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Let W t(0 < t ,1) denote a Brownian motion process which has zero drift during the time interval

[0, í) and drift è during the time interval [í, 1), where è and í are unknown. The process W is

observed sequentially. The general goal is to ®nd a stopping time T of W that `detects' the unknown

time point í as soon and as reliably as possible on the basis of this information. Here stopping always

means deciding that a change in the drift has already occurred. We discuss two particular loss

structures in a Bayesian framework. Our ®rst Bayes risk is closely connected to that of the Bayes tests

of power one of Lerche. The second Bayes risk generalizes the disruption problem of Shiryayev to the

case of unknown è.
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1. Introduction and main results

Let W t(0 < t ,1) denote a Brownian motion process which has zero drift during the time

interval [0, í) and drift è during the time interval [í, 1), where è and í are unknown

parameters. Let P(è,í) denote the corresponding probability. Let P1 denote the probability

measure when no change in the drift occurs. Note that P1 � P(è,1) for all è 2 (ÿ1, �1).

Let E(è,í) denote the expectation with respect to P(è,í) and E1 the expectation with respect to

P1. We observe W sequentially and are able to stop this process at any given instant. Let

F t � F W
t � ó (Ws; 0 < s < t). The process W is `in control' or in a `favourable' state as

long as the drift is zero and we do not want to interrupt it during this period. As soon as the

drift becomes è 6� 0 the process W is `out of control' or in an `unfavourable' state and we

now want to stop and take some action. We have no precise information about í and are not

able to anticipate the future development of W. We thus seek a stopping rule T of W which

will stop soon after í without too many `false alarms'. These two con¯icting goals are still

rather vague and have to be further speci®ed. We shall investigate two particular loss

structures in a Bayesian framework (see (8) and (19) below).

Shiryayev (1963) developed the following Bayes approach. Let è 2 R be a ®xed and

known constant. Let ô be a random variable with P(fô � 0g) � p and P(fô. tg) �
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(1ÿ p) eÿë t for t > 0 where p 2 [0, 1) and ë. 0. The observed process W is given by

W t � Bt � è(t ÿ ô)�, where B is a standard Brownian motion independent of ô. The

distribution P of W therefore is given by

P � pP(è,0) � (1ÿ p)

�1
0

P(è,í)ë eÿëí dí:

The quality of a stopping time T is measured by the risk function R(c, T ) given as

R(c, T ) � P(T , ô)� cE(T ÿ ô)�, (1)

with costs c . 0. Let R�c denote the minimal Bayes risk R�c � inf T R(c, T ), where the

in®mum is taken over all stopping times T of W. Let

ð t � P(ô < tjF t)

� p eèW tÿ(è2=2) t � (1ÿ p)
� t

0
eè(W tÿWs)ÿ(è2=2)( tÿs)ë eÿës ds

p eèW tÿ(è2=2) t � (1ÿ p)
� t

0
eè(W tÿWs)ÿ(è2=2)( tÿs)ë eÿës ds� (1ÿ p) eÿë t

:

Shiryayev (1963) obtained the following optimality result. Let p�c denote the unique

solution in (0, 1) of the implicit equation

c
2

è2
exp fÿËH(x)g

�x

0

exp fËH(w)g wÿ1(1ÿ w)ÿ2 dw � 1,

where

Ë :� 2ë

è2
, H(w) :� log

w

1ÿ w

� �
ÿ 1

w
:

Then

T�c :� inf ft . 0jð t > p�c g (2)

minimizes R(c, T ) among all stopping times T of W, i.e., R(c, T�c ) �R�c .

By modifying the proof given by Shiryayev (1973), one can transform the problem of

®nding a Bayes solution into a generalized parking problem (Beibel 1994b). This means

that for a suf®ciently large class of stopping times T the Bayes risk R(c, T ) can be written

as E(gc(ðT )), where gc is a convex function with a unique minimum at x � p�c . Since ð t is

continuous in t, one can stop exactly in the minimum. A similar approach can be applied to

the continuous-time version of the Bayes problems of Ritov (1990) (Beibel 1996). This

method also works for many other cases (see, for example, Beibel and Lerche 1997, Lerche

1986a and Woodroofe et al. 1994).

Let p � 0. The optimal solution T�c in (2) can then be rewritten as

T�c � inf t . 0

����� t

0

eè(W tÿWs)ÿ(è2=2)( tÿs) eë( tÿs) ds > A

 !
,
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with A � p�c =[ë(1ÿ p�c )]. For ë close to 0 this stopping rule does not differ much from the

stopping rule

TA � inf t . 0

����� t

0

eè(W tÿWs)ÿ(è2=2)( tÿs) ds > A

 !
: (3)

In fact p�c =ë converges to a non-degenerate limit as ë tends to zero (Pollak and Siegmund

1985).

The stopping rule T A has been studied in detail by Pollak and Siegmund (1985). Pollak

and Siegmund also proposed the following generalization of (3) to the case of unknown

è. 0. Let G denote some probability measure on (0, 1). A new stopping rule T̂ A is then

de®ned by

T̂A � inf t . 0

�����1
0

� t

0

e y(W tÿWs)ÿ( y2=2)( tÿs) ds

� �
G(dy) > A

( )
: (4)

Pollak and Siegmund noted that�1
0

� t

0

e y(W tÿWs)ÿ( y2=2)( tÿs) ds

� �
G(dy)ÿ t

is a P1 martingale with mean 0 and hence E1(T̂ A) � A. They also discuss the average run

length of T̂A under P(è,0) when the threshold A is large. Let k denote Euler's constant. Then

they stated that

è2

2
E(è, 0)(T̂A) � log A� 1

2
log log Aÿ 1

2
ÿ kÿ 1

2
log f2ðg2(è)g ÿ 1

2
log

2

è2

� �
� o(1) (5)

as A!1 if è. 0 and G has a positive continuous density g in some neighbourhood of è.

The stopping times T�c , TA and T̂A all have ®nite average run lengths under P1. This

means in particular that they will eventually stop even if no change in the drift occurs. In

some applications this might be considered as a disadvantage. One way to remedy this is to

impose a probability constraint such as P1(T ,1) < á, 1 for some á 2 (0, 1) on T

(Pollak and Siegmund 1975). Any stopping time T which satis®es this condition as well as

P(è,í)(T ,1) � 1 for è 6� 0 and 0 < í,1 can be considered as a test of power one for

the testing problem

H0: P1 against H1: P(è,í) for some è 6� 0 and í 2 [0, �1):

Tests of power one for

H90: P1 against H91: P(è,0) for some è 6� 0

were introduced by Darling and Robbins (1967). A test of power one for H90 versus H91 is by

de®nition a stopping time T which satis®es the conditions

(I) P1(T ,1) , 1, (II) P(è,0)(T ,1) � 1 for all è 6� 0:

Here stopping always means deciding in favour of H91. Lerche (1986b) determined Bayes

tests of power one for H90 versus H91 when the sampling costs are proportional to è2. Let

Sequential detection in continuous time 459



ó 2 . 0 and ì 2 R be known constants. Let G denote the normal distribution with mean ì
and variance ó 2. Lerche (1986b) considered the Bayes risk

L (c, T ) � ãP1(T ,1)� (1ÿ ã)c

��1
ÿ1

è2E(è,0)(T )G(dè), (6)

with ã 2 (0, 1) and small observation costs c. The expression on the right-hand side of (6) is

proportional to

P1(T ,1)� c
2(1ÿ ã)

ã

��1
ÿ1

è2

2
E(è,0)(T )G(dè): (7)

Our ®rst loss structure is a natural generalization of (7). Let r denote some probability

measure on [0, 1) with �1
0

sr(ds) ,1:

Let

L(c, T ) � P1(T ,1)� c

��1
ÿ1

è2

2

�
[0,1)

E(è,í)(T ÿ í)�r(dí)

 !
G(dè): (8)

The costs for observations taken after the change point í are proportional to è2. The

corresponding Bayes risk for the case of è known has been studied by Beibel (1994b) and

Keener et al. (1995). For r(f0g) � 1 the Bayes risk (8) reduces to (7) if we replace c by

2c(1ÿ ã)=ã. Let L�c denote the minimal Bayes risk L�c � inf T L(c, T ). Let P now denote the

probability measure

P �
��1
ÿ1

�
[0,1)

P(è,í)r(dí)G(dè): (9)

Let

ø t � dP

dP1

����
F t

�
��1
ÿ1

�
[0,1)

dP(è,í)

dP1

����
F t

r(dí)G(dè)

� 1

ó
eÿì

2=2ó 2

�
[0,1)

1

f(t ÿ s)� � ó ÿ2g1=2
exp

(W t ÿ W t^s � ì=ó 2)2

2f(t ÿ s)� � ó ÿ2g

 !
r(ds): (10)

Note that

dP(è,í)

dP1

����
F t

� exp è(W t ÿ Wí)ÿ è2

2
(t ÿ í)

� �
, if í, t,

1, if í > t:

8<:
Let Sb � inf ft . 0jø t > bg. Sb stops the process as soon as the likelihood ratio dP=dP1jF t

attains or exceeds b. Let â(c) � 1=c. Theorem 1 below states that the stopping rules Sâ(c) are

approximately optimal for L(c, :). Their expected loss L(c, Sâ(c)) approaches the minimal
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Bayes risk L�c within an error of o(c) as c tends to zero. Theorem 2 below gives an explicit

expansion of L(c, Sâ(c)) up to an error term of magnitude o(c) for small costs.

Theorem 1.

L�c � L(c, Sâ(c))� o(c) when c! 0:

Theorem 2.

L(c, Sâ(c)) � c log
1

c

� �
� 1

2
log log

1

c

� �
� 1ÿ 1

2

��1
ÿ1

log
è2

2

� �
G(dè)� log ó

(

�
��1
ÿ1

è2

2
G(dè)

 ! ��1
0

sr(ds)

 !
ÿ K1

)
� o(c)

when c! 0. Here K1 is given by

K1 �
�1
ÿ1

�
[0,1)

E(è,í) log

�
[0,1)

eÿèWs�(è2=2)s r(ds)

 !( )
r(dí)G(dè):

Remark 1. For r(ds) � ë eÿës ds, it is possible to evaluate K1 explicitly. Using the results of

Yor (1992), one then obtains

K1 �
�1
ÿ1

�1
0

2ë

y2

1

u
log

2ë

y2

1

u

� �
u2ë= y2

eÿu

Ã(1� 2ë=y2)
du

( )
G(dy): (11)

Here Ã denotes the usual gamma function, i.e., Ã(x) � �1
0

eÿ t t xÿ1 dt.

Remark 2. For r(f0g) � 1, ì � 0, and ó 2 � 1 the stopping time Sb becomes

inf (t . 0j jW tj > [(t � 1)flog (t � 1)� 2 log bg]1=2):

Moreover K1 and
�1

0
sr(ds) vanish. Let ~c � 2(1ÿ ã)c=ã. L(~c, T ) equals

P1(T ,1)� 2(1ÿ ã)

ã
c

��1
ÿ1

è2

2
E(è,0)(T )G(dè) � 1

ã
L (c, T ):

Let L �c denote the minimal Bayes risk for (6)

L �c � inf
T

ãP1(T ,1)� (1ÿ ã)c

��1
ÿ1

è2E(è,0)(T )G(dè)

 !
:

Theorem 1 and Theorem 2 now yield together

L �c � 2(1ÿ ã)c log
1

~c

� �
� 1

2
log log

1

~c

� �
� 1� 1

2
log 2

�

ÿ 2

(2ð)1=2

��1
0

log (è) eÿè
2=2 dè� o(1)

)
(12)
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when c! 0. Hence Theorem 5 of Lerche (1986b) can be obtained as a special case of

Theorem 1 and Theorem 2 above. Note, however, that Lerche (1986b) gives for ®xed costs c

upper and lower bounds for the optimal stopping rules which are asymptotically tight.

Analogous results on the structure of the optimal solutions are no longer feasible in our set-

up since in general we do not have a Markovian structure.

The main point in our approach to prove Theorem 1 and Theorem 2 is similar to that of

Lerche (1986b). In a ®rst step we derive an alternative representation of the Bayes risk

L(c, :). We show (see Proposition 2 and Proposition 3 below) for all stopping times T of W

with L(c, T ) ,1 that

L(c, T ) � Efgc(øT )� cVTg, (13)

where gc(x) � 1=x� c log x and (Vt; 0 < t ,1) is a non-negative increasing process which

grows for large t as 1
2

log t (see (24), Proposition 3 and Lemma 2 below). Then (13)

transforms the initial optimal stopping problem into a `perturbed' generalized parking

problem. This approach has also been employed by Beibel (1994b) and Keener et al. (1995).

The main point in proving (13) is to show that the mean delay can be rewritten for any

stopping time T of W with L(c, T ) ,1 as��1
ÿ1

è2

2

��1
0

E(è,í)(T ÿ í)�r(dí)

 !
G(dè) � E(logøT � VT ), (14)

where ø t is de®ned in (10). We recall that P � ��1ÿ1 � [0,1) P(è,í)r(dí)G(dè). Using (13) we

shall ®rst prove Theorem 2 and then Theorem 1.

Assuming (13) we obtain, after verifying L(c, Sâ(c)) ,1 (see Lemma 3 below), that

L(c, Sâ(c)) � E
1

øSâ(c)

� c logøSâ(c)
� cVSâ(c)

 !
:

Obviously E(1=øSâ(c)
� c logøSâ(c)

) � c� c log (1=c) for 0 , c < 1. In order to prove

Theorem 2, it therefore suf®ces to show that

E(VSb
) � 1

2
log log bÿ 1

2

��1
ÿ1

log
è2

2

� �
G(dè)� log ó

�
��1
ÿ1

è2

2
G(dè)

 ! ��1
0

sr(ds)

 !
ÿ K1 � o(1) (15)

as b tends to in®nity. This is done in Proposition 5 below.

The function gc assumes a unique minimum over the interval (0, 1) at x � â(c). The

stopping times Sâ(c) stop the process ø in the global minimum of gc and thus minimize

Egc(øT ) over all stopping times T of W. Let ~Sc denote a c2-optimal solution with respect to

L(c, :). That is L(c, ~Sc) < L�c � c2. Theorem 2 implies in particular that
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L�c < c log
1

c

� �
� c

2
log log

1

c

� �
� O(c)

as c! 0. For suf®ciently small costs c, therefore L�c , 1. This means that the problem of

minimizing L(c, :) is non-trivial. Note that L(c, T ) � 1 for T � 0. Since Vt is increasing in t,

we may assume without loss of generality that ~Sc < Sâ(c). To obtain the approximate

optimality of Sâ(c) it only remains to show that E(VSâ(c)
ÿ V~Sc

) � o(1) as c tends to zero. If,

as in the work of Beibel (1994b) and Keener et al. (1995), E(lim t!1 Vt) ,1, it is suf®cient

to show that ~Sc converges to in®nity in probability as c! 0. In our case Vt has logarithmic

growth and so we need a stronger condition. It is suf®cient to show that

E log (Sâ(c) � ó ÿ2)ÿ E log (~Sc � ó ÿ2) � o(1)

as c! 0.

Remark 3. Note that (14) and (15) yield together (see Proposition 6 below)

��1
ÿ1

è2

2

��1
0

E(è,í)(Sb ÿ í)�r(dí)

 !
G(dè) �log b� 1

2
log log b

� 1
2

��1
ÿ1

log
2

è2

� �
G(dè)� log ó

�
��1
ÿ1

è2

2
G(dè)

 ! ��1
0

sr(ds)

 !
ÿ K1 � o(1)

(16)

as b tends to in®nity. The asymptotic expansions (5) and (16) are related. Following the lines

of (A7) in the paper by Pollak and Siegmund (1985) one obtains for suf®ciently large b and

®xed è

log b � log (øSb
)

� log

��1
ÿ1

�Sb

0

e y(WS b
ÿWs)ÿ( y2=2)(Sbÿs) r(ds)G(dy)

 !

� èWSb
ÿ è2

2
Sb � 1

2

(WSb
ÿ èSb)2

Sb

ÿ log
Sb

2ð

� �1=2
( )

� log

��1
ÿ1

S
1=2
b ö S

1=2
b

WSb

Sb

ÿ y

� �� ��Sb

0

eÿ yWs�( y2=2)s r(ds)

" #
G(dy)

 !
,
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where ö(x) � f1=(2ð)1=2g exp (ÿ1
2
x2). Arguing in a similar way as Pollak and Siegmund

(1985) one then obtains for ®xed è and í (see also Kohler 1995)

è2

2
E(è,í)(Sb ÿ í)� � log b� 1

2
log log bÿ 1

2
ÿ 1

2
log 2ðö2 èÿ ì0

ó

� �� �
� 1

2
log

2

è2

� �

� 1
2
è2íÿ E(è,í) log

�
[0,1)

eÿèWs�(è2=2)s r(ds)

 !
� o(1) (17)

as b!1. Formally integrating (17) with respect to r(dí) and G(dè) yields (16). To justify

this operation one would of course have to show that (17) holds in some sense uniformly in è
and í.

In order to motivate our second loss structure, we shall now have a brief look at

Shiryayev's problem for small costs c. One can show (see Proposition 1 of Beibel 1994b)

that, as c! 0,

R�c �
c

ë� è2=2
log

ë� è2=2

c

� �
� O(c) (18)

The asymptotic expansion (18) has an important consequence. If we rewrite R(c, T ) as

R(c, T ) � P(T , ô)� ~cE ë� è2

2

� �
(T ÿ ô)�

� �
,

where ~c � c=(ë� è2=2), (18) becomes R�c � ~c log (1=~c)� O(~c). The leading term

~c log (1=~c) does not depend on è. This means that taking the costs for the delay proportional

to ë� è2=2 standardizes the problems with different values of è such that they are

asymptotically of equal dif®culty for small costs ~c � c=(ë� è2=2). We therefore take the

costs for observations after the change point proportional to ë� è2=2 and consider now

R(c, T ) �
�

[0,1)

P1(T , í)ë eÿëí dí� c

��1
ÿ1

ë� è2

2

� ��
[0,1)

E(è,í)(T ÿ í)�ë eÿëí dí

( )
G(dè):

(19)

Note that we have now put r(f0g) � p � 0 to keep our formulas simple. Let R�c denote the

minimal Bayes risk R�c � inf T R(c, T ), where the in®mum is taken over all stopping times T

with respect to the observed process W. Let dP � dP(è,í)ë eÿëíG(dè). Let ð now denote the

process

ð t � P(ô < tjF t) �
�

[0, t)

1

f(t ÿ s)� � ó ÿ2g1=2
exp

(W t ÿ W t^s � ì=ó 2�2
2f(t ÿ s)� � ó ÿ2g

 !
ë eÿës ds

( )

3

�
[0, t)

1

f(t ÿ s)� � ó ÿ2g1=2
exp

(W t ÿ W t^s � ì=ó 2)2

2f(t ÿ s)� � ó ÿ2g

 !
ë eÿës ds

(

� ó eì
2=2ó 2

eÿë t

�ÿ1

(20)
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for 0 < t ,1. Let Ta for a 2 (0, 1) denote the stopping time Ta � inf ft . 0jð t > ag.
These stopping times are simple Bayes rules in the sense that they stop as soon as the

posterior probability ð t rises above the threshold a. Let á(c) � 1=(1� c) for 0 , c , 1.

Theorem 3 below states that the stopping rules Tá(c) are approximately optimal for R(c, :).
Their risk R(c, Tá(c)) approximates the minimal Bayes risk R�c within an error of o(c) as c

tends to zero. Theorem 4 below gives an explicit expansion of the Bayes risk R(c, Tá(c)) up

to a remainder term of o(c) for small c.

Theorem 3.

R�c � R(c, Tá(c))� o(c) when c! 0:

Theorem 4.

R(c, Tá(c)) � c log
1

c

� �
� 1

2
log log

1

c

� �
ÿ 1

2

�1
ÿ1

log ë� è2

2

� �
G(dè)

(

� log ó � ì2 � ó 2

ë
ÿ K1

)
� o(c)

when c! 0. Here K1 is the same constant as in (11).

The proofs of Theorem 3 and Theorem 4 are similar to the proofs of Theorem 1 and

Theorem 2 above (Beibel 1994a). We therefore omit the details. One can show that

R(c, T ) � E 1ÿ ðT � c log
1

1ÿ ðT

� �
ÿ ðT

� �
� cVT

� �
for all stopping times T of W with R(c, T ) ,1. The function

hc(x) � 1ÿ x� c log
1

1ÿ x

� �
ÿ x

� �
is convex and assumes its unique minimum over the interval (0, 1) at x � á(c). Tá(c) stops

the process ð in the global minimum of hc and thus minimizes

E 1ÿ ðT � c log
1

1ÿ ðT

� �
ÿ ðT

� �� �
over all stopping times T of W. The remainder term VT is that of (13).

The rest of this paper is organized as follows. Section 2 is devoted to the proof of

representation (13). Section 3 deals with the remainder term E(VSb
) which appeared above.

In particular we derive the asymptotic expansion (15). This result then yields a proof of

Theorem 2. Section 4 covers the asymptotic Bayes optimality of the stopping rules Sâ(c) and

gives a proof of Theorem 1. In Section 5 we collect some supporting lemmas which are of

a more technical nature.
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2. The Bayes risk

In this section we shall prove the representation (13) (see Propositions 1 and 2 below). From

now on we shall assume without loss of generality that ì � 0 and ó 2 � 1. The de®nition of

ø t in (10) then simpli®es to

ø t �
�

[0,1)

1

f(t ÿ s)� � 1g1=2
exp

(W t ÿ W t^s)
2

2f(t ÿ s)� � 1g

 !
r(ds):

In a ®rst step we introduce random variables Y and ô that correspond to the prior distributions

G and r. Let B denote a standard Brownian motion. Let Y be a standard normal random

variable and ô be a random variable with P(ô. t) � � ( t,1)r(ds) for all t > 0. Let B, Y and ô
be independent. Put

W t � Bt � Y (t ÿ ô)� � Bt �
� t

0

Rs ds,

where Rs � Y1fô<sg. The distribution of W now is given by
��1
ÿ1

�
[0,1) P(è,í)r(dí)G(dè) and

so agrees with (9). Therefore ø t � dP=dP1jF t.

Let us recall that F t � F W
t � ó (Ws; 0 < s < t). We also recall that P1 denotes the

probability measure under which W is a standard Brownian motion. It can be considered as

the measure with change at í � 1. For any stopping time T of W the Bayes risk L is now

equal to

L(c, T ) � P1(T ,1)� cE
Y 2

2
(T ÿ ô)�

� �
: (21)

We shall rewrite L(c, :) further. To do so, we ®rst need some new notation. Let

R̂t � øÿ1
t

�
[0, t]

W t ÿ Ws

(t ÿ s� 1)3=2
exp

(W t ÿ Ws)
2

2(t ÿ s� 1)

 !
r(ds)

and

cR2
t � øÿ1

t

�
[0, t]

f(W t ÿ Ws)=(t ÿ s� 1)g2 � 1=(t ÿ s� 1)

(t ÿ s� 1)1=2
exp

(W t ÿ Ws)
2

2(t ÿ s� 1)

 !
r(ds):

Straightforward calculations show that for all t > 0

R̂t � E(RtjF t),
cR2

t � E(R2
t jF t):

Fubini's theorem yields for all stopping times T of W

E

�T

0

cR2
s ds

 !
� EfY 2(T ÿ ô)�g:

Moreover P1(T ,1) � E(1=øT 1fT ,1g). Therefore we have for all stopping times T of W

with L(c, T ) ,1
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L(c, T ) � E
1

øT

� c

2

�T

0

cR2
s ds

 !
: (22)

Now let W denote the innovation process

W t :� W t ÿ
� t

0

R̂s ds:

This process is a standard Brownian motion under the probability measure P relative to the

®ltration F � fF t; t > 0g (Liptser and Shiryayev 1977, pp. 297±299). For the log-

likelihood logø we then obtain the following representation.

Proposition 1.

d(logø t) � 1
2
(R̂t)

2 dt � R̂t dW t: (23)

Proof. Let

~Z1t � exp ÿ
� t

0

R̂s dWs ÿ 1
2

� t

0

(R̂s)
2 ds

� �
:

The Jensen inequality yields

E exp f1
4
(R̂s)

2g < E exp (1
4
Y 2) ,1:

Let ~P1 denote the probability measure on ó (Ws; 0 < s ,1) with

d~P1jF t
� ~Z1t dPjF t

for t 2 [0, 1):

Girsanov's theorem implies that (W t, F t; 0 < t ,1) is a standard Brownian motion under

the probability measure ~P1. From Kolmogorov's consistency theorem it follows that the two

measures P1 and ~P1 agree on the ó-algebra ó (Ws; 0 < s ,1). Therefore (1=ø t;

0 < t ,1) and (~Z1t ; 0 < t ,1) are modi®cations of each other. Since both processes

are continuous, they are also indistinguishable. u

Proposition 1 and (22) yield together the following.

Proposition 2. For all stopping times T of W with EfY 2(T ÿ ô)�g,1

E
Y 2

2
(T ÿ ô)�

� �
� E logøT � 1

2

�T

0

fcR2
s ÿ (R̂s)

2g ds

 !
and

L(c, T ) � E
1

øT

� c logøT � c

2

�T

0

fcR2
s ÿ (R̂s)

2g ds

 !
:
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Let

Vt � 1
2

� t

0

fcR2
s ÿ (R̂s)

2g ds (24)

denote the remainder term in the preceding formula. We now investigate E(VT ).

To state our next result, we need some further notation. Let F W ,ô
t denote the ó-algebra

ó (Ws; 0 < s < t, ô). The ®ltration F W ,ô corresponds to a hypothetical observer who knows

ô beforehand and is ignorant about the drift Y. Let

R̂
(ô)
t �

W t ÿ Wô

t ÿ ô� 1
1fô< tg:

We have E(RtjF W ,ô
t ) � R̂

(ô)
t .

It is convenient to introduce one more probability measure on ó (Ws; 0 < s ,1, Y , ô).

Let P0 denote the probability measure under which (W t ÿ Yt; 0 < t ,1) is a standard

Brownian motion. The notation may seem cumbersome on the ®rst view, but P0 can be

considered as the measure with `immediate change' at í � 0. The distribution of W under

P0 is given by
��1
ÿ1 P(è,0)G(dè). We shall use the likelihood ratio of P with respect to P0

relative to the ®ltrations F and F W ,ô later. The probability measures P and P0 are

equivalent on the ó-algebra ó (Ws; 0 < s ,1, ô). Let

N1 � dP

dP0

����
ó (Ws;0<s ,1)

, N (ô)
1 �

dP

dP0

����
ó (Ws;0<s ,1,ô)

:

The quantities E(log N1) and E(log N (ô)
1 ) appear below (see (28)). We have

N1 �
�1

0

eÿYWs�(Y 2=2)sr(ds), N (ô)
1 � eÿYWô�(Y 2=2)ô:

It is easy to see that

E(log N (ô)
1 ) �

��1
ÿ1

y2

2
G(dy)

 ! ��1
0

sr(ds)

 !
,1: (25)

Since F t � ó (Ws; 0 < s ,1) � ó (Ws; 0 < s ,1, ô), we get by the monotonicity of the

Kullback±Leibler information that E(log N1) < E(log N (ô)
1 ). Moreover

E(log N1) �
�1
ÿ1

�
[0,1)

E(è,í) log

�
[0,1)

eÿèWs�(è2=2)sr(ds)

 !( )
r(dí)G(dè): (26)

Proposition 3. For all stopping times T of W with EfY 2(T ÿ ô)�g,1

E(VT ) � 1
2
E[log f(T ÿ ô)� � 1g]� 1

2
E

�T

0

(R̂(ô)
s ÿ R̂s)

2 ds

 !
: (27)

The remainder term 1
2
E
� T

0
(R̂(ô)

s ÿ R̂s)
2 ds in (27) stays bounded. We have

1
2
E

�1
0

(R̂(ô)
s ÿ R̂s)

2 ds

� �
� E(log N (ô)

1 )ÿ E(log N1) ,1: (28)
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Proof. The following equation holds:

Ef(Rt ÿ R̂
(ô)
t )2jF W ,ô

t g �
1

t ÿ ô� 1
1fô< tg: (29)

Since

Ef(Rt ÿ R̂
(ô)
t )(R̂

(ô)
t ÿ R̂t)jF W ,ô

t g � 0,

a Fubini type of argument provides

E

�T

0

fcR2
s ÿ (R̂s)

2g ds � E

�T

0

(Rs ÿ R̂(ô)
s )2 ds� E

�T

0

(R̂(ô)
s ÿ R̂s)

2 ds:

Note that R̂(ô) � E(RtjF W ,ô
t ). Then (29) implies that

E

�T

0

(Rs ÿ R̂(ô)
s )2 ds � E

�(Tÿô)�

0

1

s� 1
ds � E log f(T ÿ ô)� � 1g:

This yields (27). Lemma 2 below provides (28). u

3. The stopping times Sb

In this section we prove the asymptotic expansion of the remainder term VSb
as b!1

which we have already stated in (15) (see Proposition 3 below). This result immediately

yields a proof of Theorem 2. We also obtain an asymptotic expansion of the weighted mean

delay

E
Y 2

2
(Sb ÿ ô)�

� �
for b!1 (see Proposition 6 below).

Obviously P(limb!1Sb � �1) � 1. According to Proposition 3 above we have to

evaluate E log f(Sb ÿ ô)� � 1g for large b. In a ®rst step we study the asymptotic behaviour

of ø t as t tends to in®nity. One easily obtains

logø t � W 2
t

2(t � 1)
ÿ 1

2
log (t � 1)� log

dP

dP0

����
F t

 !
:

This shows that the process logø t behaves for large times t in ®rst order as (Y 2=2)t. Note

that the P martingale dP0=dPjF t converges to N1 as t!1 (see Lemma 2 below). On the

set \1k�1fSk ,1g we have øSb
� b for all b > 1. A straightforward argument therefore

yields

Sb

log b
! 2

Y 2
P-almost sure (30)

as b!1. The following result is now intuitively plausible.

Sequential detection in continuous time 469



Proposition 4. As b!1

E[log f(Sb ÿ ô)� � 1g] � log log bÿ
��1
ÿ1

log
y2

2

� �
G(dy)� o(1):

Proof. Let

îb � (Y 2=2)f(Sb ÿ ô)� � 1g
log b

, Eb � Y 2

2
(Sb ÿ ô)� >

1

12
log b

� �
:

The assertion is equivalent to limb!1E(log îb) � 0. On the event Eb holds îb > 1
12

. Lemma 3

below implies that

sup
2<b,1

E(e1Eb
logîb ) < 1� sup

2<b,1
E(îb) ,1:

These bounds yield together with (30) limb!1E(1Eb
log îb) � 0. Lemma 4 below provides

limb!1E(1EC
b

log log b) � 0 and

lim
b!1

E 1EC
b

log
Y 2

2

� �� �
� 0 � lim

b!1
P(EC

b ):

Therefore limb!1E(1Ec
b

log îb) � 0. u

We now come to the asymptotic expansion of E(VSb
).

Proposition 5. As b!1

E(VSb
) � 1

2
log log bÿ 1

2

�1
ÿ1

log
y2

2

� �
G(dy)� E(log N (ô)

1 )ÿ E(log N1)� o(1):

Proof. Lemma 3 below provides that EfY 2(Sb ÿ ô)�g,1. From Proposition 3 we obtain

for b . 1

E(VSb
) � 1

2
E[log f(Sb ÿ ô)� � 1g]� 1

2
E

�Sb

0

(R̂(ô)
s ÿ R̂s)

2 ds

 !
:

Since P(limb!1Sb � �1) � 1, Lemma 2 below implies that

lim
b!1

1
2
E

�Sb

0

(R̂(ô)
s ÿ R̂s)

2 ds

 !
� E(log N (ô)

1 )ÿ E(log N1):

Proposition 4 now yields the assertion. u

Proof of Theorem 2. Proposition 2 yields

L(c, Sâ(c)) � E
1

øSâ(c)

� c logøSâ(c)
� cVSâ(c)

 !
:
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For suf®ciently small c it holds that

E
1

øSâ(c)

� c logøSâ(c)

 !
� c� c log c:

Since limc!0â(c) � �1, we obtain from Proposition 5 above that

E(VSâ(c)
) � 1

2
log log

1

c

� �
ÿ 1

2

�1
ÿ1

log
y2

2

� �
G(dy)� E(log N (ô)

1 )ÿ E(log N1)� o(1)

as c! 0. The quantities E(log N (ô)
1 ) and E(log N1) are evaluated in (25) and (26) above.

This yields the assertion. u

Proposition 2 and Proposition 5 also immediately yield the following.

Proposition 6. As b!1

E
Y 2

2
(Sb ÿ ô)�

� �
� log b� 1

2
log log bÿ 1

2

�1
ÿ1

log
y2

2

� �
G(dy)

� E(log N (ô)
1 )ÿ E(log N1)� o(1):

4. The minimal Bayes risk

In order to prove the asymptotic Bayes optimality of the stopping times Sâ(c) we compare

their performance with the performance of c2-optimal solutions. Let ~Sc for 0 , c < 1 be a c2-

optimal stopping rule, i.e., a stopping time with L(c, ~Sc) < L�c � c2. Without loss of

generality we may assume that ~Sc < Sâ(c).

Proof of Theorem 1. The function gc(x) � 1=x� c log x assumes a unique minimum over

the interval (0, 1) at x � â(c). Proposition 2 and Proposition 3 therefore yield together

0 < L(c, Sâ(c))ÿ L�c < L(c, Sâ(c))ÿ L(c, ~Sc)� c2

< E
1

øSâ(c)

� c logøSâ(c)
ÿ 1

ø~Sc

ÿ c logø~Sc

 !
� cE(VSâ(c)

ÿ V~Sc
)� c2

< cE(VSâ(c)
ÿ V~Sc

)� c2

< cE

�1
~Sc

(R̂(ô)
s ÿ R̂s)

2 ds

 !
� cE log

(Sâ(c) ÿ ô)� � 1

(~Sc ÿ ô)� � 1

 !( )
� c2:

Note that Lemma 3 below provides that E(Y 2(Sâ(c))ÿ ô)�) ,1. According to Lemma 5

below we have limc!0 P(~Sc , M) � 0 for all M . 0 and so Lemma 2 gives
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lim
c!0

E

�1
~Sc

(R̂(ô)
s ÿ R̂s)

2 ds

 !
� 0:

Lemma 6 below now yields the assertion. u

5. Supporting lemmata

In this section we collect some useful lemmas which are of a more technical nature.

Let

W t
(ô) � W t ÿ

� t

0

R̂(ô)
s ds:

The process (W t
(ô), F W ,ô

t ) is a standard Brownian motion under P. We recall that W t ÿ Yt is

a standard Brownian motion under P0. The distribution of W under P0 equals��1
ÿ1 P(è,0)G(dè). We now have a closer look at the likelihood ratio of P with respect to

P0 relative to the ®ltrations F and F W ,ô. Let

Nt � dP

dP0

����
F t

, N
(ô)
t �

dP

dP0

����
F W ,ô

t

:

Lemma 1. For all 0 < t ,1

Nt � exp

� t

0

R̂s ÿ Ws

s� 1

� �
dWs ÿ 1

2

� t

0

R̂s ÿ Ws

s� 1

� �2

ds

( )
and

N
(ô)
t � exp

� t

0

R̂(ô)
s ÿ

Ws

s� 1

� �
dW

(ô)

s ÿ 1
2

� t

0

R̂(ô)
s ÿ

Ws

s� 1

� �2

ds

( )
:

Proof. Since

dP

dP0

����
F t

� dP

dP1

����
F t

dP1
dP0

����
F t

,
dP

dP0

����
F W ,ô

t

� dP

dP1

����
F W ,ô

t

dP1
dP0

����
F W ,ô

t

,

we obtain

dP

dP0

����
F t

� (t � 1)1=2 exp ÿ W 2
t

2(t � 1)

 !
ø t (31)

and

dP

dP0

����
F W ,ô

t

� t � 1

(t ÿ ô)� � 1

� �1=2

exp
(W t ÿ W t^ô)2

2[(t ÿ ô)� � 1]

 !
exp ÿ W 2

t

2(t � 1)

 !
: (32)
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Then (31) yields after some algebra

d(log Nt) � 1
2

R̂t ÿ W t

t � 1

� �2

dt � R̂t ÿ W t

t � 1

� �
dW t, (33)

and (32) yields after some algebra

d(log N
(ô)
t ) � 1

2
R̂

(ô)
t ÿ

W t

t � 1

� �2

dt � R̂
(ô)
t ÿ

W t

t � 1

� �
dW t

(ô): (34)

u

Lemma 2. For all stopping times T of W with EfY 2(T ÿ ô)�g,1 it holds that

E

�T

0

R̂(ô)
s ÿ R̂s)

2 ds

 !
� E

�T

0

R̂(ô)
s ÿ

Ws

s� 1

� �2

ds

( )
ÿ E

�T

0

R̂s ÿ Ws

s� 1

� �2

ds

( )
: (35)

Moreover

1
2
E

�1
0

R̂(ô)
s ÿ

Ws

s� 1

� �2

ds

( )
� E(log N (ô)

1 ) ,1 (36)

and

1
2
E

�1
0

R̂s ÿ Ws

s� 1

� �2

ds

( )
� E(log N1) ,1: (37)

Proof. Let Us � Ws=(s� 1) for s 2 [0, 1). For all s 2 [0, 1) and A 2 F s it holds that

Ef1A(R̂(ô)
s ÿ R̂s)

2g � Ef1A(R̂(ô)
s ÿ Us � Us ÿ R̂s)

2g

� Ef1A(R̂(ô)
s ÿ Us)

2g ÿ 2Ef1A(Us ÿ R̂(ô)
s )(Us ÿ R̂s)g

� Ef1A(Us ÿ R̂s)
2g

� Ef1A(R̂(ô)
s ÿ Us)

2g ÿ Ef1A(Us ÿ R̂s)
2g:

Note that E(R̂(ô)
s jF s) � R̂s. If we show that

E

�1
0

(R̂s ÿ Us)
2 ds

� �
,1, E

�1
0

(R̂(ô)
s ÿ Us)

2 ds

� �
,1,

a Fubini type of argument then yields (35). Therefore it is suf®cient to prove (36) and (37).

The submartingales (log Nt, F t) and (log N
(ô)
t , F W ,ô

t ) are uniformly integrable. Hence

lim t!1 E(log Nt) � E(log N1) and lim t!1 E(log N
(ô)
t ) � E log (N (ô)

1 ). A straightforward

calculation shows that, for all t > 0,

E

� t

0

(R̂s ÿ Us)
2 ds

� �
,1, E

� t

0

(R̂(ô)
s ÿ Us)

2 ds

� �
,1:
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Lemma 1 therefore implies that

1
2
E

� t

0

(R̂s ÿ Us)
2 ds

� �
� E(log N t),

1
2
E

� t

0

(R̂(ô)
s ÿ Us)

2 ds

� �
� E(log N

(ô)
t ):

u

Lemma 3. There exists a constant A > 0 such that for all b > 1

E
Y 2

2
(Sb ÿ ô)�

� �
< 2 log b� A:

Proof. Proposition 2 yields for all positive integers n

E
Y 2

2
(Sb ^ nÿ ô)�

� �
< log b� 1

2
E

�Sb^n

0

fcR2
s ÿ (R̂s)

2g ds

 !
:

Proposition 3 and Lemma 2 now give

E
Y 2

2
(Sb ^ nÿ ô)�

� �
< log b� 1

2
E log f(Sb ^ nÿ ô)� � 1g � 1

2

�1
0

sr(ds):

Since log x < x and jE log (Y 2)j,1, we obtain the assertion. u

Lemma 4. As b!1

P
Y 2

2
(Sb ÿ ô)� <

1

12
log b

� �
� o

1

log b

� �
:

Proof. Our arguments are similar to those of Pollak (1987, p. 772). Since E(Y 2ô) ,1, it is

more than suf®cient to prove that

P
Y 2

2
Sb <

1

6
log b

� �
< 2bÿ1=3

for b . 1. Let çb � (1=3Y 2) log b and çb, y � (1=3y2) log b. Let F W ,ô,Y
t denote the ó-algebra

ó (Ws; 0 < s < t, ô, Y ). For arbitrary M . 0 it holds that

P(Sb < çb) < P
dP

dP1

����
F W ,ô,Y

çb

> M

 !
� MP1(Sb < çb)

<
1

M
E1

dP

dP1

����
F W ,ô,Y

çb

 !2

� M

��1
ÿ1

P1(Sb < çb, y)G(dy):

The process ø t is a positive martingale under P1. Therefore the Doob inequality yields

P1(Sb < çb, y) � P1( max
0<s<çb, y

øs > b) <
1

b
: (38)
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Since

dP

dP1

����
F W ,ô,Y

çb

� eY (Wçb
ÿWçb^ô)ÿ(Y 2=2)(çbÿô)� , Y 2çb � 1

3
log b,

we have

E1
dP

dP1

����
F W ,ô,Y

çb

 !2

< b1=3E1(e2Y (Wçb
ÿWçb^ô)ÿ(4Y 2=2)(çbÿô)�) � b1=3: (39)

The inequalities (38) and (39) yield for all M . 0 and b . 1

P(Sb < çb) < M
1

b
� 1

M
b1=3:

With M � b2=3 we obtain the assertion. u

Let ~â(c) � 1=c(1ÿ log c) � â(c)=(1ÿ log c). In the next lemma we compare c2-optimal

stopping rules ~Sc with S~â(c)
in order to bound such stopping rules from below.

Lemma 5. Let (~Sc; 0 , c < 1) be stopping times of W with L(c, ~Sc) < L�c � c2. Then, as

c! 0,

P(~Sc < S~â(c)
) � O

log log (1=c)

log (1=c)

� �
:

Proof. On the event f~Sc < S~â(c)
,1g it holds that ø~Sc

< øS~â(c)
< 1=c and so

1

ø~Sc

� c logø~Sc
>

1

øS~â(c)

� c logøS~â(c)
:

This gives

L�c � c2 > L(c, ~Sc) > E
1

ø~Sc

� c logø~Sc

( )

> c� log
1

c

� �
� 1

~â(c)
� c log ~â(c)ÿ cÿ c log

1

c

� �( )
P(~Sc < S~â(c)

)

� c� c log
1

c

� �
� f1� o(1)gc log

1

c

� �
P(~Sc < S~â(c)

)

when c! 0 and so

P(~Sc < S~â(c)
) < f1� o(1)g (1=c)fL�c � c2 ÿ cÿ c log (1=c)g

log (1=c)
:
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Theorem 1 yields for c! 0

L(c, Sâ(c)) � c� c log
1

c

� �
� 1

2
c log log

1

c

� �
� O(c),

and so

L�c < c� c log
1

c

� �
� c

2
log log

1

c

� �
� O(c) when c! 0: (40)

Therefore

1

c
L�c � c2 ÿ cÿ c log

1

c

� �� �
<

1

2
log log

1

c

� �
� O(1)

as c! 0. u

Lemma 6. Let (~Sc; 0 , c < 1) be stopping times of W with L(c, ~Sc) < L�c � c2 and
~Sc < Sâ(c). Then

lim
c!0

E log
(Sâ(c) ÿ ô)� � 1

(~Sc ÿ ô)� � 1

 !( )
� 0:

Proof. Proposition 4 implies that

E[log f(Sâ(c) ÿ ô)� � 1g] � log log
1

c

� �
ÿ
��1
ÿ1

log
y2

2

� �
G(dy)� o(1)

as c! 0. Since ~Sc < Sâ(c), it is therefore suf®cient to show that

lim inf
c!0

E[log f(~Sc ÿ ô)� � 1g]ÿ log log
1

c

� �
�
��1
ÿ1

log
y2

2

� �
G(dy)

( )
> 0:

It holds that

E[log f(~Sc ÿ ô)� � 1g] > E[1fS~â(c)
<~Scg log f(S~â(c)

ÿ ô)� � 1g]

� E[log f(S~â(c)
ÿ ô)� � 1g]

ÿ E[1fS~â(c)
. ~Scg log f(S~â(c)

ÿ ô)� � 1g]:
Lemma 5 yields limc!0 P(S~â(c)

. ~Sc) � 0 and Proposition 4 implies that

E[log f(S~â(c)
ÿ ô)� � 1g] � log log

1

c

� �
ÿ
��1
ÿ1

log
y2

2

� �
G(dy)� o(1):

It therefore suf®ces to show that

lim sup
c!0

E[1fS~â(c)
. ~Scg log f(S~â(c)

ÿ ô)� � 1g] < 0:
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There exists a constant A . 0 such that log (x� 1) < Ax1=4 for all x > 0. Hence

E 1fS~â(c)
. ~Scg log

Y 2

2
f(S~â(c)

ÿ ô)� � 1g
� �� �

< AE 1fS~â(c) . ~Scg
Y 2

2
(S~â(c)

ÿ ô)� � 1

� �1=4
( )

< A E
y2

2
(S~â(c)

ÿ ô)� � 1

� �� �1=4

P(S~â(c)
. ~Sc)3=4:

Lemma 3 and Lemma 5 now yield the assertion. Note that j ��1ÿ1 log (y2=2)G(dy)j,1 and

so limc!0 E(1fS~â(c)
. ~Scg log (Y 2)) � 0.
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