds �

� t

0
σ (X s) � dWs,

V0 � H0 X 0 � H1 X 1, (4:4)

where H0 and H1 are d 3 d matrices. This type of equation has been recently studied by
Garnier (1995) using a stochastic embedding method. To introduce the hypotheses under
which we prove existence, we need to define j t(x) as the flow associated with (4.4). Also
define Z(t, x) � H1(@=@x)j t((H0 � H1)ÿ1x) � H0(H0 � H1)ÿ1. Subsequently we shall
assume the following.

(H ) The functions b, σ : Rd
! Rd are three times differentiable with uniformly bounded

and continuous partial derivatives. Furthermore assume that there exists a positive constant
α such that j det Z(t, x)j > α for all (t, x) 2 [0, 1] 3 Rd , almost surely.
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Theorem 4.3. Assume condition (H ). Then there exists a solution to (4.4) given by
j t((H0 � H1)ÿ1

�V (1)), where �V is the unique solution of the following adapted stochastic
differential equation:

�Vt � V0 ÿ

� t

0
(Zÿ1 H1b(j((H0 � H1)ÿ1.)))(s, �Vs) ds

ÿ

� t

0
(Zÿ1 H1σ (j((H0 � H1)ÿ1.)))(s, �Vs) � dWs: (4:5)

Proof. First we want to check that the boundary condition is satisfied. For this it is enough to
see Lemma 1 in Garnier (1995). Now we prove that (4.4) holds. For this we shall need the
following evaluation formula:

� t

0
σ (js(x)) � dWsjx�X0 �

� t

0
σ (js(X 0)) � dWs, (4:6)

where X 0 is a random variable that belongs to L p(Ω) for some p . 1. This formula is proven,
for instance, in Theorem 5.3.3 and Theorem 6.1.1 of Nualart (1997).

Therefore to finish the proof we only need to prove that �V (1) 2 L p(Ω) for some p . 1.
This is obtained using standard L p estimation methods in (4.5). In particular we need to use
the fact that j det Zÿ1(t, x)j < αÿ1 uniformly for (t, x). From here, the existence follows.

u

For uniqueness we define as before a class A of continuous processes such that there
exists an approximation with almost surely absolutely continuous paths W n such that the
following hold.

(a) W n
t ! W t for all t, a.s.

(b) The unique solution X n of the equation

X n
t � X n

0 �

� t

0
b(X n

s ) ds �

� t

0
σ (X n

s ) _W n
s ds,

V0 � H0 X n
0 � H1 X n

1

converges to X t for each t, a.s.
(c) j

n
t (x), (@jn

t =@x)(x)) converges to (j t(x), (@j t=@x)(x)) uniformly in t and for x in
compacts. Here j

n
t is a flow that is defined through (4.4) using W n instead of W.

In assumption (b) one is supposing that the equation has a unique solution. Conditions
for (c) to be satisfied have been thoroughly studied in recent years (see, for example, Ikeda
and Watanabe 1981).

As in the case of the Ocone–Pardoux equation, it is not difficult to see that W π n satisfies
the above conditions (a) and (c), for any refining sequence fπng of partitions of [0, 1] such
that jπnj # 0, considering the results obtained by Gyöngy (1987).
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Theorem 4.4. Assume condition (H ). Then there is a unique solution to (4.4) in the class
A .

Proof. The proof here is similar to the previous uniqueness proofs. Here we have that by (c)
it is enough to prove that X n

0 ! X 0 a.s. To obtain this result it is enough to apply Lemma 6,
Section 5.2, in Garnier (1995).
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PS95-005 (to Arturs Kohatsu-Higa) and a Consejo Nacional de Ciencia y Tecnologia de
Mexico Grant (to Jorge A. León).

References
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