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Penalization schemes for reflecting
stochastic differential equations

ROGER PETTERSSON

Department of Mathematical Statistics, Box 118, Lund University, 221 00 Lund, Sweden

We consider discrete penalization schemes for reflecting stochastic differential equations. The
convergence results obtained by Liu are generalized and refined. We also compare the penalization
schemes with a more well-known recursive projection scheme.
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1. Introduction

A solution to a reflecting stochastic differential equation (RSDE) is a diffusion process
constrained to a given set, in our case with normal reflection at the boundary. There are a
variety of different applications of RSDEs (see, for example, Asmussen 1992, Krée and Soize
1986, Chapter XIV and Shepp and Shiryaev 1994) where a suitable numerical scheme is of
importance.

Lions ef al. (1993) and Menaldi (1983) constructed solutions of RSDEs by considering
diffusion processes which are ‘penalized” by a term f;(x) = {x — II(x)}/A, where II
denotes projection onto the constraining set. As 1 | 0, convergence towards a solution of
the RSDE was obtained. These results were recently recovered by Storm (1995).

Liu (1993) showed convergence of Euler approximations for the penalizing stochastic
differential equations (SDEs). For a small but fixed step size Az, A was chosen to be equal
to (Af)!/2. The main idea in this paper is to consider convergence for all choices of 1 = Af.
We obtain that a suitable choice of 1 = Af seems to be A = Az. When 4 <At¢, the penalty
term tends to push the approximating sequence inwards too much for the constraining set to
be useful.

We also compare the penalization scheme with the ‘projection scheme’ investigated by,
for example, Stominski (1994) and Pettersson (1995).

2. Notation and recalled results

Assume that 7' is an open, convex and bounded set in R?. Denote by IT the projection map
onto (7:
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I1(x) = argmin|x — y|, x € R,
Y€l

where || is the usual Euclidean norm. Let

o =x -1, pw =L,

Let xy be a given point in 7. From the work of Menaldi (1983) there exists some y >0 such
that

x e R

YIB| = (x —x0, B(x)),  Vxe R, (1)

where (-, -) is the usual inner product. We shall also use the facts that
B =B <lx—yl,  Wx VyeR 2
—(x =y, D) < “AB@P,  VreR) Vye s, VA0, 3)

(see, for example, Aubin and Cellina 1984, pp. 24 and 33).

Let (Q,.7, P) be a probability space with filtration {.%};=¢ satisfying the usual
conditions. Let {B(#)};¢ be an m-dimensional {7 ;}-adapted Brownian motion. Assume
that b: R4—B? and o: R—R? X B™ are Lipschitz continuous normed by |b| =
L )2 and |o| = (Z?;'f’jzlalz-j)l/z. For cadlags z let ||z||, = sup {|z(¢)]: 0 < ¢t < T}.
Let 0<T <o0. Let ¢ be a generic constant, i.e., the value of ¢ may change from line to
line.

We consider the RSDE

dé(n) = b(&(1) dr + o (£(1) dB(2) — di(2), &(0) = xo. “)

Definition 2.1. A couple (&, ) is said to be a solution of the RSDE (4) on [0, T] if

(i) & and n are continuous and progressively measurable,
(ii) &(¢) € @Vt and n has bounded variation on [0, T1, B
(iii) for all continuous and progressively measurable processes v taking values in (7,

j0<5<s> —(s), di(s) = 0,
and &) = 30+ [ bES) ds + [ 7 (E(s)) dB(s) — (1.

By the Lipschitz conditions of » and ¢ and (2), there exists, for each >0, a unique
solution &; to the SDE

A&, (1) = b(E(D) dr + 0 (E(1) dB(2) — pr(&x(1) dt, £1(0) = xo. )

Menaldi (1983) showed that there exists a unique solution to the RSDE (4). Furthermore,
according to Menaldi (1983, Remark 3.1) and the arguments of Liu (1993), we obtain the
following result:

El& — &F <A, va>o0. (6)
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3. Euler approximations of &)

Liu (1993) considered Euler approximations Sff for (5):

M(tr) = EX (i) + BEY (- )AL, + 0 (EX (14-1) ABy — Ba(EN (i) Aty (7)

where, for some integer n, 0 = tp<t, <. -<t,=T, Aty =ty — ty_1 = At and AB; =
B(ty) — B(tx—1). For t€ [t to), let (1) =E (1) + bE (L))t — tioy) +
o (EX'(ti1)){B(t) — B(t;_1)}. Liu obtained that

E|E2(T) — E(T)? = O(Ar'/>7), Ya € (0, ). (8)

if At =A% is small.
We show a refined and generalized result of (8). By the expression ‘o is bounded’ we
mean that, for some constant ¢>0, |o(x)| < ¢ for all x € R?.

Theorem 3.1. Assume that b and o are Lipschitz continuous and o is bounded. Then

forre (1))

E|& - &l =0

if At <A and A is small.

By (6) and Theorem 3.1 it follows that

1\ 2
{Atlog (At)} + A

for small At < A, which may indicate that in practical simulation schemes, for fixed A¢, it is
preferable to choose A as small as possible. For 1 = (A7)'/2, E[& —§||2T is O(Af'/2),
Vo >0 and is O[{Arlog(1/At}"/?] for A = At. However, if A < At, then the B;(&2(14_1)) At
term may push Ef’ inwards too much for @ (see Section 4).

Consider the iterative projection scheme.

PA(ty) = TI(PA (15-1) + B(PM (15-1)) Aty + o (PM (1)) ABy), (10)
with PAY(f) = PM(tp_y) for t € [ti_1), tr, and Aty < At. Under Condition B for &' of

Tanaka (1979), and if o is bounded,
| 1/2
{anee ()} | (an

which can be seen by a slight modification of Theorem 2 of Stominski (1994) and using

3e>0,  E|& —&Fr<ec . Ya>0, ©)

2
E[[PA - &[7 =0

E sup |B(t) — B(s)|* = O{Atlog (Ai) } (12)

0<s < (<T,|t—s|<At
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for small At (see, for example, Pettersson 1995). If @ is a convex polyhedron, E||PA" — §||2T
is O{Atrlog(1/Af)} (Pettersson 1995). Observe that (10) can be seen as a variant of the Euler
scheme (7):

PA(tg) = PM(t—1) + B(PM(ti—1)) Aty + o (PP (14-1)) ABy
— Bu(PM(ti—1) + B(PM(ti—1)) Aty + 0 (PP (15-1)) ABy) Aty

where A = At. In order to keep the proof of Theorem 3.1 to the essentials, we concentrate
on the case when b = 0 and o is a constant matrix. We also let Az, = At. We thus have

d&(t) = o dB(t) — dn(1),  &0) = xo, (13)
d&; (1) = 0 dB(1) — Bt dt,  E(0) = xo, (14)
EX (1) = E}'(tx-1) + 0 ABy — BA(EY (i) AL, E2(0) = xo. (15)

Lemma 3.2. Let &, be the solution to (14). Then

sup E[l&; 7 < oo (16)
A>0

and
T 2
sup E (J |ﬂz(§/1(S))|dS> < e (17)
A>0 0

Proof. Lemma 3.2 has been proved by Menaldi (1983). However, we show the ideas behind
it. For fixed 1 >0, let 7, = inf {7 € [0, T: |§,(¢)] = n} (= T if the set is empty). By It0’s
formula

AT, INT,

(E2(5) = o, Bi(Eals))) ds + 2J (E4(5) — %0, 0 dB(s))

E(t AT —x0P = — ZJ
0 (18)

0
+ o)A (t A Tp).

The first integral is, by (3), less than or equal to zero. By the Burkholder—Davis—Gundy
inequality and the inequality 2ab < ca® + b* /e, for fixed ¢,

1/2
SAT INT,
E sup J (Ea(s) — x0, 0 dB(s)) < 3Eq sup |&Ei(s AT,) — X0 <J |0|2 ds)
0

Os=s<tJo 0=s<t

<1E sup |&(s AT,) — xof* + 18|0|*T.

Oss<t¢

By a Bellman—Gronwall argument it now follows that Esupo<s</|&i(s AT,) — Xo|* is
uniformly bounded over all » and A. Fatou’s lemma then gives (16).
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By (1) and (18),
AT,

INT,
240 |m($z(s)dsszjo (E(5) — x0, 0 dB(S)) + 0 (1 A ) — [E(t A Ta) — o

1t6 isomorphism and (16) then give (17). Ol

Now we give a discrete version of Lemma 3.2.

Lemma 3.3. Let £ be given by (15). Then

sup E||§f’||zr<oo, (19)
0<Ar<A
sup max B, (&7 (ti-1))| At < max |o ABy, (20)
0<Ar=AtsT n<T
sup Y IBuE (i) AP < > [oAB[, 1)
0<Arsi<r (=<T
2
sup E (szi(gff(rkl))w) <0, (22)
0<Ars<i th=<T

where the supremum is over all At, A such that 0 <At < A.

Proof. We first show (19). Evidently,

&8 (1) — xof* = [E2"(tr-1) — xo* + |0 ABi* + |Ba(EY (tr-1)* AL
+ 2(EN (t5-1) — X0, 0 AB) — 2(E}(t5-1) — x0, Ba(EY (i) At (23)

—2(0 ABy, B (k1)) At.
For At < 4, we get, by (3),
62111 = %o = Y 1o ABP +2 ) (8 (14-1) — %0, 0 ABy)
t<T t<T
(24)
=2 (0 ABy, Bi(&: (k1)) Aty

1 <T
which, since (&2 (tx_1)) is .7, , adapted yields
E|§ft(tk) —xl <|oft <|o|*T

for all 7, < T and A¢ < A. That Emax,, <7 |£;(¢4)? is bounded now follows with the help
of the Burkholder—Davis—Gundy inequality. We have, for example,
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f<T
K = th=<T

1/2
2Emax > (0 ABj, B (1j-1) t<6E{<Z|ﬂz(§ (rkl))Arlzlolet> }

which, since Az <1 and |B(x)| < |x — xo| for all x in R, is dominated by

tk<T ti<T

1/2
6E{ (Z |EX (th-1) — xo|*|o | At) } <3lo+3 ) EI& (ti1) — %[> At

The assertion (19) then follows trivially.
Now we prove (20). Note that

EN(ty) = TI(E (tx-1)) + 0 ABy + ( >ﬂ(§ (te-1));
hence, by the definition of IT and j,

BE )] = | (1) = TIE (10)]
< [} (te) — TIE (5)]
A
< |0 ABi| + (1 - %) IBEY (t5-1)) (25)
and, consequently,
A
max [B(57(14))| < max |o ABy| + (1 - %) max [ (& (1),

which gives (20).
If At =4, then (21) follows immediately by (25). Else, squaring of (25) gives

? A
BE (1 < o ABi + <1 - %) BE () + 2(1 - {) A& (ti-)lo ABy|
2
< (1 —%) (1+ QIBE (1) + (1 +§)|o ABy P,

= ( At) BE; (t"”))|2+Ait‘a ABJ?,

At/
1= At/A
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Hence,
ZT BE (L) < ZT BE (1)
= t§<1 - A/1t>2|ﬁ(5f’(tk1))l2 - ;21 lo AB|%,
ie.,

> BEY (i) Ar?

P = |O' ABk|2.
t<T 1T

Finally, we obtain (22). By (1) and (23),
2 |BAE (i )| At < |8 (t-1) = x0* = [E2'(11) — o + [0 ABi[* + |Bu(& (i) AP

+ 2(EX(th1) — x0, 0 ABy) — 2(0 ABy, Bil(E2 (14-1))) At.

Thus,
2 > IBUE e DAL= o ABLP + Y 1BE ()P AP
=T =T =T
+2°) (&) (ti-1) — %0, 0 ABy)
th<T
—2> (0 AB, BuEr (1)) At
=T
By using (21) we get (22). O

Proof of Theorem 3.1.

(i) b=0 and o constant. Recall that &' is interpolated:

t t
&0 =0 | &> ds + | o B,
0 0
where s = max {#;: t; < s}. Then by It&’s formula and (3),

t
0

() — EX(D] = —ZJ (Ba(Ea(s)) — Ba(EL (s™1), Exls) — E2'(s)) ds

< —2L (Ba(Ea(s)) — BuEN (™), EN(s™) — EM(s)) ds.
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Hence

1/2

2
T
E|& — &5 < 2{E0supT EX () — EX (AP |E (L 1B2(Ex(5))| ds)

sIs

1/2

2
£ 2B sup [E() — &M PY 2 [ (Z Iﬁa(éf’(fkl))lm> ,

Ost<T =T

where

{E sup |&(n—E'(P}/* < |o|{E supT|B<r>—B(tA’>|2}”2

Ost<T o=t=<
+ [B{max (& () A}

(it also works if ¢ is not constant but bounded). The proof is completed by (20), the modulus
of continuity (12) of the Brownian motion, and the boundedness results (17) and (22).

(i) b and o Lipschitz continuous, o bounded. Modify (i) by elementary computations.
For example, for a corresponding statement of Lemma 3.3, use that

_ & o DIBE ()] AL
A
= |BEY (- D)IBE (1) At

< (1 + [ (1)) At

and for calculations corresponding to (i), use inequalities as in Lemma 3.2:

(BEY (ti1)) AL, Bi(EL (ti1) At)

E sup

t<T

L@(s)— 2(s),s o@(s))—o(éf%s))dB(s»‘ < IE|& - &[>

T
+ 18] Blo@o) - 0@ 6)Pas. O

Remark 3.4. By using a recent generalized result (1) of Storm (1995), we can easily show a
bounded variation result for the projection scheme (10) similarly to (22). This is important
for proving convergence of the type (11).

For x € 07 let ./ (x) be the outward-directed normal cone at x,

A ) ={neR: —(x—y,n) <0 Vy e o}, (26)

and for x in @ let ./ (x) = 0 € R?. Then, by Proposition 2.2 of Storm (1995), there exists a
y >0 such that

yln| < (x — x, n), Vx € @, Vn € 1 (x). (27)
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Consider again, for simplicity, the case b = 0 and o constant. Then
PA(ty) = PM(t5o1) + 0 ABy — Ay, (28)
where
Ang = B{P(15-1) + 0 ABy} € J{TI(PY (tx1) + 0 AB)} = 1 (P (1)) (29)
Since
|PA(t) = xo* = [PY(t5-1) = xof” + |0 ABi> = 2(P¥(15) — x0, Ampi) — [Ami?, (30)
by (27), (29) and (30), we get

2 ) AR <2 (PM(t) — x0, Ani) < > |0 ABP,

1 =<T 1=<T tp<T

which gives the version of (22) searched for.

To show convergence of the type (6) and (11) it is also important to use a bounded
variation result for #, where # is the bounded variation process in Definition 2.1. Since # is
the limit of Jot Bi(&1(s))ds in the mean square sense, uniformly on [0, 7] (Menaldi 1983),
there exists a sequence A4,|0 such that

t
a.s.)
sup |n(r>—jﬁh(§z,,<s))ds|% 0, inl0.
0=/=T 0

This implies that the wvariation |9|(T) of #% on [0, T] 1is dominated by
liminf; o for|ﬁin(§,1n(s))|ds (a.s.). Hence, by Fatou’s lemma and (17), it follows that
E{(In|(T))*} < oc. O

4. Comparison of &2 and P

We now compare the methods (7) and (10). Note that, if At =1, b =0 and o is constant,
PYM(1) = TIER((t),  Eniltr) = PY(tx1) + 0 ABy,
and, by using (26), (28) and (29),
|PA(ty) — PA(ty-y)| < |o AByl.

We especially have

PA(1) = TI(ER (1)) = 0, max|PY(1) — Exi(1)| < max[o ABy|. (31)

k= k==

In one dimension, with b=0, m=d=1, 0 =1, xo=B(0)=0 and @ = (0, 00), the
solution (&, n7) to RSDE (13), is well known to be given by

§(t) = B(1) — min B(s), (1) = min B(s).
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Further, it is easy to show for fixed A¢ that, if 1 = Az,
£"(1x) < Exi(t) < max (Ex1(11). 0) = PM(1) = B(1) — min B(t)) < E(t),
<t,=<1
which means that, in at least this case, it is appropriate to choose 4 < At when simulating

E,f’(tk). However, if A <At, then Lemma 3.3 cannot be used. Instead we note the following.
Let

A EEY()  E[B(t) —min{B(t;), 0} At/A]  At/A
* 7 EBE(ty)  E[B(ty) —min{(B(s), 0): s < 1}] 232"

If for example for some € >0, A = At' (< Af), then qft — 00 as At | 0, which means that
the penalty term ﬁl(gf’(tk,l)At pushes Sft(tk) inwards too much (0, co). In particular, if
e>1 then

2!

(Emax |52 — EI1)"* = (¢ — DBE() — 00, as At — 0.
na

Since Eft above zero follows the path of the Brownian motion, the penalty term, when it is
not zero, is generically of order (Ar)*/? /A which, if 1 = At'*¢, ¢ >0, creates too large jumps
upwards compared with the increments of & which are of order (A7)'/2. This behaviour of Eft
also holds in higher dimensions if /7 is a half-space. If (7 is bounded and convex with C!
boundary, a similar result also seems plausible by a localization argument.

Here is a generalized result of (31) when b may not be 0 and o may not be a constant.

Proposition 4.1. Let &3 be given by (7), where At = 1, and P™' by (10). Assume that b and
o satisfy the usual Lipschitz conditions and o is bounded. Then

Emax | PA(1) = TIER)(10)* = O(A), (32)
1
E?Bg’; |PAt(tk) - §§;(tk)|2 = O{Atlog (E) }, (33)

for small At.

Proof. In order to keep to essentials, we also here consider the case when b = 0. We can
write

PAM(ty) = PM(tgo1) + o (P (1)) ABy — Any, A € 1 (P (1) (34)
and
TIER (1)) = TIER (14-1)) + 0 (EX'(1-1)) ABy + BER!(11)),
BEN (1) € A (TIE (10)). (35)

Hence, by careful but elementary calculations,



Penalization schemes for RSDEs 413
|PA (1) = TNER I = [PY (11-1) = THER (k- + {0 (P (14-1)) — 0 (Exy(tx-1)} AB [
= 2(PM(t41) — THERY(tk1), {0 (PY (141)) — 0 (EA1(1e-1))} ABY)
— 2(PM(15) — TIERUR)), Ak — BERK1))) — [Ani = BERIEI.
By (34), (35) and (26),
—2(PM(tg) = TIERI(1)), Ay — BERI(1))) < 0.
Consequently,

|PM(ty) — TIER K> <

=2 ) " (PM(t51) — TIENE-1)). {0 (PY(1;-1)) — 0(Exs(t;-1)} AB))

+ > Ho(PM(tj-1) — o (Exi(ti1))} ABy[®.

For fixed ¢, by the Burkholder—Davis—Gundy inequality,

E max (—2 S Pt — TIER 1), (PN (11-1)) — 0 (EAE-1))} AB»)

(=<t
k=M =<ty

sty

< 6E max |PA(1y1) — TI(ERI(14-1) (Z o(PA’(tkl))> —o(Eai )P A

< JEmax | PY(1e1) = TER(e- )P + 18E Y |o(PY(t41)) = 0 (ERi(te- ) Ar.

ti=<t;

Hence

B max |PA(1) — TRy (t)* <38 D Elo(P (1) — oEni(e ) At (36)

kst

By a corresponding inequality to (25), it is readily shown that

|EXN(10) — THER ()] < [0 (ERI(tk-1) ABy|. (37)
Hence, by the Lipschitz assumption of o, a generalization of (19), (36) and (37),
Emax | PY(1) = NERD(t0* < ¢ 3 BIP(te1) = TEX (- D) A+ ¢ D EIAB[ At
= = =

which gives (32) by a discrete version of the Bellman—Gronwall inequality.
By (32), (37) and (12), the claim (33) is proved (Condition B of Tanaka 1979 is not
needed). ]
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