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For a fixed integer » =1, let Z,, be the rth largest of {X;, Xo, ..., X,}, where X, X, ... is a
sequence of i.i.d. random variables with the common distribution function F(x). We prove that
P{Z,, < u,, 1.0.} =0 or 1 accordingly as the series Y .. exp[—n{l — F(u,)}] [n{l — F(u,)}]"/
n<oo or = oo for any real sequence {u,} such that lim,_n{l — F(u,)} = +00. This weakens the
condition added on the sequence [n{l — F(u,)}] by Wang and Tomkins and generalizes the results of
Klass to the case when r = 1.
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1. Introduction

Let X, X5, ... be a sequence of independent and identically distributed (i.i.d.) random
variables with the common distribution function F(x). For a fixed integer r =1, let Z,,
denote the rth largest of {Xi, X5, ... X,}. Wang and Tomkins (1992) showed that, if
[n{1 — F(u,)}] is non-decreasing and divergent for a real sequence {u,}, then the
probability

P{Zy <u,io}=0o0rl (1.1)

according to the convergence or divergence of any one of the following so-called criterion
series:

NgE

P{Zm = un}{l - F(un)}; (12)
1

3
Il

o {1 = Fun)}]”
;:1 F (Mn)f, (1.3)
> [n{1 — F(u,)}"
;:1 exp [—n{l — F(Un)}]—n ; (1.4)
- (loglog n)"
;:1 exp [—n{l — F(”n)}]#s (1.5)
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= (loglog n)"
;F ()= (1.6)

The results of Wang and Tomkins (1992) generalized those of Klass (1984; 1985) to the
case r =1 except for an additional monotonicity assumption which was added to the
sequence [n{l — F(u,)}]. From a counterexample (which will be published elsewhere), it is
clear that the monotonicity condition added there is not extraneous. More precisely, the
monotonicity of the sequence [n{l — F(u,)}] is essential for the series (1.5) and (1.6) to be
criterion series. However, the series (1.2), (1.3) and (1.4) were seen to be valid criterion
series in that counterexample, and this raises the following question: are any of the series in
(1.2), (1.3) and (1.4) a criterion series for the probability (1.1) subject only to the
hypothesis that [n{l — F(u,)}] is divergent? In this paper, we shall answer this question
affirmatively for each of these three series.

To achieve these results, we shall modify the method of Klass (1984). The key difference
between this method and that used by Wang and Tomkins (1992) relates to the choice of
monitoring sequences. As observed by Klass (1984), for maximum effectiveness, such a
monitoring sequence should relate to both the given distribution function F(x) and the real
sequence {u,}. In this paper, we shall introduce several new monitoring sequences based on
Klass’s (1984) approach.

Klass (1984) showed that, for certain monitoring sequences {n;}, the probability in (1.1)
when » =1, will take values zero or one according as the series

P{Zlnk Su,,k}<ooor = Q. (17)
k=1

In this paper, we shall generalize this result to include the case where Z;,, is replaced by
Zy,, for a fixed integer » = 1. From the above, we shall prove our main results in Section 3,
following the proof of a key lemma in Section 2. In Section 4 we shall present some remarks
and elaboration on the main results.

2. Two lemmas

In this section, we shall present two lemmas which will play very important roles in the proof
of the main results to be presented in the next section. The following lemma reduces to
Lemma 1 of Klass (1984) when » = 1 with a larger upper bound C*.

Lemma 2.1. Let Xy, X, ... be i.i.d. random variables and let {u,} be any non-decreasing
real sequence. Fix an integer K*>1 and let ny, ny, ..., n, be integers such that
O<m<=m=<...<npx<2n. Let ,=P{X1<up,}, i< k*, and assume that 2P, = 1,
and P! <e !, P! < ), forall | <i<k* and for some 0 <A <1. Then there exists a
constant C*, dependent only on A and r such that
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k* k"
Y P{Zn <up}<C* Y P{Zn <u,}, 2.1
i=1 i=kx

where kx is the smallest integer such that P; = P‘l‘{* and ks <i<k*.

Proof Let 7 ; = {1 < k < k*: [Pk*]‘“ <Py < [P+]*'}. Note that k* ¢ &/, if j>1. Then
let m; = —log P; and 0 = (logA~")~!. Let P = P{Z,,, < u,,}. Since the s are disjoint,

k* 00 0
N ZZ =D Pty > P 22)
i1 j=lie7; i€, J=2i€7;

Let |A| and I 4 denote the cardinal number and the indicator function, respectively, of the set
A. Then, for j = 2,

k*
(T =D To ()= > (mn—nmo
P

{i<k*:.iew;}

= 4jmk*(§ Z (}’li+1 — n,-)

{i<k*:ie7 ;}
= 4jmk*($(l’lk* —ny)
= 4jnk* mk*é.

Now, let C* =r2". By definition of m;, we have my = —log Ppx =1— Px. We
evaluate the second sum of (2.2) as follows:

S Pz, \un}_zzpnﬁi<ni>(l PiPi)t

J=2 i€e7; j=2 ic” t

(since P, = Py = 1) < Z > 2" {n(1 = P)}Y P}

J=2 i€

3

P27 {nge (1= Py Y e

J=2
”
00 471 -
g 4/~ « /2
|(/ |r2’” nx (1 — Pk*) E P‘;{* Pk* ns/
j=2 s=0
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< A& n(1 = Py P

o .
=f]

Jj=2

< rzr{nk*(l _ Pk*)}r Z 4]6mk* nk*4’j{e—mk* nx }22/73
Jj=2

.
< CFY A mpengyofe e P

j=2

oo
< C;k Z 22(r+1)j(mk* nk*)rJrla{efmk* e }j
=

< Cf(mk*nk*)r+15{1 _ 22(r+1)e—mk* nk*}—]{24(r+1)e—2mk*nk*}

< 2CF 2% D (i m ) L9 e e

< CHF2Y DS (s mype ) FH e e e g i

(since (myny) e mene < emly < R ! oP,"

< CF 2D e 9P Zy <ty )

Note that & = {k, ..., kK*}; so Zieglf’,- = Zf:*k*f’i. Hence,

S P<(1+C2e )Y P{Z, <un}=CYY 0 P{Zi, < uy ).
i=1

This completes the proof.

i=kx i=kx

The following lemma will be referred to frequently in the rest of the paper.

Lemma 2.2.

(i) For any 0 < z<],

. 1
(i) For any 0 sz<3

—L<log(1 —z)< —=z.
11—z

and n=1,

exp {—n(z +2z°)} < (1 — 2)" < exp(—n2).

Proof. (i) and (ii) are easy consequences of Taylor expansion and Lemma 1.3.1 of Galambos

(1987), respectively.
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3. Generalized zero—one laws

The following result is a key theorem in this paper which allows us to remove the
monotonicity condition on the sequence [n{l — F(u,)}] for the criterion series (1.2), (1.3)
and (1.4) used by Wang and Tomkins (1992). This result reduces to the key result of Klass
(1984) when r = 1.

Theorem 3.1. Let X, Xy, ... be a sequence of i.i.d. random variables with common
distribution function F(x). Let {u,} be any non-decreasing real sequence such that

(1) 1 —F(u,) — 0 and
(ii) n{l — F(u,)} — oc.

Fix an integer r = 1, take r — 1 <Ay < ¥ < 00, and choose any integers 1 < ny <mny <.
such that

i*, Jor j = ngp — nyg,
A= Y 25 oz e G
Then
P{Z, <u,io}=0orl (3.2)
according as the series
ZP{ka < up, } <oo or = 0. 3.3)
k=1

Proof. Suppose that > 3" P{Z,,, < u,,} <oo, we have

P{Z, <u,io.}= lim P{ U U {Zm < u,,}}

=N np<ns<njpy|

Al

]&iﬂoip{ U {2z <un}}
k=N

nE<nsnpy

Il

o0
lim Z P{Z(nj41) < Uny, )}
N

N—oo &

ni+1 1 — Fu, j
A Z{F(uw)}””12< )( F(+)>>

o0
. 1
= ]\}'E};O];VP{ZWHHA = unk+1} {F(unkﬁ)}nk“inkil
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o0
1
< lim P{Z <u
Neoo = { TR i1 }’lk+l} {F(unk)}”k-lf”kfl
o0
(by Lemma 2.2) < lim Z P{Zpny,, < tty,,, } 2 mm D= F0}
N—oo =N

o0

(by 3.1)) < lim > P{Zp, < n, e

=0.

Next, assume that Y ;2 P{Z,,, < u,,} = co. Group the events {Z,,, < u,,} into blocks
as follows. Fix 0 <y <1. Let my =0 and m; = ny, and, for i = 1,

mip1 = min{ng >m;: P{Ziy, < u, } =y} (3.4)

Note that m;; is always defined and finite since P{Z,, < u} goes to 1 as u tends to
infinity.

Let 4 =Um=ni<m{Zm, <un} and Ai=Um=n,<mi{Zm \ne < ttn,}, where
Zymp is the rth maxima of {X, 1, Xmi2, ..., Xn} Wwhen n—m>r=1. For j =0 and
j=1, the events {45 ;:i=1} are independent. Applying the Borel-Cantelli lemma
separately to even indices and odd indices, we see that, if

XOO:P(AQ) = o0, (3.5)
i=1

then P{4;i.0.} =1. We claim that, in fact, (3.5) implies P{Z,,, < u,, i.0.} = 1. To see
this, suppose that (3.5) holds and fix &€ > 0. For each i, there exists an integer ¢;, i < ¢; <00,
such that P{{J5Z, 4j} > 1 —e. Let

_— {max {j: A occurs and i < j < ¢;}, 3.6)

oo if no such j exists.

Note that P{r;<oo}=P{UUi,;4j}>1—¢ and that AjN{Zi, , <un} CAjN
{Zm, < um,}. Therefore,

Ci
P{UAj} = P{1; <00, A,}
Jj=i

= Plri =, 42}

J=i

Ci
= Z P{Ti=Jj, Zum, < tn,}
Jj=i



Generalized zero—one laws for large-order statistics 435
Ci
= " Plti=j, Zim,, < tn}
=i
¢
- ZP{‘[[ :j}P{Zlm/fl = umj}
=i

(by G4) =7 Plr = j}
J=i

= yP{r; <o}

= y(1 —e).

By the Hewitt—Savage zero—one law, we may conclude that P{Z,,, < u,, i.0.} = 1. Since
> P(4;) = 0 (3.7)
i=1

implies (3.5), it is therefore sufficient to prove that the divergence of Z;;P{ Zim, < upn}

implies (3.7). To do so, we shall first find a lower bound for P(4;). To do this, we partition 4;

into sub-blocks of events, as follows. Fix i, let m;; = m;, and having defined m;;, m;»,
sy My, let

min {ny = m;; + m;}, if such ny < m;; exists,
mij1 = 3.8)

Mmiy1, otherwise.

Then set /(i) = max {j: m;; <m;y1}. For 1 < j</(i), let

AiJ = U {ka = unk}'
mi j<ng<m;jii
Thus 4; = Uji’l) A; j. Furthermore, for j</(i), define
Bi,j = {Z"mi,j+1,'71i,j+1+mi > ui*}’

where i* = max {n;: ny <m;}.

Note that A4,;NB;;, is disjoint from A4;; for j'=j+2 and (3.4) ensures that
P{Z\m, < up}<y. This allows us to place bounds on the probability P{Z,,. < ux}, as
follows:

y>P{Zim, < up} = [Fup)]™

= exp {m;log F(uz)}

= o [y LT FQ)
(by Lemma 2.2 (1))/€XP< mi F(uz) >

= exp {—2m;[1 — F(uz)]}
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if i is large enough, i.e.,

1
mi{1 — F(up)} = log <W)

Hence, with the fact that the function x*e™| in [a, +00), we can choose ¥ so small that
log(1/y'?) = r — 1 and, for each i,

r—1
2" {m{1 - F(ui*)}]"*1 exp[—m{l — F(up)}] < r2r{log (#)} . yl/z

= y* <1.
This yields
P(Bl,j) =1- P{Zrmi = l/li*}

=1 — 2" [m{1 — F(up)}] " exp [—mi{l — F(uy)}]
>1—y*

for i large and all 1 < j < /(i). Thus, for such large i, we may use the simple inequality
2P(A U B) = P(A) + P(B) to get

/(i)
P(4;) = PS | J(4i;0 By )
J=1

=21 P{ U 4;N Bi,j)} + P{ U(Ai,j N B,-,j)}

jeven Jjodd

£Q 3.9
(by disjointness) = 2! Z P(4;;N B, ) (39)

J=1

(i)
(by independence) =27 " P(4;,)P(B;))

=1
/(i)
>(1 =27 P4yy).
=1
Fix i = 1, and 1 < j < /(i). Define
K" = max {k: n; < miji1}
and

ks =min{k: ny = m,;, PYYX <u,}=P{X <u,.}}
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For mi; < Ny < mj jt+1, let
By, = {ka,nk+1 > unk*}'

By the definition of B, it is easy to check that the events {Z,, < u, }NB,,, for
kv < k< k¥, are disjoint. Also, note that, for kx < k < k™,

P(Bnk) =5 1 - P{Zrnk,nkﬂ = unk*}

B r—1 [ N1 — Mg 1 — F(uy,.) J
=1- {F(unk*)}’lku n Z ( T )k >
j:0 j njx

r=1 Mgyl — N 1— F(Ll ) J
=1 — {F(up, )} " <7’” >
! j; j F(un,)

=1 — {F(un)}" =" ((ngy — ni){1 — Fup, )}

(by Lemma 2.2) = 1 — rexp (—W{l - F(unk)}> [(nis1 — n){1 — F(un )}

A
=1—rAexp (_T*) = Cy,

using (3.1) and x*e™ | in [a, +00) (since A« = r — 1) in the last step. Thus,

ke <k<k*

P(Ai,j) = P{ U {Zrnk < unk} N Bnk}

(by disjointness) = Z P{{Zn, <uy)N By}

ke<k<k*

(by independence) = Z P{Zm, < uu }P(B,,)

ky<k<k*

=Cx Y P{Zm, <un}

kx<k<k*

C
(by Lemma 2.1) = C—i Z P{Zn, < un}.

mi jSnESmi ji

Set S = {(i, j): m;; is defined}. Then, from (3.9),
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00 x oo Z(i)

3 Py = ! _2V 3N P4y
=1

i=1 i=1

1—y*
=—5— > Py
{G.)es}

1 —y")Cx &
E%Zp{zmkgunk}:oo,

k=r*

for a positive integer #*. This completes the proof. O

To illustrate Theorem 3.1, we state the following theorem to get the full strength of what
has actually been proved.

Theorem 3.2. Let X, X, ... be a sequence of i.i.d. random variables with common
distribution function F(x). Let {u,} be any non-decreasing sequence satisfying (i) and (ii) of
Theorem 3.1. Fix an integer r = 1, and take any r — 1 <1y < 1* <oc. Let {ny} be a non-
decreasing sequence of positive integers. If, for all k =1,

(i1 — n){1 = F(un)} = As, (3.10)
then
P{Zm, <u, i0}=1 (3.11)
if and only if
Z exp [—nmi{l — F(u, )} [ni{1l — F(u, )} = oco. (3.12)
=1
If, for all k=1,
(nisr = no{1 = Flun)} <47, (3.13)
then
P{Z,,, <u, i0}=0 (3.14)
if and only if
> exp[—ni{l = Flup )} [ni{1l = F(u )} < oc. (3.15)
k=1

Proof. By direct calculation, it is easy to get, for any fixed integer r = 1,

1
Gy P} Il = Fn))'™ = P{Zp, < )

(3.16)
< r2"{F(un) Y " [ni{1 — F(u, )} ".
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Thus, the series

o0

Y PAZp < un} (3.17)
k=¥
and
> Fn )] {1 = Flup )} (3.18)

k=r*
converge or diverge together.
By Lemma 2.2 (i), the convergence or divergence of both series (3.18) and

o0

> expl—mi{l = Flup )} [ni{ 1 — F(u, )} (3.19)

=1
depends only on those terms for which n{l — F(u,,)} < (1 +0)logk, where 0 is an
arbitrary positive real number. For such terms £,
F(u,,)}"™
{Fun)} ~1. (3.20)
exp [—ni{1 = F(un,)}]
In fact, if nx{1 — F(u,,)} = (1 + d)log k, then

. 1+0)logk}!
exp i1 — Flap )} nef{1 — Fa =" = L0

since x*e™" | in [a, +00). Thus, the series in (3.19) converges and, by Lemma 2.2 (i), so
does the series in (3.17). Hence, the above two series converge and diverge together. ]

The next theorem, a generalization of the result of Klass (1985) in the case » = 1, shows
that the series (1.2), (1.3) and (1.4) are criterion series for (1.1), without any monotonicity
assumption on the real sequence [n{l — F(u,)}].

Theorem 3.3. Let X, X, ... be a sequence of i.i.d. random variables with common
distribution function F(x). Let {u,} be any non-decreasing real sequence satisfying (i) and
(ii) of Theorem 3.1. Then

P{Z,,<u,io}=0orl (3.21)
according as

f: exp[—n{l — F(u,)}] M< 00 or = 00. (3.22)
n=1

Moreover, the series in (3.22) can be replaced by (1.2) or (1.3).

Proof. Let ny = 1 and, having defined ny, n,, ..., nyg, let
nppr =min{j>ng: (G — np){l — F(u,,)} = 1}. (3.23)
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Since n{l — F(u,)} — oo and (ngy1 — np){l — F(u,,)} — 1, it follows that ngy /ng — 1.

Hence, there exists ko such that n;{1 — F(u,,,, )} = r, for j = ko. Note that y*exp (—ny)
decreases for y = a/n. Thus, for all k = ko,

Y (1= F)y n exp[-n{l = F(u,)}]

NEsSN<njyg

= > {1=Fuy)} n " exp[—n{l - F(u,,)}]

nEsSn<njpyp

= > {1l = Fun)}Y (nesr — D' exp[—(niqr — D{1 = F(un)}]

NEs=n<njpy|

= Y {1 Fun)} ni expl=nifl = Flun ) exp {—(npr1 — ne = D{1 = F(up)}]

MESn< ngs
= e (gt — n){1 = Flup )} nj " exp [=ni{l = F(un,)}]
(by 3.23)) = e ! [np {1l — F(un )} Vexp[—ni{l — F(un,)}]-
In the reverse direction, since xe* <2¢e? if 0 < x < 2,

> {1 = Fun)} n " exp[—n{l = F(uy)}]

nEsSn<njq

= Z {1 - F(unkﬂ)}rnril eXp [_n{l - F(””kﬂ)}]
< (Mgy1 — ng)€XP [_nk{l - F(“n/cﬂ)}]{l - F(unk+1)}r71n271
< [(mi1 — n){1 = Flup,, ) exp [(nerr — ni){l — F(un,,,)}]

X {1 - F(unk+1)}r71n2—70—11 eXp [_nk+1{1 - F(unk+l)}]

=2 [np1{l = F(un,. )} exp[—ni1 {1 = Fup,, )}

Hence, the series (1.4) and

D lni{l = F(un )} exp[=ni{1 = F(un,)}]
k=1

converge or diverge together. Now the theorem follows from Theorem 3.1. The proof of the

facts that (3.22) can be replaced by (1.2) and (1.3) can be found in the paper by Wang and
Tomkins (1992). ]
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4. Extensions of Theorem 3.1 and some remarks

In this section, we shall make some remarks to conclude the paper.

Remark 4.1. The subsequence {n;} used in the proof of Theorem 2.1 of Wang and Tomkins
(1992) was defined by

k
nk:exp<lorﬂ),k:3,4,.... .1

Note that this subsequence does not depend on either {u,} or the distribution function
F(x). While the use of this sequence led to a simpler argument because of its various nice
analytical properties (Galambos 1987), its use required a monotonicity assumption on the
sequence [n{l — F(u,)}]. It is clear that Barndorff-Nielsen’s (1961) method cannot be
modified to produce Theorem 3.1, since the monotonicity of the sequence [n{1 — F(u,)}] is
essential to the proof of Lemma 1 of Barndorff-Nielsen (1961). However, note that in the
proof of Theorem 3.1, the choice of {n;} involved both the real sequence {u,} and the
distribution function F(x), and a delicate refilling procedure was used to produce m; and
m; ;. This procedure ensured that we chose sufficient monitoring points to determine the
pattern of occurrence of the events {Z,, < u,}; the subsequence defined by (4.1) is too
sparse to do this job.

The next two remarks will present some other choices for the monitoring subsequences
which can be used in place of that introduced in Theorem 3.1. These alternatives are
analogous to those suggested by Klass (1984).

Remark 4.2. Choose 0 <A« <A* <1 such that 2r(A*)"/2{log(1/A*)}""' <1. Let n; =1
and assume that, for k> 1, n; satisfies

1 .
for j = nyy — ny
PiZij<u, ’ + ’ 4.2
{Z; = uk}{>l*’ for j < ng,1 — ny. (4.2)

Then Theorem 3.1 remains true with this choice of {n;}.
To see this, first assume that Y ;2 P{Z,,, < u, } <oo. Then

P{Z,, < u,io}= 11m P{U U {Z,,,\u,,)}

N np<n<nji|

I

A}E&ZP{ U {Zm<un}}

NE<n<ngy|

o0

lim Z P{Zr(nk+l) = unk+l}

N
T =N

I
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P{Zl(”k+1),nk+| = unk+l}
P{Zl(nkﬂfnk*l) = u”k+l}

NgE

= lim P{Zr(nk+1) = u"k+1}
N—oo

k:

Il
=

< ]\%E};O P{ka+1 < unk+1}[P{Zl(nk+1*nk*1) = unk+1}]_l

NgE

k:

Il
=

(o)
1 4.
< Ay lim E P{Zpy, < tny }
N—oo N

=0.

Secondly, assume that > ;" P{Z,,, <u,}=o00. We need only re-evaluate the
probability of B,,, as defined in the proof of Theorem 3.1, by noting that
[F(u,)]™ " < A" implies that

1 — F(uy,,)
—2(ng1 — ni){1 = F(up)} < —(ni1 — nk)Tm)k
(by Lemma 2.2 (1)) < (ng4+1 — ny)log F(uy,)
< logi®,
provided that k is so large that 2F(u,,) > 1. Thus,
P(By)=1- P{Zr(nk+1—nk) = u”k*}

=1—r2"exp[—(nip1 — n){1 — F(up)(nps1 — ni){1 — F(un )}

log a*)—‘) <1og m)—1>
2 2

sk *k -1 r—1
1) ()

r—1
=1- 2r(,1*)1/2{1og <;*> }

>0.

=1—r2"exp (—

The rest of the proof is exactly the same as the proof of Theorem 3.1.

Remark 4.3. Another choice of {n;} is given by the following construction. Choose
0<Ax <A™ <1.Let n; =1 and, for k> 1, define nyy1 such that

= l*, fOI’j = Nj41 — Ng (43)

P{Z; < “nw}{ = e for < npn — ny.
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With this choice of {n,}, Theorem 3.1 again remains true. To see this, suppose that the series
S v P{Zn, < uy,} <oo. Then, as before,

P{Zy < u,,1.0.} = lim P{ G U {zms= un}}

N—00
k=N ny<nsnj4

I

NE<N<Njpy

N“B;ip{ U {Zm<un}}
k=N

o0

lim Z P{Zpyy < un,,}

N—oo N

I\

= P{Z <
lim 3 P{Zp, = tn, ) 0 bt )

N—oo oy

I\

o0
1 -
Sl* lim E P{ka“ su”k+1}
k=N

N—oo

=0.
Finally, by the construction of the n; values,
=2t — {1 = Flun)} < =2(neer — n){1 — F(un,.,)}
< (ngq1 — ny)log F(uy,.,)
< logA*.

In view of the approach used in the proof of Theorem 3.1 and Remark 4.2, it is now clear
that the probability in (3.2) equals one if the series in (3.3) diverges with this choice of ny.
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