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For a self-similar á-stable process with stationary increments fX (t), 0 < t < 1g we study the

asymptotic behaviour of the probability that the process stays within the interval [ÿå, å], as å becomes

small. This behaviour turns out to be only partially determined by the index of stability á and

parameter of self-similarity H.

Keywords: self-similar processes; small tails; stable processes; stationary increments

1350±7265 # 1998 Chapman & Hall

1. Introduction

Let fX (t), t > 0g be an H-self-similar stochastic process with stationary increments. This

means that for any c . 0,

fX (ct), t > 0g�d fcH X (t), t > 0g

(property of self-similarity) and

fX (t � c)ÿ X (c), t > 0g�d fX (t)ÿ X (0), t > 0g

(property of stationarity of the increments). These processes arise naturally as the only

possible limits when an arbitrary process with stationary increments undergoes a time

rescaling, X (ct) with c!1, and a simultaneous space rescaling, as is known from various

sources, beginning with Lamperti (1962); see also Vervaat (1987). A large number of papers

have appeared on the subject in the last two decades, the interest in self-similar processes

being generated by their fractal-type behaviour and by their common usage as stochastic

models with long range dependence, beginning with Mandelbrot and Van Ness (1968). An

extensive survey is presented in Taqqu (1986), and for more recent information the reader

can consult Chapters 7 and 8 in Samorodnitsky and Taqqu (1994).

A very important class of heavy-tailed H-self-similar processes with stationary increments

(H-sssi processes) is that of symmetric á-stable (SáS) H-sssi processes. These are

processes as above, for which every linear combination Y �Pk
j�1ajX (tj) has an SáS

distribution, 0 ,á < 2. That is, EeièY � eÿó
ájèjá for some ó > 0. We refer the reader to the

recent books by Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994) for more

information on SáS random variables and processes. Note that an SáS process with á � 2

is simply a zero-mean Gaussian process.
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Once one gets away from the assumption of Gaussianity, the family of H-sssi processes

becomes rich indeed, and it is therefore important to establish to what extent the properties

of H-sssi processes are determined by H alone, and to which extent SáS H-sssi processes

are determined by H and á alone. Much of what we know today on this subject is due to

the work of Vervaat and O'Brien ± see, for instance, O'Brien and Vervaat (1983) and

Vervaat (1985; 1987).

In this paper we address the question of the so-called lower tails of SáS H-sssi

processes. That is, we are interested in the behaviour of the `small ball' probability

P( sup
0< t<1

jX (t)j < å), å. 0, (1:1)

as å! 0. (We always take a separable version of the process to ensure that its supremum is a

well-de®ned random variable.) This question is important for many reasons. We mention

problems related to the law of the iterated logarithm for which lower tails are of crucial

importance, and problems related to the geometry of Banach spaces for which both `small

ball' and `large ball' behaviour of stable measures is very informative as well.

The present work started when the author saw in Monrad and RootzeÂn (1992) the

following elegant result describing the logarithmic behaviour of the lower tails of H-sssi

Gaussian processes, or of fractional Brownian motions. For a fractional Brownian motion

fX (t), 0 < t < 1g with parameter of self-similarity H one has

Cÿ1åÿ1=H < ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿ1=H , 0 , å, 1, (1:2)

for some C . 0. The above paper was published as Monrad and RootzeÂn (1995), and (1.2) is

also given in Talagrand (1995). It actually turned out that both bounds in (1.2) had been known

earlier. Its left-hand side follows from Pitt (1978), while its right-hand side is a particular case

of a bound given in Talagrand (1993) (historical information provided by the referee).

Suppose now that fX (t), 0 < t < 1g is an SáS H-sssi process, 0 ,á, 2. To what extent

does (1.2) extend to this case? Does it hold as it is? Or is there a d . 0 such that

Cÿ1åÿd < ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿd , å. 0, (1:3)

for some C . 0? If there is, is the d in (1.3) determined by á and H?

Before embarking on an analysis of the above questions, let us place our problem in the

general context of `small ball' problems. Let X be an SáS random vector in a measurable

vector space E, and let q be a measurable seminorm on E. The `small ball' problem

concerns the behaviour of P(q(X ) < å) as å! 0, and has been discussed in many papers.

When (E, i:i) is a separable Banach space, and q(x) � ixi, the best possible general upper

bound is

P(i X i < å) < Kå, å. 0,

where K is a ®nite constant that depends only on P(i X i < 1); see Fernique (1985) for the

case á � 2 and Lewandowski et al. (1992) for the case 0 ,á, 2. Clearly, general bounds of

this type are too crude to be of help in our analysis of lower tails of SáS H-sssi processes.

Finer estimates are available for certain particular seminorms in the Gaussian case,
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especially for Hilbertian norms (Sytaya 1974; Hoffmann-Jùrgensen et al. 1979; Ibragimov

1982; Zolotarev 1986; Mayer-Wolf and Zeitouni 1993; Dembo et al. 1995). Moreover, one is

sometimes able to relate small ball probabilities for Gaussian measures on separable Banach

spaces to the metric entropy of particular sets (see Kuelbs and Li 1993; Talagrand 1993).

In the proper á-stable case 0 ,á, 2 an important contribution is due to Ryznar (1986),

where (in addition to considering speci®c measurable seminorms and relating small ball

probability behaviour in a separable Banach space to the geometry of the space) it has been

proved that

ÿlog P(q(X ) < å) < Cåÿá=(1ÿá), 0 , å, 1, (1:4)

for every measurable seminorm q in a measurable vector space E and any strictly á-stable

random vector X in E with 0 ,á, 1. Further, Ryznar showed that the exponent d �
á=(1ÿ á) in the upper bound (1.4) cannot be improved in the strictly á-stable case. The

following example shows that it cannot be improved in the SáS case either.

Example 1.1. Consider an SáS random vector X in l1 given by

X i �
�1

0

f i(x)M(dx), i > 1,

where f i: (0, 1)! fÿ1, 1g is, for any i > 1, a measurable non-random function de®ned

below, and M is an (independently scattered) SáS random measure on (0, 1) with Lebesgue

control measure. See Samorodnitsky and Taqqu (1994) for detailed information on stable

random measures and stochastic integrals with respect to these measures. The functions f i are

de®ned as follows. For n > 1 let I
(n)
j be the jth binary interval of order n, j � 1, 2, . . . , 2n,

and A1, A2, . . . , A22n be an enumeration of 2f1,2:::,2ng. Let

h
(n)
j (x) � 1 if x 2 I

(n)
k , for some k 2 Aj,

ÿ1 if x 2 I
(n)
k , for some k =2 Aj,

(
n > 1, j � 1, 2, . . . , 22 n

. Finally, de®ne f 1 � h
(1)
1 , f 2 � h

(1)
2 , f 3 � h

(1)
3 , f 4 � h

(1)
4 , f 5 � h

(2)
1 ,

. . ..
Note that an alternative way of representing fXi, i > 1g is by

X i � cá
X1
j�1

å jÃ
ÿ1=á
j f i(Uj), i > 1,

where cá is a ®nite positive constant, and (å j, j > 1), (Uj, j > 1) and (Ãj, j > 1) are three

independent sequences of random variables. Here (å j, j > 1) are i.i.d. Rademacher random

variables (P(å j � 1) � 1ÿ P(å j � ÿ1) � 1=2), (Uj, j > 1) are i.i.d. random variables with

uniform distribution on (0, 1), and (Ãj, j > 1) are the arrival times of a unit-rate Poisson

process (Samorodnitsky and Taqqu 1994). We claim that X belongs to l1, with

sup
j>1

jX jj � cá
X1
j�1

Ãÿ1=á
j a.s. (1:5)

(Note that the right-hand side of (1.5) is ®nite with probability 1, because á, 1.)
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Clearly, it is enough to prove that, for almost every ù,

sup
j>1

X j > cá
X1
j�1

Ãÿ1=á
j ,

the inequality in the opposite direction being trivial. Fix an ù such that
P1

j�1Ã
ÿ1=á
j ,1 and

such that the Uj are all different. Fix a ä 2 (0, 1=2), and let N � N (ù) be such thatX1
j�N�1

Ãÿ1=á
j < ä

X1
j�1

Ãÿ1=á
j :

There is an n such that U1, U2, . . . , UN all belong to different binary intervals of order n.

Suppose that Uk 2 I
(n)
j k

, k � 1, 2, . . . , N . By construction, there is an i such that

f i(x) � åk on I
(n)
j k

, k � 1, . . . , N :

Therefore,

Xi � cá
XN

j�1

Ãÿ1=á
j � cá

X1
j�N�1

å jÃ
ÿ1=á
j f i(Uj)

> cá
XN

j�1

Ãÿ1=á
j ÿ äcá

X1
j�1

Ãÿ1=á
j > (1ÿ 2ä)cá

X1
j�1

Ãÿ1=á
j ,

which proves (1.5) because ä can be taken as close to 0 as we wish.

Since the random variable on the right-hand side of (1.5) is a positive strictly á-stable

random variable, we conclude that, in this case,

ÿlog P(sup
i>1

jX ij < å) � Cåÿá=(1ÿá)

as å! 0, and so the exponent d � á=(1ÿ á) in (1.4) cannot be improved even in the SáS

case.

In Section 3 of this paper we will discuss the possible values of the exponent d in (1.3)

for SáS H-sssi processes. We will see that, even though its value may differ between

different classes of such processes, certain information on d can be obtained through H and

á only. In particular, (1.2) holds for some of these processes and fails for others. The next

section collects together some preliminary results.

2. Preliminary results

We start with the following lemma that extends SÏ idaÂk's inequality for Gaussian random

vectors (SÏ idaÂk 1968) to SáS random vectors.
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Lemma 2.1. Let X � (X 1, . . . , X n) be an SáS random vector, 0 ,á, 2. Then for every

xj . 0, j � 1, . . . , n,

P(jX jj < xj, j � 1, . . . , n) >
Yn

j�1

P(jX jj < xj): (2:1)

Proof. Since every SáS random vector is a weak limit of SáS random vectors with `discrete

spectral measures', that is, SáS random vectors of the form

X j �
Xm

i�1

aijYi, j � 1, . . . , n, (2:2)

where Y1, . . . , Ym are i.i.d. Sá(1, 0, 0) random variables, it is enough to prove the lemma for

SáS random vectors of the form (2.2). Observe that we can write

Yi � Gi A
1=2
i , i � 1, . . . , m,

where G1, . . . , Gm are i.i.d. centred normal random variables living on, say, the probability

space (Ù1, F 1, P1), and A1, . . . , Am are i.i.d. Sá=2(1, 1, 0) random variables living, say, on

another probability space (Ù2, F 2, P2). We denote by Ei and Pi the expectation and

probability operators taken with respect to the ith probability space, i � 1, 2. By SÏidaÂk's

inequality for Gaussian random vectors,

P(jXjj < xj, j � 1, . . . , n) � E2 P1

����Xm

i�1

aijGi A
1=2
i

���� < xj, j � 1, . . . , n,

 !" #

> E2

Yn

j�1

P1

����Xm

i�1

aijGi A
1=2
i

���� < xj

 !24 35: (2:3)

Observe that the random variables A1, . . . , Am are independent, thus associated.

Furthermore, each Ù2 random variable

Zj � P1

����Xm

i�1

aijGi A
1=2
i

���� < xj

 !
is a non-increasing function of each of A1, . . . , Am, j � 1, . . . , n, and so Z1, . . . , Zn are

associated as well. Since they are also non-negative, it follows that Zj and
Q jÿ1

k�1 Zk are

associated for each j � 2, . . . , n, and so

E2

Yn

k�1

Zk

 !
> E2 Zn E2

Ynÿ1

k�1

Zk

 !
> � � � >

Yn

k�1

E2 Zk ,

which, together with (2.3), proves (2.1). u
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We will need the following simple estimate for conditional probabilities of hypercubes

for sums of symmetric random variables.

Lemma 2.2. Let Y1, . . . , Yn, X 11, X 12, . . . , X nm be independent symmetric random

variables. Then, for all 0 , x < y, we have

P

����Xk

i�1

 
Yi �

Xm

j�1

X ij

!����, y, k � 1, . . . , n

�����
����Xl

j�1

X ij

����, x, l � 1, . . . , m, i � 1, . . . , n

0@ 1A
> 2ÿn

Yn

i�1

P(0 , Yi , y): (2:4)

Proof. The proof is by induction on n. For n � 1 we need to consider

P

����Y1 �
Xm

j�1

X 1 j

����, y

�����
����Xl

j�1

X 1 j

����, x, l � 1, . . . , m

0@ 1A: (2:5)

Let Q� be the conditional distribution of
Pm

j�1 X 1 j given the condition in (2.5). Then the

probability in (2.5) is equal to�x

ÿx

P(jY1 � zj, y)Q�(dz) >

�x

0

P(Y1 2 (ÿy, 0))Q�(dz)�
�0

ÿx

P(Y1 2 (0, y))Q�(dz)

� P(Y1 2 (0, y)) > 1
2
P(0 , Y1 , y)

by the symmetry of Y1, thus establishing the basis of the induction.

Suppose our claim is true for nÿ 1 > 1. Rewrite the probability on the left-hand side of

(2.4) as

P

����Yn �
Xm

j�1

X nj

����, y

�����
����Xk

i�1

Yi �
Xm

j�1

Xij

 !����, y, k � 1, . . . , nÿ 1,

0@
����Xl

j�1

X ij

����, x, l � 1, . . . , m, i � 1, . . . , n

1A (2:6)

3 P

����Xk

i�1

Yi �
Xm

j�1

X ij

 !����, y, k � 1, . . . , nÿ 1

�����
����Xl

j�1

X ij

����, x, l � 1, . . . , m,

0@
i � 1, . . . , nÿ 1

!
:

By the assumption of the induction, the second term in (2.6) is greater than or equal to

2ÿ(nÿ1)
Ynÿ1

i�1

P(0 , Yi , y):
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We consider now the ®rst term in (2.6). Let Q�� be the conditional distribution ofPnÿ1
i�1 (Yi �

Pm
j�1 X ij) given jPk

i�1(Yi �
Pm

j�1 Xij)j, y, k � 1, . . . , nÿ 1, jP l
j�1 X ijj, x,

l � 1, . . . , m, i � 1, . . . , nÿ 1, and let Q��� be the conditional distribution of
Pm

j�1 Xnj

given jP l
j�1 Xnjj, x, l � 1, . . . , m. Note that both Q�� and Q��� are symmetric about the

origin. Then the ®rst term in (2.6) is

�
� y

ÿ y

Q��(dz1)

�x

ÿx

Q���(dz2)P(jYn � z1 � z2j, y)

> 2

� y

0

Q��(dz1)

�0

ÿx

Q���(dz2)P(jYn � z1 � z2j, y):

Clearly, jz1 � z2j < y under the above integral, implying, by the symmetry of Yn, that

P(jYn � z1 � z2j, y) > P(0 , Yn , y):

Therefore, the ®rst term in (2.6) is

> 2P(0 , Yn , y)

� y

0

Q��(dz1)

�0

ÿx

Q���(dz2) � 1
2
P(0 , Yn , y),

completing the proof of the lemma. u

3. Small ball probabilities for self-similar SáS processes

Let fX (t), t > 0g be an SáS H-sssi process, 0 ,á, 2, given in the form

X (t) �
�

S

f (t, x)M(dx), t > 0, (3:1)

where M is an SáS random measure on a measurable space (S, S ) with a ó-®nite control

measure m, and f (t, :) 2 Lá(S, S , m) for all t > 0. We will always assume that the process

is continuous in probability, in which case we must have H . 0, unless the process is

constant with probability 1 ± a not very interesting case which we do not consider (Vervaat

1987). Furthermore, moment considerations (see Maejima 1986) imply that the feasible range

for the pair (H , á) is

0 , H < 1=á if á, 1

and

0 , H < 1 if 1 < á, 2:

Our ®rst observation is that one can obtain, in certain cases, a general lower bound in

(1.3).
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Theorem 3.1. Let fX (t), t > 0g be an SáS H-sssi process which is continuous in probability.

Suppose that there is a b . 0 such that�
Rn

exp ÿ
�

S

����Xn

j�1

yj f ( j, x)

����ám(dx)

 !
dy < bn (3:2)

for all n > 1. Then there is a C . 0 such that

ÿlog P( sup
0< t<1

jX (t)j < å) > Cåÿ1=H (3:3)

for all 0 , å, 1.

Proof. We are using the obvious fact that the density f X of any non-degenerate SáS random

vector X � (X1, . . . , Xn) satis®es

fX(x1, . . . , xn) < fX(0, . . . , 0)

� 1

(2ð)n

�
R n

E exp i
Xn

j�1

yj X j

 !
dy:

Therefore, for every å. 0 and n > 1 we have, using the self-similarity property,

P( sup
0< t<1

jX (t)j < å) � P( sup
0< t<n

jX (t)j < nHå)

< P(jX ( j)j < nHå, j � 1, . . . , n)

<
1

ðn
å n nnH

�
Rn

exp ÿ
�

S

����Xn

j�1

yj f ( j, x)

����ám(dx)

 !
dy

<
1

ðn
å n nnH bn (3:4)

by (3.2). Since (3.4) holds for every n, we may choose

n � [eÿ1åÿ1=H (b=ð)ÿ1=H ]:

We then have

P( sup
0< t<1

jX (t)j < å) < exp n log
b

ð
ånH

� �� �

< eÿnH < exp ÿH eÿ1åÿ1=H b

ð

� �ÿ1=H
 !

ÿ 1

 !
,

thus completing the proof of the theorem. u

This result applies immediately to the following situation.
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Example 3.1 LeÂvy SáS motion. This is the simplest example of SáS H-sssi processes: a

process with stationary and independent SáS-distributed increments. The process can be

written formally in the form

X (t) �
�1

0

1(x < t)M(dx), t > 0, (3:5)

where M is an SáS random measure with Lebesgue control measure. The exponent of self-

similarity is, in this case, H � 1=á. It is the unique SáS H-sssi process with such an H if

0 ,á, 1, but not so in the case 1 < á, 2; see Kasahara et al. (1988) and Samorodnitsky

and Taqqu (1990). We will see that (1.2) extends directly to the case of SáS LeÂvy motion.

That is, there is a ®nite positive constant C � C(á) such that, for every 0 , å, 1,

Cÿ1åÿá < ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿá: (3:6)

The lower bound in (3.6) is a simple application of Theorem 3.1. We need to check

condition (3.2). Since in the present case

f (t, x) � 1(x < t), x > 0, t > 0,

we conclude that�
Rn

exp ÿ
�1

0

����Xn

j�1

yj f ( j, x)

����ám(dx)

 !
dy �

�
R n

exp ÿ
Xn

j�1

Xn

k� j

jyk já
 !

dy

�
�1
ÿ1

eÿj yj
á

dy

� �n

:� bn,

thus verifying (3.2), and so proving the lower bound in (3.6).

It is easy to get a matching upper bound. By separability,

P( sup
0< t<1

jX (t)j < å) � lim
n!1 P max

i�1,:::,2n

����X i

2n

� �����, å

 !
: (3:7)

Let Y1, Y2, . . . be i.i.d. Sá(1, 0, 0) random variables. By the 1=á-self-similarity of the process

and independence of the increments we have, for every n . åÿ2á,

P max
i�1,:::,2n

����X i

2n

� �����, å

 !
� P( max

i�1,:::,2 n
jY1 � � � � � Yij, å2n=á)

> P jY1 � � � � � Y j2 nÿ n0 j, å

2
2n=á, j � 1, 2, 3, . . . , 2n0 ,

�
jY( jÿ1)2nÿ n0�1 � � � � � Y( jÿ1)2 nÿ n0�k j, å

2
2n=á, j � 1, 2, 3, . . . , 2n0 , k � 1, . . . , 2nÿn0 ÿ 1

�

� P jY1 � � � � � Y j2nÿ n0 j, å

2
2n=á, j � 1, 2, 3, . . . , 2n0

����jY( jÿ1)2nÿ n0�1� � � �
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� Y( jÿ1)2nÿ n0�k

����, å

2
2n=á, j � 1, 2, 3, . . . , 2n0 , k � 1, . . . , 2nÿn0 ÿ 1

!

P jY( jÿ1)2nÿ n0�1 � � � � � Y( jÿ1)2nÿ n0�k j, å

2
2n=á, j � 1, . . . , 2n0 , k � 1, . . . , 2nÿn0 ÿ 1

� �
:

(3:8)

Here n0 is given by

2n0 � [Måá], (3:9)

with M satisfying

M . max (2, x0cÿ1
0 2ÿ(1�á)),

where c0 and x0 are as in (3.13) and (3.14) below. By Lemma 2.2 the ®rst term on the right-

hand side of (3.8) is greater than or equal to

2ÿ2 n0
(P(0 , Y1 , å22n=á))2n0

which converges, as n!1, to

2ÿ2(2n0 ) > eÿ2log(2Måÿá):

Therefore, we only need to get a matching lower bound on the second term on the right-hand

side of (3.8). Observe that it can be written as

(P( max
i�1,:::,2nÿ n0ÿ1

jY1 � � � � � Yij, å2n=á))2 n0

> (1ÿ 2P( max
i�1,:::,2 nÿn0ÿ1

(Y1� � � � �Yi) > å2n=á))2 n0

> (1ÿ 4P(Y1� � � � �Y2 nÿ n0 > å2n=á))2n0

� (1ÿ 4P(Y1 > å2n0=á))2n0

> (1ÿ 4(2á)c0åÿá2ÿn0 )2 n0 > exp (ÿx0cÿ1
0 2ÿ(1�á)åÿá)

by LeÂvy's inequality, (3.13), (3.14) and the choice of M. This establishes (3.6) completely.

In general, to obtain upper bounds in (1.3) one can use the following theorem.

Theorem 3.2. Let fX (t), t > 0g be an SáS H-sssi process which is continuous in probability

and bounded with probability 1 on compact intervals.

(i) If 0 ,á, 1, then there is a C . 0 such that

ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿá=(1ÿá) (3:10)

for all 0 , å, 1.

(ii) If 1 ,á, 2 and 1=á, H < 1, then there is a C . 0 and a è. 0, both of which
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depend only on á and H, such that

ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿ1=H log
1

å

� �è

(3:11)

for all 0 , å, eÿ1.

Proof. Of course, (i) follows from Ryznar's result (1.4). Our approach to (ii) is similar to that

of Monrad and RootzeÂn (1995). By the continuity in probability we have

sup
0< t<1

jX (t)j <
X1
n�1

max
i�1,:::,2n

jX (i2ÿn)ÿ X ((iÿ 1)2ÿn)j:

Therefore, by Lemma 2.1 and the H-sssi property,

P sup
0< t<1

jX (t)j < ð2

6
å

 !
� P sup

0< t<1

jX (t)j <
X1
n�1

nÿ2å

 !

> P(jX (i2ÿn)ÿ X ((iÿ 1)2ÿn)j < nÿ2å, i � 1, . . . , n, n � 1, 2, . . .)

>
Y1
n�1

(P(jX (2ÿn)j < nÿ2å))2n �
Y1
n�1

(P(jY j < nÿ22nHå))2n

, (3:12)

where Y is an Sá(1, 0, 0) random variable. Let c0 be such that, for every t . 0,

P(jY j. t) < c0 tÿá, (3:13)

and let x0 be such that for every x . x0,

1ÿ 1

x

� �x

> eÿ2: (3:14)

Finally, let c1 � c1(H) and c2 � c2(H) be such that with

n0 � c1 � c2 log2 log2

1

å
� 1

H
log2

1

å

� �
(3:15)

we have, for every 0 , å, eÿ1 and n > n0,

c0 n2á2ÿáHnåÿá < xÿ1
0 : (3:16)

Then, letting c denote a ®nite positive constant that depends only on á and H, and that may

change from line to line, and using, in sequence, the expressions (3.13), (3.16), (3.14), (3.16)

again, and ®nally (3.15), we obtain, for every 0 , å, eÿ1,
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Y1
n�n0

(P(jY j < nÿ22nHå))2n

>
Y1
n�n0

(1ÿ c0 n2á2ÿáHnåÿá)2 n

>
Y1
n�n0

exp (ÿ2c0 n2á2ÿáHnåÿá2n)

� exp ÿ2c0å
ÿá X1

n�n0

n2á2ÿn(áHÿ1)

 !
> exp (ÿcåÿán2á

0 2ÿn0(áHÿ1))

> exp (ÿc2n0 ) > exp ÿcåÿ1=H log
1

å

� �c2

 !
: (3:17)

Furthermore, using the fact that Y has a positive continuous density and (3.15), we obtain, for

every 0 , å, eÿ1 (with the same agreement on a generic constant c),Yn0ÿ1

n�1

(P(jY j < nÿ22nHå))2 n

>
Yn0ÿ1

n�1

(P(jY j < cå))2n

� (P(jY j < cå))2n0ÿ1 > (cÿ1å)2n0ÿ1

> (cÿ1å)cå1= H (log1
å)

c2
> exp ÿcå1=H log

1

å

� �c2�1
 !

,

which, together with (3.17), completes the proof of part (ii) of the theorem. u

One of the natural counterparts of fractional Brownian motion in the SáS case,

0 ,á, 2, is the (one-sided) linear fractional SáS motion

X (t) �
�1
ÿ1

((t ÿ x)
Hÿ1=á
� ÿ (ÿx)

Hÿ1=á
� )M(dx), t > 0, (3:18)

0 , H , 1, H 6� 1=á. Here M is an SáS random measure with Lebesgue control measure.

This process is, of course, just fractional Brownian motion when á � 2. However, in the case

0 ,á, 2, the one-sided linear fractional SáS motion is only one of the possible H-sssi

processes with H in the above range; see, for example, Samorodnitsky and Taqqu (1994). Our

theorems above allow one to show that (1.2) essentially extends to this process.

Example 3.2 One-sided linear fractional SáS motion. We claim that for every 1 ,á, 2

and 1 . H . 1=á, there is a ®nite positive constant C � C(á, H) and a è. 0 such, that for

all 0 , å, eÿ1,

Cÿ1åÿ1=H < ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿ1=H log
1

å

� �è

: (3:19)

The upper bound in (3.19) follows directly from part (ii) of Theorem 3.2, and the lower
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bound will follow directly from Theorem 3.1, once we check that (3.2) holds in this case.

We have �
Rn

exp ÿ
�1
ÿ1

����Xn

j�1

yj f ( j, x)

����ám(dx)

 !
dy

�
�

Rn

exp ÿ
�1
ÿ1

����Xn

j�1

yj(( jÿ x)
Hÿ1=á
� ÿ (ÿx)

Hÿ1=á
� )

����á dx

 !
dy

<

�
R n

exp ÿ
�1

0

����Xn

j�1

yj( jÿ x)
Hÿ1=á
�

����á dx

 !
dy

�
�

Rn

Yn

i�1

exp ÿ
� i

iÿ1

����Xn

j�i

yj( jÿ x) Hÿ1=á

����á dx

 !
dy:

Now, for every ®xed y2, . . . , yn we have, since á. 1,�
R

exp ÿ
�1

0

����Xn

j�1

yj( jÿ x) Hÿ1=á

����á dx

 !
dy1

<

�
R

exp ÿ
�1

0

����Xn

j�1

yj( jÿ x) Hÿ1=á

���� dx

 !á
0@ 1A dy1

<

�
R

exp ÿ
�����1

0

y1(1ÿ x) Hÿ1=á �
Xn

j�2

yj( jÿ x) Hÿ1=á

 !
dx

����á
 !

dy1

�
�

R

exp ÿ
����y1(H � 1ÿ 1=á)ÿ1 � k(y2, . . . , yn)

����á
 !

dy1

�
�

R

exp ÿ
����y1(H � 1ÿ 1=á)ÿ1

����á
 !

dy1 :� b:

Here k(y2, . . . , yn) is a ®nite number (which depends on y2, . . . , yn). Therefore, we conclude

that �
Rn

Yn

i�1

exp ÿ
� i

iÿ1

����Xn

j�i

yj( jÿ x) Hÿ1=á

����á dx

 !
dy1 dy2 . . . dyn

< b

�
R nÿ1

Yn

i�2

exp ÿ
� i

iÿ1

����Xn

j�i

yj( jÿ x) Hÿ1=á

����á dx

 !
dy2 . . . dyn,

and continuing in exactly the same manner we obtain that this expression is bounded from

above by bn, checking (3.2), and so completely proving (3.19).
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Remarks

(i) Example 3.2 shows that the bound on the lower tail exponent d provided by Theorem

3.1 cannot be improved in general. We do not know whether the logarithmic term is

necessary in (3.11), but we conjecture that is not necessary in (3.19).

(ii) The restriction on the parameters 1 ,á, 2 and 1=á, H , 1 in Example 3.2 is

completely natural, and is not due to the methods we employ. Indeed, linear fractional SáS

motions with 0 < á < 1 or that with 1 ,á, 2 and 0 , H , 1=á are unbounded with

probability 1 on any interval of positive length (a completely different behaviour from that

of fractional Brownian motion). See, for example, Samorodnitsky and Taqqu (1994).

The cases of LeÂvy SáS motion and one-sided linear fractional SáS motion may make it

appear that (1.2) must be true for SáS H-sssi processes with 0 ,á, 2. The following

example shows, however, that this is not the case.

Example 3.3 Sub-fractional Brownian motion. We consider the SáS H-sssi process

fX (t), t > 0g de®ned by

X (t) �
�
Ù

f (t, x)M(dx), t > 0, (3:20)

where (Ù, F , P) is a probability space, M has control measure P, and f f ((t, :), t > 0g is,

under P, a fractional Brownian motion. Alternatively, one can represent our process in the

form

X (t) � c(á, H)A1=2Y (t), t > 0, (3:21)

where A is an Sá=2(1, 1, 0) random variable, independent of the fractional Brownian motion

fY (t), t > 0g, and c(á, H) is a ®nite positive constant. The process fX (t), t > 0g de®ned by

either (3.20) or (3.21) is called sub-fractional Brownian motion. It is clearly an SáS H-sssi

process, with the same exponent of self-similarity H as the underlying fractional Brownian

motion fY (t), t > 0g. We will see that this process satis®es

Cÿ1åÿ
2á

2ÿá�2á H < ÿlog P( sup
0< t<1

jX (t)j < å) < Cåÿ
2á

2ÿá�2á H , 0 , å, 1, (3:22)

for some C . 0.

Indeed, (3.22) follows immediately from (1.2) and the fact that

ÿlog P(A , å) � cåÿ
á

2ÿá, å! 0

(recall that c stands for a ®nite positive constant that may change from line to line), by

noticing that, on one hand, for every 0 , å, 1 and 0 , è, 1,

P( sup
0< t<1

jX (t)j < å) � P(A1=2 sup
0< t<1

jY (t)j < å)

> P(A1=2 < åè)P( sup
0< t<1

jY (t)j < å1ÿè)

> exp (ÿc(å2è)ÿ
á

2ÿá) exp (ÿc(å1ÿè)ÿá)
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and then choosing è � (2ÿ á)=(4ÿ á), and on the other hand

P( sup
0< t<1

jX (t)j < å) < P(A1=2 < åè)� P( sup
0< t<1

jY (t)j < å1ÿè)

< exp (ÿc(å2è)ÿ
á

2ÿá)� exp (ÿc(å1ÿè)ÿá)

and choosing the same è as above.

Note that the lower tail exponent d in (3.22) is

2á

2ÿ á� 2áH
,

1

H

for 0 ,á, 2. Therefore, the bound of Theorem 3.2(ii) (in the case 1=á, H , 1) is not sharp

for sub-fractional Brownian motion. The dependence structure of SáS H-sssi processes with

0 ,á, 2 varies signi®cantly from one class of such processes to another, causing the effect

demonstrated in this paper: even though there are bounds on the lower tail exponent d that

depend only on H and á, d may actually depend on a particular chosen class of the

processes.
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