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For a ®xed integer r > 1, let Z rn be the r th largest of fX 1, X 2, . . . , X ng, where X1, X 2, . . . is a

sequence of i.i.d. random variables with the common distribution function F(x). We prove that

PfZ rn < un, i:o:g � 0 or 1 accordingly as the series
P1

n�1 exp [ÿnf1ÿ F(un)g] [nf1ÿ F(un)g]r=
n ,1 or � 1 for any real sequence fung such that limn!1nf1ÿ F(un)g � �1. This weakens the

condition added on the sequence [nf1ÿ F(un)g] by Wang and Tomkins and generalizes the results of

Klass to the case when r > 1.
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1. Introduction

Let X 1, X 2, . . . be a sequence of independent and identically distributed (i.i.d.) random

variables with the common distribution function F(x). For a ®xed integer r > 1, let Z rn

denote the rth largest of fX 1, X 2, . . . X ng. Wang and Tomkins (1992) showed that, if

[nf1ÿ F(un)g] is non-decreasing and divergent for a real sequence fung, then the

probability

PfZ rn < un i:o:g � 0 or 1 (1:1)

according to the convergence or divergence of any one of the following so-called criterion

series: X1
n�1

PfZ rn < ungf1ÿ F(un)g; (1:2)

X1
n�1

F n(un)
[nf1ÿ F(un)g]r

n
; (1:3)

X1
n�1

exp [ÿnf1ÿ F(un)g] [nf1ÿ F(un)g]r

n
; (1:4)

X1
n�1

exp [ÿnf1ÿ F(un)g] (log log n)r

n
; (1:5)

Bernoulli 3(4), 1997, 429±444

1350±7265 # 1997 Chapman & Hall



X1
n�3

F n(un)
(log log n)r

n
: (1:6)

The results of Wang and Tomkins (1992) generalized those of Klass (1984; 1985) to the

case r > 1 except for an additional monotonicity assumption which was added to the

sequence [nf1ÿ F(un)g]. From a counterexample (which will be published elsewhere), it is

clear that the monotonicity condition added there is not extraneous. More precisely, the

monotonicity of the sequence [nf1ÿ F(un)g] is essential for the series (1.5) and (1.6) to be

criterion series. However, the series (1.2), (1.3) and (1.4) were seen to be valid criterion

series in that counterexample, and this raises the following question: are any of the series in

(1.2), (1.3) and (1.4) a criterion series for the probability (1.1) subject only to the

hypothesis that [nf1ÿ F(un)g] is divergent? In this paper, we shall answer this question

af®rmatively for each of these three series.

To achieve these results, we shall modify the method of Klass (1984). The key difference

between this method and that used by Wang and Tomkins (1992) relates to the choice of

monitoring sequences. As observed by Klass (1984), for maximum effectiveness, such a

monitoring sequence should relate to both the given distribution function F(x) and the real

sequence fung. In this paper, we shall introduce several new monitoring sequences based on

Klass's (1984) approach.

Klass (1984) showed that, for certain monitoring sequences fnkg, the probability in (1.1)

when r � 1, will take values zero or one according as the seriesX1
k�1

PfZ1n k
< un k

g,1 or � 1: (1:7)

In this paper, we shall generalize this result to include the case where Z1n k
is replaced by

Z rnk
, for a ®xed integer r > 1. From the above, we shall prove our main results in Section 3,

following the proof of a key lemma in Section 2. In Section 4 we shall present some remarks

and elaboration on the main results.

2. Two lemmas

In this section, we shall present two lemmas which will play very important roles in the proof

of the main results to be presented in the next section. The following lemma reduces to

Lemma 1 of Klass (1984) when r � 1 with a larger upper bound C�.

Lemma 2.1. Let X 1, X2, . . . be i.i.d. random variables and let fung be any non-decreasing

real sequence. Fix an integer k�. 1 and let n1, n2, . . . , nk� be integers such that

0 , n1 < n2 < . . . < nk� < 2n1. Let Pi � PfX 1 < uni
g, i < k�, and assume that 2P1 > 1,

and Pni

i < eÿ1, P
ni�1ÿni

i < ë, for all 1 < i < k� and for some 0 , ë, 1. Then there exists a

constant C�, dependent only on ë and r such that
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Xk�

i�1

PfZ rni
< uni

g < C�
Xk�
i�k�

PfZ rni
< uni

g, (2:1)

where k� is the smallest integer such that Pi > P4
k� and k� < i < k�.

Proof. Let D j � f1 < k < k�: [Pk� ]
4 j

, Pk < [Pk�]
4 jÿ1g. Note that k� =2 D j if j . 1. Then

let mi � ÿlog Pi and ä � (log ëÿ1)ÿ1. Let P̂i � PfZ rni
< uni

g. Since the D j s are disjoint,

Xk�
i�1

P̂i <
X1
j�1

X
i2D j

P̂i �
X
i2D 1

P̂i �
X1
j�2

X
i2D j

P̂i: (2:2)

Let jAj and I A denote the cardinal number and the indicator function, respectively, of the set

A. Then, for j > 2,

jD jj �
Xk�
i�1

ID j
(i) <

X
fi,k�:i2D jg

(ni�1 ÿ ni)miä

< 4 j mk�ä
X

fi,k�:i2D jg
(ni�1 ÿ ni)

< 4 j mk�ä(nk� ÿ n1)

< 4 j nk�mk�ä:

Now, let C�r � r2r. By de®nition of mi, we have mk� � ÿlog Pk� > 1ÿ Pk� . We

evaluate the second sum of (2.2) as follows:

X1
j�2

X
i2D j

PfZ rni
< uni

g �
X1
j�2

X
i2D j

Pni

i

Xrÿ1

t�0

ni

t

 !
1ÿ Pi

Pi

� � t

(since Pi > P1 > 1
2
) <

X1
j�2

X
i2D j

r2rfni(1ÿ Pi)gr Pni

i

<
X1
j�2

jD jjr2rfnk� (1ÿ P4 j

k�)gr P
4 jÿ1 n k�=2

k�

<
X1
j�2

jD jjr2r nk� (1ÿ Pk�)
X4 jÿ1

s�0

Ps
k�

0@ 1A8<:
9=;

264
375

r

P
4 jÿ1 nk�=2

k�
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<
X1
j�2

jD jjr2rf4 j nk�(1ÿ Pk� )gr P
4 jÿ1 n k�=2

k�

< r2rfnk�(1ÿ Pk�)gr
X1
j�2

4 jämk� nk�4
rjfeÿmk� nk� g22 jÿ3

< C�r
X1
j�2

4( r�1) j(mk� nk� )
r�1ä[eÿm k� nk� ]22 jÿ3

< C�r
X1
j�2

22(r�1) j(mk� nk�)
r�1äfeÿmk� n k� g j

< C�r (mk� nk�)
r�1äf1ÿ 22(r�1)eÿm k� nk� gÿ1f24(r�1) eÿ2m k� n k� g

< 2C�r 24(r�1)(mk� nk�)
r�1ä eÿ2mk� nk�

< C�r 24(r�2)äf(mk� nk�)
r�1 eÿmk� n k� g eÿm k� n k�

(since (mk� nk� )
r�1 eÿmk� n k� < eÿ1) < C�r 24(r�2) eÿ1 äPn k�

n k�

< C�r 24(r�2) eÿ1 äPfZ rnk� < unk� g:
Note that D 1 � fk�, . . . , k�g; so

P
i2D 1

P̂i �
Pk�

i�k� P̂i. Hence,

Xk�
i�1

P̂i < (1� C�r 24(r�2) eÿ1 ä)
Xk�
i�k�

PfZ rni
< uni

g � C�
Xk�
i�k�

PfZ rni
< uni

g:

This completes the proof. u

The following lemma will be referred to frequently in the rest of the paper.

Lemma 2.2.

(i) For any 0 < z , 1,

ÿ z

1ÿ z
< log (1ÿ z) < ÿz:

(ii) For any 0 < z < 1
2

and n > 1,

exp fÿn(z� 2z2)g < (1ÿ z)n < exp (ÿnz):

Proof. (i) and (ii) are easy consequences of Taylor expansion and Lemma 1.3.1 of Galambos

(1987), respectively. u
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3. Generalized zero±one laws

The following result is a key theorem in this paper which allows us to remove the

monotonicity condition on the sequence [nf1ÿ F(un)g] for the criterion series (1.2), (1.3)

and (1.4) used by Wang and Tomkins (1992). This result reduces to the key result of Klass

(1984) when r � 1.

Theorem 3.1. Let X 1, X 2, . . . be a sequence of i.i.d. random variables with common

distribution function F(x). Let fung be any non-decreasing real sequence such that

(i) 1ÿ F(un)! 0 and

(ii) nf1ÿ F(un)g ! 1.

Fix an integer r > 1, take r ÿ 1 , ë� < ë�,1, and choose any integers 1 < n1 , n2 , . . .
such that

jf1ÿ F(unk
)g > ë�, for j > nk�1 ÿ nk ,

< ë�, for j , nk�1 ÿ nk :

�
(3:1)

Then

PfZ rn < un i:o:g � 0 or 1 (3:2)

according as the series X1
k�1

PfZ rnk
< un k

g,1 or � 1: (3:3)

Proof. Suppose that
P1

k�1 PfZ rnk
< unk

g,1, we have

PfZ rn < un i:o:g � lim
N!1

P
[1
k�N

[
nk ,n<n k�1

fZ rn < ung
( )

< lim
N!1

X1
k�N

P
[

n k ,n<n k�1

fZ rn < ung
( )

< lim
N!1

X1
k�N

PfZ r(n k�1) < un k�1
g

� lim
N!1

X1
k�N

fF(unk�1
)gn k�1

Xrÿ1

j�0

nk � 1

j

 !
1ÿ F(un k�1

)

F(un k�1
)

� � j

< lim
N!1

X1
k�N

PfZ rnk�1
< unk�1

g 1

fF(un k�1
)gn k�1ÿn kÿ1

Generalized zero±one laws for large-order statistics 433



< lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g 1

fF(un k
)gnk�1ÿn kÿ1

(by Lemma 2:2) < lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g e2(n k�1ÿnkÿ1)f1ÿF(un k
)g

(by (3:1)) < lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g e2ë�

� 0:

Next, assume that
P1

k�1 PfZ rnk
< un k

g � 1. Group the events fZ rnk
< un k

g into blocks

as follows. Fix 0 , ã, 1. Let m0 � 0 and m1 � n1, and, for i > 1,

mi�1 � min fnk . mi: PfZ1mi
< unk

g > ãg: (3:4)

Note that mi�1 is always de®ned and ®nite since PfZ1mi
< ug goes to 1 as u tends to

in®nity.

Let Ai �
S

mi<n k , mi�1
fZ rnk

< un k
g and A9i �

S
mi<n k , mi�1

fZ rmiÿ1,n k
< un k

g, where

Z rm,n is the rth maxima of fX m�1, X m�2, . . . , X ng when nÿ m . r > 1. For j � 0 and

j � 1, the events fA92i� j: i > 1g are independent. Applying the Borel±Cantelli lemma

separately to even indices and odd indices, we see that, ifX1
i�1

P(A9i) � 1, (3:5)

then PfA9i i:o:g � 1. We claim that, in fact, (3.5) implies PfZ rnk
< un k

i:o:g � 1. To see

this, suppose that (3.5) holds and ®x å. 0. For each i, there exists an integer ci, i < ci ,1,

such that PfSci

j�i A9jg. 1ÿ å. Let

ôi � max f j: A9j occurs and i < j < cig,
1 if no such j exists.

�
(3:6)

Note that Pfôi ,1g � PfSci

j�i A9jg. 1ÿ å and that A9j \ fZ1m jÿ1
< um j

g � A9j \
fZ rm j

< um j
g. Therefore,

P
[ci

j�i

A j

( )
> Pfôi ,1, Aôi

g

�
Xci

j�i

Pfôi � j, Aôi
g

>
Xci

j�i

Pfôi � j, Z rm j
< um j

g

434 H. Wang



>
Xci

j�i

Pfôi � j, Z1m jÿ1
< um j

g

�
Xci

j�i

Pfôi � jgPfZ1m jÿ1
< um j

g

(by (3:4)) > ã
Xci

j�i

Pfôi � jg

> ãPfôi ,1g
> ã(1ÿ å):

By the Hewitt±Savage zero±one law, we may conclude that PfZ rn k
< un k

i:o:g � 1. SinceX1
i�1

P(Ai) � 1 (3:7)

implies (3.5), it is therefore suf®cient to prove that the divergence of
P1

k�1 PfZ rnk
< un k

g
implies (3.7). To do so, we shall ®rst ®nd a lower bound for P(Ai). To do this, we partition Ai

into sub-blocks of events, as follows. Fix i, let mi,1 � mi, and having de®ned mi,1, mi,2,

. . . , mi, j, let

mi, j�1 � min fnk > mi, j � mig, if such nk < mi�1 exists,

mi�1, otherwise:

�
(3:8)

Then set l (i) � max f j: mi, j , mi�1g. For 1 < j , l (i), let

Ai, j �
[

mi, j<n k ,mi, j�1

fZ rnk
< un k

g:

Thus Ai �
Sl (i)

j�1 Ai, j. Furthermore, for j , l (i), de®ne

Bi, j � fZ rmi, j�1,mi, j�1�mi
. ui�g,

where i� � max fnk : nk , mi�1g.
Note that Ai, j \ Bi, j, is disjoint from Ai, j9 for j9 > j� 2 and (3.4) ensures that

PfZ1mi
< ui�g, ã. This allows us to place bounds on the probability PfZ rmi

< ui�g, as

follows:

ã. PfZ1mi
< ui�g � [F(ui�)]

mi

� exp fmi log F(ui�)g

(by Lemma 2:2 (i)) > exp ÿmi

1ÿ F(ui�)
F(ui�)

� �
> exp fÿ2mi[1ÿ F(ui�)]g

Generalized zero±one laws for large-order statistics 435



if i is large enough, i.e.,

mif1ÿ F(ui�)g > log
1

ã1=2

� �
:

Hence, with the fact that the function xá eÿx# in [á, �1), we can choose ã so small that

log (1=ã1=2) > r ÿ 1 and, for each i,

r2rfmif1ÿ F(ui� )g]rÿ1 exp [ÿmif1ÿ F(ui�)g] < r2r log
1

ã1=2

� �� �rÿ1

: ã1=2

� ã�, 1:

This yields

P(Bi, j) � 1ÿ PfZ rmi
< ui�g

> 1ÿ r2r[mif1ÿ F(ui�)g]rÿ1 exp [ÿmif1ÿ F(ui�)g]

. 1ÿ ã�

for i large and all 1 < j < l (i). Thus, for such large i, we may use the simple inequality

2P(A [ B) > P(A)� P(B) to get

P(Ai) > P
[l (i)

j�1

(Ai, j \ Bi, j)

8<:
9=;

> 2ÿ1 P
[

jeven

(Ai, j \ Bi, j)

( )
� P

[
jodd

(Ai, j \ Bi, j)

( )24 35
(by disjointness) � 2ÿ1

Xl (i)

j�1

P(Ai, j \ Bi, j)

(by independence) � 2ÿ1
Xl (i)

j�1

P(Ai, j)P(Bi, j)

.(1ÿ ã�)2ÿ1
Xl (i)

j�1

P(Ai, j):

(3:9)

Fix i > 1, and 1 < j < l (i). De®ne

k� � max fk: nk , mi, j�1g
and

k� � min fk: nk > mi, j, P1=4fX < un k
g > PfX < unk� gg:
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For mi, j < nk , mi, j�1, let

Bnk
� fZ rnk ,nk�1

. unk� g:

By the de®nition of Bnk
, it is easy to check that the events fZ rnk

< unk
g \ Bnk

, for

k� < k < k�, are disjoint. Also, note that, for k� < k < k�,
P(Bn k

) � 1ÿ PfZ rnk ,n k�1
< un k� g

� 1ÿ fF(unk� )gn k�1ÿn k

Xrÿ1

j�0

nk�1 ÿ nk

j

0@ 1A 1ÿ F(unk� )

F(unk� )

� � j

> 1ÿ fF(unk� )gn k�1ÿnk

Xrÿ1

j�0

nk�1 ÿ nk

j

0@ 1A 1ÿ F(unk
)

F(unk
)

� � j

> 1ÿ fF(unk
)g(nk�1ÿn k )=4 r[(nk�1 ÿ nk)f1ÿ F(un k

)g]rÿ1

(by Lemma 2.2) > 1ÿ r exp ÿ nk�1 ÿ nk

4
f1ÿ F(un k

)g
� �

[(nk�1 ÿ nk)f1ÿ F(unk
)g]rÿ1

> 1ÿ rër

� exp ÿ ë�
4

� �
� C�,

using (3.1) and xá eÿx # in [á, �1) (since ë� > r ÿ 1) in the last step. Thus,

P(Ai, j) > P
[

k�<k<k�
fZ rnk

< un k
g \ Bnk

( )

(by disjointness) �
X

k�<k<k�
PffZ rnk

< un k
) \ Bn k

g

(by independence) �
X

k�<k<k�
PfZ rnk

< un k
gP(Bn k

)

> C�
X

k�<k<k�
PfZ rn k

< un k
g

(by Lemma 2.1) >
C�
C�

X
mi, j<n k<mi, j�1

PfZ rnk
< unk

g:

Set S � f(i, j): mi, j is de®ned}. Then, from (3.9),
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X1
i�1

P(Ai) >
1ÿ ã�

2

X1
i�1

Xl (i)

j�1

P(Ai, j)

� 1ÿ ã�
2

X
f(i, j)2Sg

P(Ai, j)

>
(1ÿ ã�)C�

2C�
X1
k�r�

PfZ rnk
< unk

g � 1,

for a positive integer r�. This completes the proof. u

To illustrate Theorem 3.1, we state the following theorem to get the full strength of what

has actually been proved.

Theorem 3.2. Let X 1, X 2, . . . be a sequence of i.i.d. random variables with common

distribution function F(x). Let fung be any non-decreasing sequence satisfying (i) and (ii) of

Theorem 3.1. Fix an integer r > 1, and take any r ÿ 1 , ë� < ë�,1. Let fnkg be a non-

decreasing sequence of positive integers. If, for all k > 1,

(nk�1 ÿ nk)f1ÿ F(un k
)g > ë�, (3:10)

then

PfZ rnk
< un k

i:o:g � 1 (3:11)

if and only if X1
k�1

exp [ÿnkf1ÿ F(un k
)g] [nkf1ÿ F(un k

)g]rÿ1 � 1: (3:12)

If, for all k > 1,

(nk�1 ÿ nk)f1ÿ F(un k
)g < ë�, (3:13)

then

PfZ rnk
< un k

i:o:g � 0 (3:14)

if and only if X1
k�1

exp [ÿnkf1ÿ F(un k
)g] [nkf1ÿ F(un k

)g]rÿ1 ,1: (3:15)

Proof. By direct calculation, it is easy to get, for any ®xed integer r > 1,

1

(2r)r
fF(un k

)gn k [nkf1ÿ F(un k
)g]rÿ1 < PfZ rnk

< unk
g

< r2rfF(un k
)gn k [nkf1ÿ F(un k

)g]rÿ1:

(3:16)
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Thus, the series X1
k�r�

PfZ rnk
< unk

g (3:17)

and X1
k�r�

[F(unk
)]n k [nkf1ÿ F(un k

)g]rÿ1 (3:18)

converge or diverge together.

By Lemma 2.2 (i), the convergence or divergence of both series (3.18) andX1
k�1

exp [ÿnkf1ÿ F(unk
)g] [nkf1ÿ F(unk

)g]rÿ1 (3:19)

depends only on those terms for which nkf1ÿ F(un k
)g, (1� ä) log k, where ä is an

arbitrary positive real number. For such terms k,

fF(un k
)gnk

exp [ÿnkf1ÿ F(unk
)g]! 1: (3:20)

In fact, if nkf1ÿ F(unk
)g > (1� ä) log k, then

exp [ÿnkf1ÿ F(un k
)g] [nkf1ÿ F(un k

)g]rÿ1 <
f(1� ä) log kgrÿ1

k1�ä ,

since xá eÿx # in [á, �1). Thus, the series in (3.19) converges and, by Lemma 2.2 (i), so

does the series in (3.17). Hence, the above two series converge and diverge together. u

The next theorem, a generalization of the result of Klass (1985) in the case r � 1, shows

that the series (1.2), (1.3) and (1.4) are criterion series for (1.1), without any monotonicity

assumption on the real sequence [nf1ÿ F(un)g].

Theorem 3.3. Let X 1, X 2, . . . be a sequence of i.i.d. random variables with common

distribution function F(x). Let fung be any non-decreasing real sequence satisfying (i) and

(ii) of Theorem 3.1. Then

PfZ rn < un i:o:g � 0 or 1 (3:21)

according as X1
n�1

exp [ÿnf1ÿ F(un)g] [nf1ÿ F(un)g]r

n
,1 or � 1: (3:22)

Moreover, the series in (3.22) can be replaced by (1.2) or (1.3).

Proof. Let n1 � 1 and, having de®ned n1, n2, . . . , nk, let

nk�1 � min f j . nk : ( jÿ nk)f1ÿ F(unk
)g > 1g: (3:23)
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Since nf1ÿ F(un)g ! 1 and (nk�1 ÿ nk)f1ÿ F(unk
)g ! 1, it follows that nk�1=nk ! 1.

Hence, there exists k0 such that n jf1ÿ F(un j�1
)g > r, for j > k0. Note that yá exp (ÿny)

decreases for y > á=n. Thus, for all k > k0,X
nk <n,nk�1

f1ÿ F(un)gr nrÿ1 exp [ÿnf1ÿ F(un)g]

>
X

n k<n,n k�1

f1ÿ F(un k
)gr nrÿ1 exp [ÿnf1ÿ F(un k

)g]

>
X

n k<n,n k�1

f1ÿ F(un k
)gr(nk�1 ÿ 1)rÿ1 exp [ÿ(nk�1 ÿ 1)f1ÿ F(unk

)g]

>
X

n k<n , nk�1

f1ÿ F(un k
)gr nrÿ1

k exp [ÿnkf1ÿ F(un k
)g] exp fÿ(nk�1 ÿ nk ÿ 1)f1ÿ F(un k

)g]

> eÿ1 (nk�1 ÿ nk)f1ÿ F(un k
)gr nrÿ1

k exp [ÿnkf1ÿ F(un k
)g]

(by (3:23)) > eÿ1 [nkf1ÿ F(unk
)g]rÿ1 exp [ÿnkf1ÿ F(unk

)g]:

In the reverse direction, since x ex < 2 e2 if 0 < x < 2,X
nk <n,nk�1

f1ÿ F(un)gr nrÿ1 exp [ÿnf1ÿ F(un)g]

<
X

n k<n,n k�1

f1ÿ F(un k�1
)gr nrÿ1 exp [ÿnf1ÿ F(un k�1

)g]

< (nk�1 ÿ nk) exp [ÿnkf1ÿ F(unk�1
)g]f1ÿ F(un k�1

)grÿ1 nrÿ1
k

< [(nk�1 ÿ nk)f1ÿ F(un k�1
)g] exp [(nk�1 ÿ nk)f1ÿ F(un k�1

)g]

3 f1ÿ F(un k�1
)grÿ1 nrÿ1

k�1 exp [ÿnk�1f1ÿ F(un k�1
)g]

� 2 e2 [nk�1f1ÿ F(un k�1
)g]rÿ1 exp [ÿnk�1f1ÿ F(un k�1

)g]:

Hence, the series (1.4) andX1
k�1

[nkf1ÿ F(un k
)g]rÿ1 exp [ÿnkf1ÿ F(unk

)g]

converge or diverge together. Now the theorem follows from Theorem 3.1. The proof of the

facts that (3.22) can be replaced by (1.2) and (1.3) can be found in the paper by Wang and

Tomkins (1992). u
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4. Extensions of Theorem 3.1 and some remarks

In this section, we shall make some remarks to conclude the paper.

Remark 4.1. The subsequence fnkg used in the proof of Theorem 2.1 of Wang and Tomkins

(1992) was de®ned by

nk � exp
ôk

log k

� �
, k � 3, 4, . . . : (4:1)

Note that this subsequence does not depend on either fung or the distribution function

F(x). While the use of this sequence led to a simpler argument because of its various nice

analytical properties (Galambos 1987), its use required a monotonicity assumption on the

sequence [nf1ÿ F(un)g]. It is clear that Barndorff-Nielsen's (1961) method cannot be

modi®ed to produce Theorem 3.1, since the monotonicity of the sequence [nf1ÿ F(un)g] is

essential to the proof of Lemma 1 of Barndorff-Nielsen (1961). However, note that in the

proof of Theorem 3.1, the choice of fnkg involved both the real sequence fung and the

distribution function F(x), and a delicate re®lling procedure was used to produce mi and

mi, j. This procedure ensured that we chose suf®cient monitoring points to determine the

pattern of occurrence of the events fZ rn < ung; the subsequence de®ned by (4.1) is too

sparse to do this job.

The next two remarks will present some other choices for the monitoring subsequences

which can be used in place of that introduced in Theorem 3.1. These alternatives are

analogous to those suggested by Klass (1984).

Remark 4.2. Choose 0 , ë� < ë� < 1 such that 2r(ë�)1=2flog (1=ë�)grÿ1 , 1. Let n1 � 1

and assume that, for k . 1, nk�1 satis®es

PfZ1 j < un k
g < ë�, for j > nk�1 ÿ nk ,

> ë�, for j , nk�1 ÿ nk :

�
(4:2)

Then Theorem 3.1 remains true with this choice of fnkg.
To see this, ®rst assume that

P1
k�1 PfZ rnk

< un k
g,1. Then

PfZ rn < un i:o:g � lim
N!1

P
[1
k�N

[
nk ,n<nk�1

fZ rn < un)

( )

< lim
N!1

X1
k�N

P
[

n k ,n<n k�1

fZ rn < ung
( )

< lim
N!1

X1
k�N

PfZ r(n k�1) < un k�1
g
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� lim
N!1

X1
k�N

PfZ r(nk�1) < unk�1
g PfZ1(n k�1),n k�1

< un k�1
g

PfZ1(n k�1ÿn kÿ1) < un k�1
g

< lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g[PfZ1(n k�1ÿn kÿ1) < un k�1
g]ÿ1

< ëÿ1� lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g

� 0:

Secondly, assume that
P1

k�1 PfZ rnk
< un k

g � 1. We need only re-evaluate the

probability of Bn k
, as de®ned in the proof of Theorem 3.1, by noting that

[F(un k
)]nk�1ÿn k < ë� implies that

ÿ2(nk�1 ÿ nk)f1ÿ F(unk
)g < ÿ(nk�1 ÿ nk)

1ÿ F(unk
)

F(unk
)

(by Lemma 2:2 (i)) < (nk�1 ÿ nk) log F(un k
)

< log ë�,
provided that k is so large that 2F(un k

) . 1. Thus,

P(Bnk
) � 1ÿ PfZ r(n k�1ÿn k ) < unk� g

> 1ÿ r2r exp [ÿ(nk�1 ÿ nk)f1ÿ F(un k
)g][(nk�1 ÿ nk)f1ÿ F(un k

)g]rÿ1

> 1ÿ r2r exp ÿ log (ë�)ÿ1

2

� �
log (ë�)ÿ1

2

� �rÿ1

� 1ÿ r2r exp
log ë�

2

� �
log (ë�)ÿ1

2

� �rÿ1

� 1ÿ 2r(ë�)1=2 log
1

ë�
� �� �rÿ1

. 0:

The rest of the proof is exactly the same as the proof of Theorem 3.1.

Remark 4.3. Another choice of fnkg is given by the following construction. Choose

0 , ë� < ë� < 1. Let n1 � 1 and, for k . 1, de®ne nk�1 such that

PfZ1 j < unk� jg < ë�, for j � nk�1 ÿ nk

> ë�, for j , nk�1 ÿ nk :

�
(4:3)
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With this choice of fnkg, Theorem 3.1 again remains true. To see this, suppose that the seriesP1
k�1 PfZ rnk

< un k
g,1. Then, as before,

PfZ rn < un, i:o:g � lim
N!1

P
[1
k�N

[
n k ,n<n k�1

fZ rn < ung
( )

< lim
N!1

X1
k�N

P
[

nk ,n<n k�1

fZ rn < ung
( )

< lim
N!1

X1
k�N

PfZ rnk
< un k�1

g

< lim
N!1

X1
k�N

PfZ rnk
< un k�1

g PfZ1nk ,nk�1
< unk�1

g
ë�

< ëÿ1� lim
N!1

X1
k�N

PfZ rnk�1
< un k�1

g

� 0:

Finally, by the construction of the nk values,

ÿ2(nk�1 ÿ nk)f1ÿ F(un k
)g < ÿ2(nk�1 ÿ nk)f1ÿ F(un k�1

)g
< (nk�1 ÿ nk) log F(unk�1

)

< log ë�:
In view of the approach used in the proof of Theorem 3.1 and Remark 4.2, it is now clear

that the probability in (3.2) equals one if the series in (3.3) diverges with this choice of nk .

Acknowledgements

The author is indebted to the referee for his/her comprehensive, insightful and helpful

comments and suggestions which led to an improved presentation of the results.

This research was supported by Research Grant OGPIN-014, from the National Science

and Engineering Research Council of Canada.

References

Barndorff-Nielsen, O. (1961) On the rate of growth of the partial maxima of a sequence of

independent identically distributed random variables. Math. Scand., 9, 383±394.

Generalized zero±one laws for large-order statistics 443



Galambos, J. (1987) The Asymptotic Theory of Extreme Order Statistics, 2nd edn. Malabar, FL: Robert

E. Krieger.

Klass, M.J. (1984) The minimal growth rate of partial maxima. Ann. Probab., 12, 380±389.

Klass, M.J. (1985) The Robbins±Siegmund series criterion for partial maxima. Ann. Probab., 13,

1369±1370.

Mori, T. (1976) Stability of sums of i.i.d. random variables when extreme terms are excluded from

sums. Z. Wahrscheinlichkeitstheorie Verw. Geb., 36, 189±194.

Wang, H. and Tomkins, J. (1992) A zero±one law for large order statistics. Can. J. Statist., 20, 323±

334.

Received September 1994 and revised December 1996

444 H. Wang


	mke1
	mke2
	mke3
	mke4
	mke5
	mke6
	h
	hh
	hhh
	hhhh
	hhhhh
	mke6
	mke7
	mke8
	Lemma 2.1.
	mke8
	mke9
	Proof.
	Lemma 2.2.
	Proof.
	mke10
	mke11
	mke12
	Proof.
	Theorem 3.1.
	mke13
	mke14
	mke15
	mke16
	mke17
	mke18
	mke19
	mke20
	mke21
	mke22
	mke23
	mke24
	mke25
	Proof.
	Theorem 3.2.
	mke26
	mke27
	mke28
	mke29
	mke30
	mke31
	mke32
	Proof.
	Theorem 3.3.
	mke33
	mke34
	Remark 4.2.
	mke35
	Remark 4.3.
	mkr1
	mkr2
	Acknowledgements
	References
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6

