
A Poisson approximation for the Dirichlet
law, the Ewens sampling formula and the
Griffiths–Engen–McCloskey law by the
Stein–Chen coupling method
U L R I C H M A RT I N H I RT H

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstraße 26-28,
D-85071 Eichstätt, Germany. e-mail: ulrich.hirth@ku-eichstaett.de

We consider the random number of (Griffiths–Engen–McCloskey (GEM))–(Poisson–Dirichlet)
components which are greater than E. In two alternative and similar ways, letting Dirichlet laws
and Ewens sampling formula laws respectively converge to the GEM–(Poisson–Dirichlet) law and
using the Stein–Chen coupling method, we prove the Poisson approximation with respect to the total
variation metric of the satisfactory order of magnitude 1/expectation.
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1. Introduction

The Griffiths–Engen–McCloskey (GEM) law with parameter θ . 0 is the distribution of a
random sequence X � (X 1, X 2, X 3, . . .) with

X 1 :� Z1, X 2 :� (1ÿ Z1)Z2, X k :� Z k

Y

kÿ1

j�1

(1ÿ Zj) (1:1)

and where Z1, Z2, Z3, . . . are independent beta (1, θ) random variables.
The Poisson–Dirichlet law with parameter θ . 0 is obtained from the GEM law with the

same parameter θ by applying the non-increasing order statistic to X. The GEM–(Poisson–
Dirichlet) laws have a long history (see the references).

We are interested in the random number

ME :�

X

1

k�1

1(X k . E) (1:2)

of components which are greater than E (0 , E , 1). This number of components is the same
under either the GEM or the Poisson–Dirichlet measure. It was conjectured by Hirth (1997,
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Section 4) that ME is approximately Poisson distributed, asymptotically for E & 0, where only
the case θ � 1 was focused on.

Here we provide a statement and two alternative similar proofs of Poisson approximation
for all ME, for θ . 0. The result is as follows.

Theorem.

dTV(P � Mÿ1
E

, Po(λ)) < λÿ1(1ÿ eÿλ)fE[ME]ÿ var (ME)g

< K(θ )λÿ1(1ÿ eÿλ)

< K(θ) min (1, λÿ1),

where dTV denotes the total variation metric, Po(λ) the Poisson law with parameter λ, here
λ :� E[ME], and for the special case θ � 1 the constant K(1) can be chosen explicitly as

(log 2)2
�

X

1

j�1

2ÿ j�1 jÿ2
: (1:3)

Here the total variation distance between probability measures µ and ν on N0 is given by

dTV(µ, ν) :� sup fjµ(A)ÿ ν(A)j: A � N0g

�
1
2

X

j2N0

jµf jg ÿ νf jgj

as defined and used by Barbour et al. (1992, p. 1, (1.3)).

According to Barbour et al. (1992) we should not expect that a total variation estimate
with order of magnitude better than 1=E[ME] is true, because 1=λ is typically the true order
of magnitude in the case of ‘negative dependence’. For the two proofs of our theorem we
shall let Dirichlet laws and Ewens sampling formula (ESF) laws respectively converge
weakly to the GEM–(Poisson–Dirichlet) law, thereby using the invariance of our counting
random variable ME under permutations of the components. More precisely the symmetric
Dirichlet laws with all the d(d 2 Nnf1g) parameters equal to a . 0 and components ordered
by size non-increasingly converge to the Poisson–Dirichlet law with parameter θ as
d %1, a & 0 and d . a ! θ; we shall have d:a � θ (Kingman 1975, 1993, Chapter 9,
Section 9, p. 93).

The ESF law on the other hand is the probability measure on the set S n of all
permutations of the set f1, . . . , ng, n 2 N :� f1, 2, 3, . . .g, whose density with respect to
the uniform probability distribution is proportional to θk (θ . 0 being the same parameter θ
as above), where k is the number of cycles in the permutation. Under the ESF (θ) law, the
joint distribution of the normalized (i.e., divided by n) cycle lengths, ordered by size non-
increasingly, converges weakly to the Poisson–Dirichlet law (Kingman 1977; Ewens 1990;
Hoppe 1987). The ESF analogue to ME is the random number Kb,n of permutation cycles
whose length is larger than b, with b � [n . E] (integer floor of n . E), b 2 f0, . . . , nÿ 1g.
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Each one of the two proofs of our theorem consists of three parts: Stein–Chen coupling,
weak-convergence argument and moment calculations. The second and third parts are
common to both proofs whereas each of the proofs uses its own Stein–Chen coupling. As a
first hint towards the Poisson approximation we present the moment calculations for ME

under the GEM–(Poisson–Dirichlet) law in Section 2, followed by the weak convergence
argument in Section 3, the Stein–Chen coupling for symmetric Dirichlet laws in Section 4
and the Stein–Chen coupling for the ESF laws in Section 5.

2. E[MEE] and var (MEE) under the (Griffiths–Engen–
McCloskey)–(Poisson–Dirichlet) law

For the special case θ � 1, Hirth (1997, Section 4) calculated

E[ME] � log
1
E

� �

(2:1)

for all E 2 (0, 1) and

E[ME]ÿ var (ME) � ÿc2
1
E

� �

, (2:2)

where c2: [2, 1) ! [ÿ(log 2)2, c2(1)) is a negative decreasing bounded function of t :� 1=E
with jc2(2)j � (log 2)2 and

jc2(1)j � (log 2)2
�

X

1

j�1

2ÿ j�1 jÿ2 (2:3)

(compare with (1.3) in the statement of our theorem), which is obviously finite. Note that the
result (2.2) is only for t > 2, i.e., for E < 1

2, but this restriction is no problem for us.
Here we treat expectation and variance of ME for general θ . 0. As in Hirth (1997,

Section 4) we easily obtain the equality in distribution

M1= t � 1 B .
1
t

� �

� M1=f(1ÿB) tg,

where B is an independent beta (1, θ) random variable and the second summand is zero for
(1ÿ B) t < 1. Defining f (t) :� E[M1= t], we have f (t) � 0 for t < 1 and, for t > 1,

f (t) :� E[M1= t] � P B .
1
t

� �

� E[M1=f(1ÿB)tg]

� θ
�1

1= t
(1ÿ x)θÿ1 dx� θ

�1

0
xθÿ1 f (tx) dx

� 1ÿ
1
t

� �θ

�θtÿθ
� t

1
xθÿ1 f (x) dx,

since f (t) � 0 for t < 1.
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Differentiating tθ f (t) yields, for t . 1, tθ f 9(t) � θ (t ÿ 1)θÿ1. So we have

E[ME] � f
1
E

� �

�

�1=E

1

θ
x

1ÿ
1
x

� �θÿ1

dx

�

�1

E

θ
y

(1ÿ y)θÿ1 dy: (2:4)

From (2.4) we easily see that E[ME] tends to infinity as E & 0, for any fixed θ . 0. Next we
look at the second moment of ME; define and calculate

g(t) :� E[M2
1= t]

� P B .
1
t

� �

� 2 E M1=f(1ÿB) tg1 B .
1
t

� �� �

� E[M2
1=f(1ÿB) tg]

� 1ÿ
1
t

� �θ

�2θ
�1

1= t
(1ÿ x)θÿ1 f ((1ÿ x)t) dx

� θ
�1

0
(1ÿ x)θÿ1 g((1ÿ x)t) dx

� 1ÿ
1
t

� �θ

�2θtÿθ
� tÿ1

1
yθÿ1 f (y) dy� θtÿθ

� t

1
yθÿ1 g(y) dy:

Differentiating tθ g(t) yields, for t . 2, tθ g9(t) � θ(t ÿ 1)θÿ1
f1� 2 f (t ÿ 1)g. So we have

g(t) � f (t)� 2θ
� t

2
xÿθ(xÿ 1)θÿ1 f (xÿ 1) dx

� f (t)� 2θ2
� t

2
dx

�xÿ1

1
dy(xy)ÿθ(xÿ 1)θÿ1(yÿ 1)θÿ1

�: f (t)� 2θ2
�

G
h,

where G :� f(x, y): 1 , y < xÿ 1 < t ÿ 1g and h(x, y) :� (xy)ÿθ(xÿ 1)θÿ1(yÿ 1)θÿ1.
Note the symmetry h(x, y) � h(y, x). For comparison we write
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f (t)2
� θ2

� t

1
dx

� t

1
dy (xy)ÿθ(xÿ 1)θÿ1(yÿ 1)θÿ1

� 2θ2
� t

1
dx

�x

1
dy h(x, y)

�: 2θ2
�

F
h,

where

F :� f(x, y): 1 , y < x < tg:

We have G � F and

E[M1= t]ÿ var (M1= t) � f (t)ÿ g(t)� f (t)2

� 2θ2
�

FnG
h,

where, for t > 2, FnG � H [ J with

H :� f(x, y): 1 , y < x < 2g, J :� f(x, y): 1 , xÿ 1 , y < x < tg:

For (x, y) 2 J we estimate that

h(x, y) <
xÿθ(xÿ 1)ÿ1(xÿ 2)θÿ1,
(xÿ 1)ÿ2,

�

0 , θ < 1,
θ . 1,

so
�

J h is bounded uniformly in t.

3. The weak-convergence argument

Let (µn)n2N be a sequence of probability measures which converges weakly to the GEM–
(Poisson–Dirichlet) law µ. Think of the measures µn as the Dirichlet laws or as the
normalized ESF laws as mentioned in Section 1 and, as explained there, we do not pay
attention to the ordering of the components of µn and µ because the counting random
variable ME (or Kb,n respectively with b � [n . E]) we are interested in is invariant under
permutations of the components.

It was proved by Hirth (1997, Section 2, Lemmas 3–5 plus corollary) that the
distributions µn � Mÿ1

E
converge weakly to µ � Mÿ1

E
also. The same is true with

Kb,n (b � [n . E]) replacing ME, and from here on we unify these two random elements
notationally by writing ME only.

Since we have always ME , 1=E (at least almost surely, with respect to µn (for all n 2 N)
and µ), we conclude immediately that the expectations

�

ME dµn converge to the
expectation

�

ME dµ as n !1. For the same reason the variances of ME with respect to
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µn converge to the variance of ME with respect to µ. Furthermore the convergence
�

ME dµn !
�

ME dµ implies elementarily the weak convergence of the Poisson laws with
parametes

�

ME dµn to the Poisson law with parameter
�

ME dµ.
We recall that the total variation distance dTV metrizes weak convergence of probability

measures on N0. All these arguments and the triangle inequality for the total variation
metric dTV show that the inequality

dTV(µn � Mÿ1
E

, Po(λn)) < λÿ1
n (1ÿ eÿλn )fλn ÿ varµn (ME)g (3:1)

with λn :�

�

ME dµn implies the inequality

dTV(µ � Mÿ1
E

, Po(λ)) < λÿ1(1ÿ eÿλ)fλÿ varµ (ME)g (3:2)

by convergence as n !1 and continuity. So it remains to show (3.1) to complete the proof
of our theorem, and we are going to do this in two (Sections 4 and 5) alternative ways, both
of which use the Stein–Chen coupling method in similar ways.

4. Stein–Chen coupling for Dirichlet laws

Let Y � (Y1, . . . , Yd), d 2 Nnf1g, be a random vector with values in the (d ÿ 1)-
dimensional simplex

∆d :� (y1, . . . , yd) 2 [0, 1]d :
X

d

j�1

yj � 1

8

<

:

9

=

;

,

whose distribution is the symmetric Dirichlet law with all the d parameters equal to a . 0,
a :� θ=d. We are interested in the distribution of the random variable

ME :�

X

d

j�1

1(Yj . E), (4:1)

the number of components which are greater than E.
Note that we have Y1 6� 1 almost surely; so we can define

Y 9 � (Y 91, . . . , Y 9dÿ1) :�

Y2

1ÿ Y1
,

Y3

1ÿ Y1
,

Y4

1ÿ Y1
, . . . ,

Yd

1ÿ Y1

� �

,

and for d 2 Nnf1, 2g this (∆dÿ1)-valued random vector Y 9 has the symmetric Dirichlet
distribution with d ÿ 1 parameters a, a � θ=d remaining the same as above. Moreover
fY1, Y 9g is stochastically independent. With this notation we write

ME � 1(Y1 . E)�
X

dÿ1

j�1

1 Y 9j .
E

1ÿ Y1

� �

:

The following claim is proved by an explicit construction which is used in the sequel.
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Claim. The distribution of Y1 conditional on the event fY1 . Eg is stochastically greater (>)
than the unconditioned beta (a, (d ÿ 1)a) distribution of Y1, for each E 2 (0, 1).

Proof. Let fB, B9, Y 9g be stochastically independent, B having the same beta (a, (d ÿ 1)a)
distribution as Y1 (unconditioned), B9 having the fY1 . Eg-conditional distribution of Y1, and
define

C :� B 1(B . E)� B9 1(B < E):

We obviously have C > B in the usual sense of ordering real numbers, and C is equal in
distribution to B9. The claim is proved. u

We now write

ME � 1(B . E)�
X

dÿ1

j�1

1 Y 9j .
E

1ÿ B

� �

and represent the conditional distribution of ME ÿ 1 given the event fB :� Y1 . Eg by

X

dÿ1

j�1

1 Y 9j .
E

1ÿ C

� �

,

for which we have

X

dÿ1

j�1

1 Y 9j .
E

1ÿ C

� �

<
X

dÿ1

j�1

1 Y 9j .
E

1ÿ B

� �

< ME: (4:2)

We have just shown the existence of a monotone coupling as required by Barbour et al.
(1992) for their equation (0.1) on p. 21 (beginning of Chapter 2). This inserted into their
Theorem 1.B on p. 11 in Chapter 1, combined with their Lemma 1.1.1 on p. 7, leads to our
(3.1) which implies (3.2). So our theorem is proved. u

An alternative proof for our theorem is given next.

5. Stein–Chen coupling for the Ewens sampling formula

The ESF random permutation can be constructed by the Feller coupling as in Arratia et al.
(1992, p. 523, Section 3). Using their notation, we have (empty sums being interpreted as
zero and empty products as one as usual)

Kb,n �
X

nÿb

l�1

î l

Y

l�b

j� l�1

(1ÿ î j)

|�����������{z�����������}

�: Il

, (5:1)

with (îm)m2N being an independent sequence satisfying
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P[îm � 1] � 1ÿ P[îm � 0] �
θ

θ� mÿ 1
(5:2)

for each m 2 N.
So each indicator Il, l 2 f1, . . . , nÿ bg, is independent of (Ij: j 2 f1, . . . , nÿ bg and

jl ÿ jj. b), and the event fIl � 1g implies the event fIj � 0 for all j 2 f1, . . . , nÿ bg
with 0 , j jÿ lj < bg.

Thus the distribution of Kb,n ÿ 1 conditional on the event fIl � 1g is represented by the
partial sum

Pnÿb
j�1
j jÿ lj. b

I j which is less than or equal to Kb,n.
The remainder of this proof for our theorem is word by word the same as the paragraph

following (4.2). u
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