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A general spread inequality for arbitrary estimators of a one-dimensional parameter is given. This

®nite-sample inequality yields bounds on the distribution of estimators in the presence of ®nite- or

in®nite-dimensional nuisance parameters.
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Consider an arbitrary family P of probability distributions P on a measurable space (X, A )

and assume that this family is dominated by a ó-®nite measure ì on (X, A ). Let í be a

functional from P to the real line R, and let X be a random variable which takes values in X

and has its probability distribution P in P. We are interested in estimation of í(P) by an

estimator T � t(X ) based on X.

We will consider the distribution of c(P)(T ÿ í(P)) under P, where c is a functional from

P to (0, 1). This distribution may be anything and therefore very little can be said about it.

On the other hand, it cannot be arbitrarily much concentrated for several possible P 2 P

simultaneously. To make this claim more precise, we will consider an average distribution

function, where the average is taken over the family P of probability distributions,

G(y) �
�

P

P(c(P)(T ÿ í(P)) < y) d ~W (P), y 2 R, (1)

with the weight function ~W a probability measure on the measurable space (P, P ). As stated

in our Theorem 1 below, the distribution function G in (1) is at least as spread out as a

certain distribution function K, notation G >1 K: This means that any two quantiles of G are

at least as far apart as the corresponding quantiles of K, i.e.

Gÿ1(u)ÿ Gÿ1(v) > Kÿ1(u)ÿ Kÿ1(v), 0 , v < u , 1, (2)

where the quantile function Fÿ1 is de®ned by Fÿ1(t) � inf fy: F(y) > tg: The partial

ordering of one-dimensional distribution functions by spread has been introduced by Bickel

and Lehmann (1979). The distribution function K depends only on P, ~W , í(:) and c(:), but not

on t(:). Therefore, K is a bound on the average distribution of an arbitrary estimator T

according to the ordering of spread.

This so-called spread inequality (2) may be used to derive local asymptotic minimax
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results; see Remark 1 below. Bootstrapping both the distribution of an estimator and the

bound K, the performance of this estimator may be evaluated. For estimators of location

this topic has been studied by Venetiaan (1994). The spread inequality also sharpens global

CrameÂr±Rao inequalities; see Corollary 2.1 of Klaassen (1984) and formulae (2.4.20) and

(2.4.29) of van den Heuvel (1996).

To prove the general spread inequality we will rewrite the distribution function G in (1).

To that end, assume that the functional í is (P , B )-measurable, with B the Borel ó-®eld

on R, and c is (P , U )-measurable, with U an arbitrary ó-®eld on (0, 1), and de®ne the

probability measure W on the measurable space (R 3 (0, 1), B 3 U) by W (B 3 U ) �
~W ((í(P), c(P)) 2 B 3 U ), for every B 2 B , U 2 U: Then the distribution function G may

be rewritten as

G(y) �
�

R3(0,1)

�
Pè,z

P(z(T ÿ è) < y) d ~W (Pj(í(P), c(P)) � (è, z)) dW (è, z), (3)

where ~W (:j(í(P), c(P)) � (è, z)) is the conditional probability measure of ~W given (í(P),

c(P)) � (è, z) and Pè,z is the set of probability measures such that (í(P), c(P)) � (è, z): If

we assume that ~W (:jí(P), c(P)) is a regular version of the conditional probability measure we

may de®ne the probability measure Pè,z on (X, A ) by

Pè,z(A) �
�

Pè,z

P(A) d ~W (Pj(í(P), c(P)) � (è, z)), A 2A, è 2 í(P), z 2 c(P): (4)

Note that Pè,z is absolutely continuous with respect to ì, and denote its density by p(:jè, z):
The distribution function G may be written as

G(y) �
�

R3(0,1)

Pè,z(z(T ÿ è) < y) dW (è, z): (5)

If (W, Z) is a random vector with probability distribution W, then G may be viewed as

the distribution of Z(t(X )ÿ W), where the distribution of X given (W, Z) � (è, z) is de®ned

in (4). Consequently, the estimation problem is completely described by the joint

distribution of (X , W, Z):
To obtain a bound on the distribution function G in (5) it suf®ces to show that G has a

density g of the form

g(y) � ES1( y,1)(Z(t(X )ÿ W)), y 2 R, (6)

where S is a random variable based on the random vector (X , W, Z): In fact, S is the score

statistic de®ned in (11) below. The bound K for distribution functions G satisfying (6) is

de®ned by its inverse

Kÿ1(u) �
�u

1
2

1�1

s

Hÿ1(t) dt

ds, 0 , u < 1, (7)

with H the distribution function of the score statistic S. The validity of this lower bound is

shown by rewriting (6) as
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g(Gÿ1(s)) �
�1

0

ø(t)Hÿ1(t) dt, 0 , s , 1, (8)

with

ø(t) � E(1(Gÿ1(s),1)(Z(t(X )ÿ W))jS � Hÿ1(t)), 0 , t , 1,

and by minimizing the right-hand side of (8) over all (critical) functions ø, 0 < ø < 1,

satisfying 1ÿ s � � 1

0
ø(t) dt:

To obtain relation (6) a global L1-differentiability condition on the density of (X , W, Z)

suf®ces. The random vector (X , W, Z) has density f (x, è, z) � p(xjè, z)w(è, z) on X 3 R 3
(0, 1) with respect to the measure í ; ì 3 Lebesgue 3 ë if W has a density w with

respect to the ó-®nite measure Lebesgue 3 ë on the measurable space (R 3 (0, 1),

B 3 U). If there exists a function h 2 L1( f ) such that�
X3R3(0,1)

j f (x, è� Ez, z)ÿ f (x, è, z)ÿ Eh(x, è, z) f (x, è, z)j dí(x, è, z) � o(E) (9)

holds, then relation (6) is valid with S � h(X , W, Z): In our Theorem 1 we will give

suf®cient conditions for relation (9) and the proof of this theorem shows how (9) implies (6)

and hence our spread inequality.

Theorem 1. Let ~W be a probability measure on the measurable space (P, P ), í a functional

from P to R and c a functional from P to (0, 1). Let ~W (:j(í(P), c(P))) be a regular version

of the conditional probability measure given (í(P), c(P)), de®ne the probability measure W

on the measurable space (R 3 (0, 1), B 3 U) by W (B 3 U ) � ~W ((í(P), c(P)) 2 B 3 U ),

B 2B , U 2U , and assume that W has density w with respect to the ó- ®nite measure

Lebesgue 3 ë on (R 3 (0, 1), B 3 U): Furthermore, let the probability measure Pè,z be

de®ned by (4) and assume that it has a density p(:jè, z) with respect to a ó- ®nite measure ì
on (X, A ). If the function è! f (x, è, z) � p(xjè, z)w(è, z) is absolutely continuous with

respect to Lebesgue measure on R with Radon±Nikodym derivative f_(x, è, z), for ì 3 ë-

almost all (x, z) 2 X 3 (0, 1), if f_(x, è, z) is ì 3 Lebesgue 3 ë-measurable and if�1
0

�
R

�
X

zÿ1j f_(x, è, z)j dì(x) dè dë(z) ,1 (10)

holds, then the distribution function G in (1) has density g satisfying (6) with S equal to

S � Zÿ1 f_

f
(X , W, Z): (11)

This implies that G is at least as spread out as K (see (2)) where K is de®ned in (7) and H is

the distribution function of S in (11).

Proof. Since è! f (x, è, z) is absolutely continuous on R for ì 3 ë-almost all (x, z) 2
X 3 (0, 1), we obtain

lim sup
E!0

�1
0

�
R

�
X

jEÿ1f f (x, è� E=z, z)ÿ f (x, è, z)gj dì(x) dè dë(z)
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< lim sup
E!0

�1
0

�
R

�
X

Eÿ1

�è�E=z

è
j f_(x, t, z)j dt dì(x) dè dë(z) (12)

�
�1

0

�
X

�
R

zÿ1j f_(x, t, z)j dt dì(x) dë(z) ,1,

in view of (10). From

1ÿ G(y� ä) �
�1

0

�
R

�
X

1( y,1)(z(t(x)ÿ è)) f (x, èÿ ä=z, z) dì(x) dè dë(x), y 2 R,

inequality (12) and Vitali's theorem it follows that G is differentiable with derivative g

satisfying

g(y) � lim
ä!0

�1
0

�
R

�
X

1( y,1)(z(t(x)ÿ è))äÿ1f f (x, è, z)ÿ f (x, èÿ ä=z, z)g dì(x) dè dë(z)

�
�1

0

�
R

�
X

1( y,1)(z(t(x)ÿ è))zÿ1 f_(x, è, z) dì(x) dè dë(z):

By Lemma 1.2.2 of Klaassen (1981), we obtain that fè 2 R: f (x, è, z) � 0, f_(x, è, z) 6� 0g
is a Lebesgue null set, for ì 3 ë-almost all (x, z) 2 X 3 (0, 1): This yields relation (6) with

S given in (11). Now following the proof of Theorem 1.1 of Klaassen (1989a) from here on

we obtain our result, via an argument as in the Neyman±Pearson lemma, as indicated below

formula (7) above. u

Theorem 1 is a generalization of Theorem 1.1 of Klaassen (1989a). The requirement of

the latter that p(xjè, z) and w(è, z) should be both absolutely continuous in è is replaced

here by the slightly weaker condition that p(xjè, z)w(è, z) is absolutely continuous in è.

Taking P to be one-dimensional parametric with parameter è and taking the random

variable c(P) � Z to be degenerate at the constant a we obtain Theorem 1.1 of Klaassen

(1989a). Our formulation is also more general in the sense that models with nuisance

parameters are incorporated. In fact, both parametric models P � fPè,ç: è 2 È, ç 2 Hg,
È � R, H � Rk , and semiparametric models P � fPè,F : è 2 È, F 2 Fg, È � R, for F a

set of distribution functions F, are included. This means that a spread inequality for

arbitrary estimators of è in the presence of ®nite- or in®nite-dimensional (unknown)

nuisance parameters is contained in Theorem 1. We will illustrate this via a parametric

model P � fPè,ç: è 2 È, ç 2 Hg in the following example.

Example 1. Let X 1, X 2, . . . , X n be independent identically normally distributed random

variables with mean è and standard deviation ç. Our model P is parametric with parameter

space R 3 (0,1), hence weight functions ~W on P can be de®ned via distributions W on

R 3 (0,1). Here we choose í(P) � è and c(P) � ���
n
p

=ç � z: The problem is estimating the

parameter è by an estimator T � t(X1, X 2, . . . , X n) in the presence of the nuisance

parameter ç. This problem is determined by (X , W, Z), where the conditional distribution of

X � (X 1, X 2, . . . , X n)T given (W, Z) � (è, z) has density
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p(xjè, z) �
Yn

i�1

z���
n
p ö

z���
n
p (xi ÿ è)

� �
, x � (x1, x2, . . . , xn)T 2 Rn,

with ö the standard normal density. Let the distribution W n � W of (W, Z) be such that the

corresponding weight function in (è, ç) is independent of the sample size n, with the

conditional distribution of W given ç normal with mean zero and variance ç2ó 2: More

speci®cally, let W n have density wn(è, z) � ó ÿ1zÿ1ö(ó ÿ1 nÿ1=2zè)w(n1=2zÿ1) with respect to

Lebesgue measure on R 3 (0,1) with w a ®xed density on (0,1). Now, the score statistic S

in (11) becomes

S � Z

n

Xn

i�1

(X i ÿ W)ÿ Z

ó 2 n
W:

The conditional distribution of S given Z � z is equal to a normal distribution with mean

zero and variance 1� ó ÿ2 nÿ1, and hence H(y) � Ö((1� ó ÿ2 nÿ1)ÿ1=2 y): Furthermore,� 1

s
Hÿ1(t) dt � (1� ó ÿ2 nÿ1)1=2ö(Öÿ1(s)) and therefore K(y) � Ö((1� ó ÿ2 nÿ1)1=2 y): Con-

sequently, Theorem 1 yields

G(:) >1 Ö((1� ó ÿ2 nÿ1)1=2:), (13)

where

G(y) �
�1

0

�
R

Pè,z(z(t(X 1, X2, . . . , X n)ÿ è) < y)
1

ó z
ö

z

ó
���
n
p è

� �
w2

���
n
p

z

� �
dè dz: (14)

Note that Tn � t(X1, X2, . . . , X n) � (n� ó ÿ2)ÿ1
Pn

i�1 X i is optimal, in the sense that

equality is attained in (13). Consequently, our spread inequality (2) (see also Theorem 1) is

sharp in this case. However, the conditional distribution of Z(Tn ÿ W) given (W, Z) � (è, z) is

normal with mean ÿz(1� ó 2 n)ÿ1è and variance (1� ó ÿ2 nÿ1)ÿ2: This means that the

optimal estimator Tn is biased, but asymptotically consistent. The biasedness is caused by the

weight function or prior wn(è, z) � ó ÿ1zÿ1ö(ó ÿ1 nÿ1=2zè)w(n1=2zÿ1), which is not unin-

formative. If we let ó tend to in®nity then the prior tends to the uninformative prior, i.e.

uninformative with respect to è. Futhermore, T n � (n� ó ÿ2)ÿ1
Pn

i�1 X i converges to the

sample mean nÿ1
Pn

i�1 X i, as ó!1. Indeed, the sample mean normed by Z, i.e.

Z(nÿ1
Pn

i�1 X i ÿ W), is standard normal as is the bound K in the limit.

Remark 1. Local asymptotic lower bounds may be obtained from Theorem 1 by choosing the

weight function appropriately and by subsequently taking limits for sample size tending to

in®nity. For parametric models of n observations Pn � fP
(n)
è,ç: è 2 È, ç 2 Hg, È � R,

H � R, we ®rst identify weight functions ~W n on Pn via distributions W n on È 3 H, as in

Example 1. Let W n have density

a2
nw(an(èÿ è0), an(çÿ ç0)), (15)

where w is a density on R2, an � c(P
(n)
è,ç) is independent of è and ç, and an !1 as n!1.

Under the same kind of conditions as in Theorem 4.1 of Klaassen (1989b) this yields a local

asymptotic spread inequality at the parameter point (è0, ç0): The corresponding asymptotic
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bound is of the form (7), where H is the convolution of the limit distribution function of the

ef®cient score function with respect to the parameter of interest è and the nuisance parameter

ç by another distribution function. Choosing w appropriately and taking suitable limits we

obtain a bound K which in local asymptotic normality situations is the same as in the

convolution theorem and the local asymptotic minimax theorem.

For semiparametric models Pn � fP
(n)
è,ç: è 2 È, ç 2 Hg, È � R, H in®nite-dimensional,

an asymptotic spread inequality at (è0, ç0) may be obtained by deriving spread inequalities

for two-dimensional submodels through (è0, ç0) and subsequently maximizing these bounds

over all possible submodels. For more details and examples of local asymptotic spread

inequalities for parametric and semiparametric models see Sections 2.5, 2.6 and 4.2 of van

den Heuvel (1996), and for a review of the theory of ef®cient estimation in semiparametric

models based on the convolution theorem see Bickel et al. (1993).
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