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f is assumed to be m times differentiable except for an unknown although ®nite number of jumps,
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1. Introduction

In the 1980s, optimal rates of convergence in nonparametric regression estimation problems

have been thoroughly examined, following the book of Ibragimov and Hasminskii (1981), the

ground-breaking papers due to Stone (1982) and BirgeÂ (1983) and others. Later the interest

shifted to ®nding not only the optimal rates but also the asymptotic optimal constants,

determining the risk of optimal estimators. This interest was greatly initiated by the

pioneering paper of Pinsker (1980). Such results have been obtained for different observation

schemes, involving smooth functions con®ned to balls in a Sobolev space, with L2 losses

(see, for example, Nussbaum 1985; Golubev and Nussbaum 1990; Speckman 1985; and

Efroimovich 1994), for functions restricted to HoÈlder balls in the case of L1 losses

(Korostelev 1994; Donoho 1994) and for analytic functions with different types of loss

function (Golubev et al. 1995).

Recently there has been growing interest in estimating functions with isolated

singularities, stimulated by a variety of applications, such as change-point problems,

spatially inhomogeneous data, image fragments restoration as well by their mathematical

meaningfulness (see MuÈller 1992 and further references therein). At ®rst glance, the known

results on the optimal rates of convergence may suggest that only slow rates of convergence

can be achieved for such functions with discontinuities. This, however, turns out not to be

the case. For functions which are smooth except for a few points the discontinuities do not

affect the convergence rate of the optimal estimators (Hall and Patil 1995).

In this paper we show that, in the Sobolev-type setting with L2 losses, regardless of the
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presence of an unknown although ®nite number of jumps in the unknown regression

function even the same asymptotic optimal constant can be attained as in the case of

smooth functions without jumps. This optimal constant is known as Pinsker's constant.

In order to obtain this optimal result we need accurate estimators of the jump points. To

detect the number and location of the jumps we construct an estimator depending on a

sample version of the jump sizes f (x�)ÿ f (xÿ). For a similar kind of estimator we refer

to (among others) MuÈller (1992), who used boundary kernels for estimating the location of

a jump and its size. Wang (1995) detected jumps using wavelets.

We shall work with the Gaussian white noise model, as will be de®ned below in (2.1).

Signal recovery in Gaussian white noise with variance tending to zero has already served

for some time as a representative model for nonparametric curve estimation, having all the

essential traits in a pure form. In contrast, in particular with the nonparametric regression

model, with observations on a discrete grid, it entails minimal technical nuisance. This is

re¯ected by the fact that, roughly speaking for the corresponding derivations that one

makes in these models, in the discrete model one has to deal with summations and in the

Gaussian model with integrals; hence the latter gives more elegant and transparent

arguments. We conjecture that an approximation in the sense of Le Cam's de®ciency

distance should make it precise. The models are then asymptotically equivalent for all

purposes of statistical decision with bounded loss. A ®rst result of this kind has recently

been established by Brown and Low (1996). They proved that the nonparametric regression

model with observations on a discrete grid is asymptotically equivalent to the Gaussian

white-noise model for HoÈlder classes with smoothness â. 1
2
. Although our results concern

regression for Sobolev classes with discontinuities, we might expect from their work that

similar results should hold also in our context. Hence the results obtained in this paper

should hold also in the discrete-type model, but that requires even more technical proofs.

Moreover it gives the idea what the corresponding asymptotically minimax estimator is in

that model.

2. The model and main result

Suppose that we observe a random process X E(t) satisfying the stochastic differential

equation

dX E(t) � f (t) dt � E dW (t), t 2 [0, 1], (2:1)

with some prescribed initial value X (0), which is either constant or a random variable

independent of W , W (t) is a standard Wiener process and E is a known parameter, assumed

to be small. The space of square-integrable functions (or signals) on [0, 1] is denoted by

L2 � L2[0, 1] and i:i is the usual L2 norm.

Let m be a positive integer and Q . 0 a constant, both given. Assume that the unknown

signal f belongs to a class of functions ÖB,k,L(m, Q), for which there exist (not necessarily

known) positive constants B, k, L such that, for all f 2 ÖB,k,L(m, Q), the following hold.

(A1) sup t2[0,1] j f (t)j, B.

16 C.G.M. Oudshoorn



(A2) There exist jump points b j, j � 0, . . . , S � 1 (unknown), 0 � b0 , � � � , bS�1 � 1,

such that

(A2.1) the points are at least distance k apart,

(A2.2) the jumps have at least size L, i.e.

L < jlim
t#b j

f (t)ÿ lim
t"b j

f (t)j �: j f (b j�)ÿ f (b jÿ)j, j � 1, . . . , S,

(A2.3) f is m-times differentiable on ]b j, b j�1[, j � 0, . . . , S, and

(A2.4) f belongs to a piecewise Sobolev `ellipsoid', i.e.,XS

j�0

�b j�1

b j

f f (m)(t)g2 dt < Q:

Note that the existence of the limits in (A2.2) follows from (A2.4). Moreover, conditions

(A1) and (A2.4) imply that the derivatives f (i)(t), i � 1, . . . , mÿ 1 are bounded

everywhere except at the jump points b j. Obviously the functions in ÖB,k,L(m, Q) are

square integrable.

De®ne the quadratic risk for an estimator f̂ of f as follows:

R(f̂ , f ) � E f i f̂ ÿ f i2: (2:2)

Furthermore denote the minimax quadratic risk in estimating f with respect to the class of

functions Ö by

rE(Ö) � inf
f̂

sup
f 2Ö

R( f̂ , f ), (2:3)

where the in®mum is taken over all estimators f̂ .

We derive the exact asymptotic behaviour of this minimax quadratic risk for the class

ÖB,k,L(m, Q), described by the conditions (A1)±(A2.4), formulated in the following

theorem.

Theorem 2.1. Let ã(m, Q) � fQ(2m� 1)g1=(2m�1)(m=ð(m� 1))2m=(2m�1). The minimax

quadratic risk of the above-de®ned model satis®es

lim
E#0

Eÿ4m=(2m�1) rE(ÖB,k,L(m, Q)) � ã(m, Q), (2:4)

for arbitrary although ®xed B, k and L.

Note that the right-hand side of (2.4) is independent of B, k and L. The proof of this

theorem is outlined in Section 2.4. There also a projection-type estimator ~f is given which

attains this optimal constant ã(m, Q), Pinsker's constant.

For the lower bound on the minimax risk in the setting (2.1) we refer to Pinsker (1980),

and to a more recent paper by Belitser and Levit (1996) for the corresponding discrete

setting. Note that our model allows functions f without jumps, while the additional

restriction (A1) does not affect the technique used in these papers for obtaining the lower

bounds in estimating such functions.
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First in Section 2.1 we give the motivation of the chosen basis. Second in Section 2.2 we

generalize the ideas of Pinsker (1980), such that an asymptotically minimax estimator

f̂ (t) � f̂ (t; b1, . . . , bs), in the case when the number and locations of the jump points are

known, is obtained. Of course this estimator depends on the (unknown) jump points b j.

Then we estimate these jump points (see Section 2.3). Finally in Section 2.4 we argue that

replacement, in the estimator f̂ for the case of known jump points, of the unknown jump

points b j by their estimators, results in an asymptotically minimax estimator ~f in the case

when the jump points are unknown (cf. (2.20)). We stress again that we do not have to

know the number of jump points, but because of the choice of k this number is assumed to

be ®nite.

2.1. Choice of the basis

Let us consider the basis arising from the following boundary value problem on the interval

[a, b], with Neumann conditions on the boundary

ÿd2

dt2

� �m

u � ëu, t 2 [a, b],

(2:5)

u(s)(a) � u(s)(b) � 0, s � m, . . . , 2mÿ 1:

The corresponding differential operator L � (ÿd2=dt2)m is self-adjoint and semi positive

de®nite on the space D � fu 2 C2m[a, b]: u(s)(a) � u(s)(b) � 0 for s � m, . . . , 2mÿ 1g.
Furthermore the null space D0 of L is spanned by the polynomials of degree at most mÿ 1.

On DnD0, L is compactly invertible and positive de®nite. Hence owing to the spectral

theorem the normed eigenfunctions jm, jm�1, . . . of (2.5) corresponding to positive

eigenvalues ëm, ëm�1, . . . and supplemented with an orthonormal set of polynomials

j0, . . . , jmÿ1 on [a, b] with degree at most mÿ 1, with corresponding eigenvalues

ë0 � 0, . . . , ëmÿ1 � 0, provide a basis for D. Moreover it is an orthonormal basis for the

whole of L2[a, b], as D is dense in L2[a, b] (compare, for example, Coddington and

Levinson 1955, Chapter 7).

The statistical importance of the eigenfunctions of the boundary value problem (2.5),

in the Sobolev-type setting, was apparently ®rst recognized by Golubev and Nussbaum

(1990). Its discrete counterpart, the so-called Demmler±Reinsch basis, appeared in the non-

parametric methods based on splines even earlier (see, for example, Speckman 1985).

In the theory of differential equations, extensive study of the asymptotic behaviour of

the eigenvalues and eigenfunctions of the boundary value problem (2.5), usually in the

broader setting of general linear differential operators of order m, was initiated by G.D.

Birkhoff in 1908. A detailed description of these properties has been presented in the

monographs by Neumark (1967, Section II.4) and Dunford and Schwartz (1971, Section

XIX).

The particular form of (2.5) allows a more straightforward and detailed account of these

properties. Professor J.J. Duistermaat from the University of Utrecht kindly agreed to review

these properties at our request. In his recent report (Duistermaat 1995), sharper asymptotics

for the eigenvalues and eigenfunctions of the boundary value problem (2.5), compared with
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those presented in the references above, are obtained and a further study of the asymptotic

properties of the corresponding eigenfunctions is made. In particular the sharper

asymptotics of the eigenfunctions is necessary to prove our result.

Here we summarize the results that we use later.

Theorem 2.2 (Duistermaat 1995). The non-zero eigenvalues ëk of the boundary value

problem (2.5) satisfy the relation

ëk � r2m
k � fkð(bÿ a)ÿ1g2mf1� o(1)g, k !1, (2:6)

and the corresponding eigenfunctions jk equal (for coef®cients Ak , Bk such that they are

orthonormalized)

Akfcos (rk t)� rk(t)g, for k odd, and Bkfsin (rk t)� rk(t)g for k even,

where the functions rk(t) satisfy

jr(i)
k (t)j < Ci,mri

k(eÿr kám( tÿa) � eÿr kám(bÿ t)),

for any i and some constants Ci,m depending on i, m and bÿ a and ám . 0 depending only

on m.

Note that for m � 1 the eigenvalues equal fkð=(bÿ a)g2 and the eigenfunctions are

exactly cosines.

Observe that the functions f(ëk)ÿ1=2j(m)
k (:)gk>m are also orthonormal. Therefore, for a

function f 2 C m[a, b] satisfying �b

a

f f (m)(t)g2 dt < Q,

we can derive by partial integration and Bessel's inequality that the Fourier coef®cients

èk �
� b

a
f (t)jk(t) dt belong to the ellipsoidX1

k�m

ëkè
2
k �

X1
k�0

ëkè
2
k < Q: (2:7)

We note that, in the paper by Pinsker (1980), among other things, an optimal estimator is

constructed for signals with a restriction on Fourier coef®cients of precisely this type. Our

goal here is to develop a similar but broader technique, incorporating the piecewise smooth

functions.

2.2. Optimal estimation with known jump points

Given (2.7) we follow and generalize the ideas of Pinsker in deriving an optimal estimator of

f (see also Belitser and Levit 1996). Denote the corresponding orthonormal eigenvalues and

eigenfunctions of (2.5) on the interval [b j, b j�1] by ëk, j � ëk(b j�1 ÿ b j)
ÿ2m and jk, j(t) �
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(b j�1 ÿ b j)
ÿ1=2jk((b j�1 ÿ b j)

ÿ1(t ÿ b j)) for j � 0, . . . , S, where jk and ëk denote here the

corresponding quantities related to the standard interval [0, 1].

Let us emphasize the fact that the jump points b1 up to bS are unknown. However, let us

pretend for a moment that they are known. Rewrite the observation process (2.1) into the

following equivalent sequence of observations ( j � 0, . . . , S):

Yk, j � èk, j � Eîk, j, k � 0, 1, . . . , (2:8)

with

Yk, j �
�b j�1

b j

jk, j(t) dX E(t), èk, j �
�b j�1

b j

f (t)jk, j(t) dt

and

îk, j �
�b j�1

b j

jk, j(t) dW (t):

Here î1,0, . . . , î1,S , î2,0, . . . , î2,S , . . . are independent and standard Gaussian random

variables.

Consider the following tapered orthogonal series estimator of f :

f̂ (t) �
X1
k�0

�èk, jjk, j(t), t 2 [b j, b j�1[, j � 0, . . . , S (2:9)

(the last subinterval is [bS , 1] instead of [bS , 1[), where

�èk, j � hk, jYk, j, 0 < hk, j < 1,

is an estimate of èk, j and the tapering coef®cients hk, j are chosen such that

hk, j � 1, k � 0, . . . , mÿ 1,

(1ÿ c jë
1=2
k, j )�, k > m,

�
(2:10)

with c j the solutions of the equations

c j(b j�1 ÿ b j)Q � E2
X1
k�0

ë1=2
k, j (1ÿ c jë

1=2
k, j )�: (2:11)

These coef®cients are shown below to be optimal in the sense that the maximal quadratic risk

of the pseudo-estimator f̂ over ÖB,k,L(m, Q) attains asymptotically the optimal bound (2.4).

In order to explain this observe ®rst that the risk R( f̂ , f ), de®ned in (2.2), of an estimator f̂

of the form (2.9) with arbitrary tapering coef®cients hk, j is equal to

XS

j�0

X1
k�0

E f (�èk, j ÿ èk, j)
2
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or, written out,

XS

j�0

X1
k�0

fE2 h2
h, j � è2

k, j(hk, j ÿ 1)2g:

Therefore the maximal quadratic risk of f̂ over ÖB,k,L(m, Q) for arbitrary tapering

coef®cients hk, j can be bounded as follows (cf. (2.7)):

sup
f 2ÖB,k, L(m,Q)

R( f̂ , f ) � sup
f 2ÖB,k, L(m,Q)

XS

j�0

X1
k�0

fE2 h2
k, j � è2

k, j(hk, j ÿ 1)2g

< sup
fèk, j:

P
j

P
kë k, jè

2
k, j<Qg

XS

j�0

X1
k�0

fE2 h2
k, j � è2

k, j(hk, j ÿ 1)2g

< sup

fQj:
PS

j�0
Qj�Qg

sup
fèk, j:

P
kë k, jè

2
k, j<Q jg

XS

j�0

X1
k�0

fE2 h2
k, j � è2

k, j � è2
k, j(hk, j ÿ 1)2g

< sup
fQj:
Ps

j�0
Qj�Qg

XS

j�0

E2
X1
k�0

h2
k, j � Qj sup

k>m

ëÿ1
k, j(hk, j ÿ 1)2

 !
:

Taking the in®mum over all tapering coef®cients 0 < hk, j < 1 for k > m in the last

expression we see that the minimax risk in estimating f , as de®ned in (2.3), is bounded by

rE(ÖB,k,L(m, Q)) < inf
c j

inf
fh k, j:(hk, jÿ1)2<c2

j
ë k, jg

sup
Qj

XS

j�0

E2
X1
k�m

h2
k, j � c2

j Qj

 !
� (S � 1)mE2:

(2:12)

If the class ÖB,k,L(m, Q) comprises only those functions f with given values of Q0, . . . , QS

(i.e. the distribution of the power of the signal for the intervals [b j, b j�1[ is known), then it is

not dif®cult to see (Belitser and Levit 1996) that the optimal tapering coef®cients hk, j in

(2.12) are given by (2.10) and

c jQj � E2
X1
k�m

ë1=2
k, j (1ÿ c jë

1=2
k, j )� (2:13)

(cf. (2.11)). However, since the Qj are not known, we replace them by

~Qj � (b j�1 ÿ b j)Q (2:14)

in (2.13), i.e., we presume for the moment that the `worst' possible distribution of the signals

power Qj over the intervals [b j, b j�1[ occurs when the Qj are proportional to their lengths

(constant power per unit of time). This hypothesis can be easily backed up by an elementary
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calculation. In Section 3 we show that, with c j and hk, j de®ned above, asymptotically the c j

do not depend on j (cf. (3.13)) and

sup

fQj:
PS

j�0
Qj�Qg

XS

j�0

E2
X1
k�m

h2
k, j � c2

j Qj

 !
� ã(m, Q)E4m=(2m�1)f1� o(1)g, E! 0: (2:15)

Denote therefore from now on c j by c.

Thus the estimator f̂ is an asymptotically minimax estimator, in the case when the jump

points are known, i.e.,

sup
f 2ÖB,k, L(m,Q)

R(f̂ , f ) < ã(m, Q)E4m=(2m�1)f1� o(1)g, E! 0: (2:16)

To summarize, using the method of Pinsker on each of the subintervals

[b j, b j�1[ � [0, 1] we obtain, in the case of known jump points, the same rate and even

the same constant as in the case without jump points.

However, the jump points on which the construction of the estimator f̂ above heavily

depends (note that all the quantities involved, namely hk, j, jk, j and ëk, j in the above

relations (2.5), (2.8), (2.10), (2.13) and (2.14) depend on them) are actually not known.

Our next goal is to show that combining the method described above with the use of

suf®ciently accurate estimators b̂ j of b j will enable us to obtain asymptotically the same

quality of estimation as in (2.16). Therefore we now explain how we estimate the (number

of) jump points.

2.3. Estimation of the jump points

There exist estimators of the jump points that converge with rate E2 to the true jump points

(Korostelev 1987). However, we de®ne here jump-point estimators which are easy to

calculate and are nearly optimal but converge fast enough to the true jump points for our

purposes.

In the sequel the bandwidth parameter h equals E2(ln Eÿ2)1�ä for an arbitrary but ®xed

ä. 0. Furthermore suppose that E is small enough such that 2h , k. De®ne a set of grid

points, separated at distance E2 by

A � fai � iE2, i � dhEÿ2e, . . . , b(1ÿ h)Eÿ2cg
on the interval [h, 1ÿ h] and let N be the number of elements of A. For every grid point

ai 2 A we calculate the quantity

T (ai) � hÿ1

�ai

aiÿh

dX E(t)ÿ hÿ1

�ai�h

ai

dX E(t):

We expect that jT (ai)j is `large' only if there is a jump point b j in the interval

[ai ÿ h, ai � h]. More precisely the following result will be proved in Section 3.
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Lemma 2.3. For every ã. 0 and 0 ,á, ä=2, uniformly in f 2 ÖB,k,L(m, Q)

(i)

P f fjT (ai)j. (ln Eÿ2)ÿág � o(Eã) E! 0,

for every grid point ai 2 A such that there are no jump points b j in the interval

[ai ÿ h, ai � h];

(ii)

P f fjT (ai)j, (ln Eÿ2)ÿág � o(Eã), E! 0

for every grid point ai 2 A such that for some j � 1, . . . , S, jai ÿ b jj, h=2.

However, it is possible that there are more than one grid point ai `near' a jump point b j

that have a large value jT (ai)j. Thus we have to classify those ai detecting the same b j.

Fix an á between 0 and ä=2. Neighbouring grid points ai and ai�1 are called connected

if both jT (ai)j and jT (ai�1)j exceed (ln Eÿ2)ÿá. Consider all subsets of A, consisting of more

than d(log Eÿ2)1�äe connected grid points and denote these subsets (or so-called cluster sets)

by T j, j � 1, . . . , ~S. We use here the convention that, if such subsets do not exist, we put
~S � 0. Loosely speaking these sets contain the candidates for jump points. Finally we de®ne

estimator(s) b̂ j of possible jump points as follows:

b̂ j � arg max
ai2T j

fjT (ai)jg, j � 1, . . . , ~S, (2:17)

and b̂0 � 0, b̂~S�1 � 1. Note that, if ~S is larger than S, then at least for one ai there is no jump

b j in the interval [ai ÿ h, ai � h] and nevertheless jT (ai)j. (ln Eÿ2)ÿá. Fortunately owing to

Lemma 2.3(i), with ã � 2� 4m=(2m� 1), this happens only with small probability, namely

P f fS , ~Sg <
X

ai:no jump in [aiÿh,ai�h]

P f fjT (ai)j. (ln Eÿ2)ÿág � of(E2)2m=(2m�1)g: (2:18)

In the case when ~S , S there is at least one b j such that there exists an ai within distance h=2

of b j having jT (ai)j value smaller than (ln Eÿ2)ÿá. Applying Lemma 2.3(ii) with

ã � 4m=(2m� 1) yields

P f fS . ~Sg <
X

b j

P f fjT (ai)j, (ln Eÿ2)ÿág � of(E2)2m=(2m�1)g: (2:19)

Indeed with high probability the right number of jump points is estimated. Note that, since

2h . k, the minimal distance of the jump points, it cannot happen that two real jump points

are `seen' as one. The following bound concerning the accuracy of estimating b j is frequently

used in the sequel.
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Corollary 2.4 Uniformly in f 2 ÖB,k,L(m, Q) we have

E f jb̂ j ÿ b jj2 < O[fE2(ln Eÿ2)1�äg2], E! 0:

Observe that the above expectation is obviously bounded by (2h)2 � P f fjb̂ j ÿ b jj. 2hg. Use

Lemma 2.3 to ®nish the proof of this corollary.

2.4. The proposed estimator and the framework of the proof

Substitute b̂ j and b̂ j�1 in (2.5) and (2.8). Denote the eigenfunctions jk(:, b̂ j, b̂ j�1) by ĵk, j

and ëk, j(b̂ j, b̂ j�1) by ë̂k, j. The observation process (2.1) can be rewritten into the sequence of

observations

Ŷk, j � è̂k, j � Eî̂k, j, k � 0, 1, . . . ,

where

Ŷ k, j �
� b̂ j�1

b̂ j

ĵk, j(t) dX E(t), è̂k, j �
� b̂ j�1

b̂ j

f (t)ĵk, j(t) dt

and

î̂k, j �
� b̂ j�1

b̂ j

ĵk, j(t) dW (t):

Furthermore substitute b̂ j and b̂ j�1 also in (2.10), (2.11) and (2.14). As suggested in the

discussion in Section 2.2 we propose the following estimator ~f for the unknown regression

function f :

~f (t) �
X1
k�0

~èk, jĵk, j(t), t 2 [b̂ j, b̂ j�1[, j � 0, . . . , ~S, (2:20)

where the estimator ~èk, j is equal to ĥk, jŶ k, j with the (estimated) tapering coef®cients ĥk, j

de®ned by the relations

ĥk, j � f1ÿ (cë̂k, j)
1=2g�, k � 0, 1, . . . , j � 0, . . . , ~S,

and c is given by (3.13) below (note that again the ®rst m tapering coef®cients equal 1).

As the regression function is supposed to be bounded by some (unknown) constant B we

continue the proof with the following truncated version of ~f :

~f tr(t) �
ÿB(E), ~f ,ÿB(E),
~f (t), j ~f j < B(E),

B(E), ~f . B(E):

8><>:
Here B(E) is a sequence tending `slowly' to in®nity, e.g., B(E) � ln Eÿ2; thus, for E small

enough, it exceeds B. The risk of this estimator is bounded by [2B(E)]2. Owing to the
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inequalities (2.18) and (2.19) we know that the probability that S is not equal to ~S is

suf®ciently small, namely,

P f fS 6� ~S g � of(E2)2m=(2m�1)g,
as E tends to zero. Moreoever we have, according to Corollary 2.4,

E f jb̂ j ÿ b jj2 < O[fE2(ln Eÿ2)1�äg2] � of(E2)2m=(2m�1)g, E! 0: (2:21)

Combining these two facts we see that the complement of the event F � fS � ~Sg \
fjb̂ j ÿ b jj, 2h, j � 1, . . . , Sg has small probability. Thus we derive for the risk of ~f tr,

provided that E is small enough,

R( ~f tr, f ) � E f i ~f tr ÿ f i2IF � E f i ~f tr ÿ f i2IF c

< E f i ~f ÿ f i2IF � of(E2)2m=(2m�1)g, E! 0:

Hence it suf®ces to restrict ourselves to the case S equals ~S and we can assume that b̂ j

estimates b j within distance 2h. From now on we take expectations conditioned on the event

F without mentioning it. Applying the Parseval equality we derive for the risk of ~f

R( ~f , f ) �
XS

j�0

X1
k�0

E f (~èk, j ÿ è̂k, j)
2

�
XS

j�0

X1
k�0

E f fE ĥk, jî̂k, j ÿ (1ÿ ĥk, j)è̂k, jg2

�
XS

j�0

E f L̂E, j( f )� R1, j � R2, j ÿ R3, j,

where

L̂E, j( f ) �
X
k>m

(1ÿ ĥk, j)
2è̂2

k, j � E2 ĥ2
k, j,

R1, j � R1, j( f , b̂ j, b̂ j�1) � E2
Xmÿ1

k�0

E f î̂
2
k, j,

R2, j � R2, j(b̂ j, b̂ j�1) � E2
X
k>m

E f ĥ2
k, j(î̂

2
k, j ÿ 1),

R3, j � R3, j( f , b̂ j, b̂ j�1) � 2E
X
k>m

E f (1ÿ ĥk, j) ĥk, jè̂k, jî̂k, j:

For the remainder terms Rl, j (l � 1, 2, 3), we deduce in Section 3 the following bounds for E
tending to 0, all uniformly for f 2 ÖB,k,L(m, Q):
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R1, j( f , b̂ j, b̂ j�1) � o[E2 ln3 (Eÿ2)g, (2:22)

R2, j( f , b̂ j, b̂ j�1) � o(1)E f L̂E, j( f )� OfE2 ln3 (Eÿ2)g (2:23)

and

jR3, j( f , b̂ j, b̂ j�1)j � o(1)E f L̂E, j( f )� OfE2 ln3 (Eÿ2)g: (2:24)

This implies uniformly in f 2 ÖB,k,L(m, Q)

R( ~f , f ) � f1� o(1)g
XS

j�0

E f L̂E, j( f )� OfE2 ln3 (Eÿ2)g, E! 0:

Denote by LE, j( f ) the quantity

LE, j( f ) �
X1
k�m

(1ÿ hk, j)
2è2

k, j � E2 h2
k, j,

with hk, j de®ned in (2.10) and (2.11). The next step in the proof is to show that, uniformly in

f 2 ÖB,k,L(m, Q), we have for j � 0, . . . , S

E f L̂E, j( f ) < LE, j( f )f1� o(1)g � o(E4m=(2m�1)), E! 0 (2:25)

(cf. Section 3). Thus for the maximal quadratic risk of ~f we have

sup
f 2ÖB,k, L(m,Q)

R( ~f , f ) < sup
ÖB,k, L(m,Q)

XS

j�0

LE, j( f )f1� o(1)g � o(E4m=(2m�1)), E! 0: (2:26)

Finally note that in Section 2.2 we have explained that

sup
ÖB,k, L(m,Q)

XS

j�0

LE, j( f ) < ã(m, Q)E4m=(2m�1)f1� o(1)g, E! 0: (2:27)

Combination of (2.26) and (2.27) ®nishes the proof of Theorem 2.1.

3. Proofs

Proof of Lemma 2.3. Suppose that ai 2 A, the set of grid points is such that there are no

jump points b j in the interval [ai ÿ h, ai � h]. For any such grid point we bound the bias of

T (ai), uniformly in f 2 ÖB,k,L(m, Q), as follows:

jE f T (ai)j � hÿ1

�����ai

aiÿh

f (t) dt ÿ
�ai�h

ai

f (t) dt

���� � const: h < 1
2
(ln Eÿ2)ÿá, (3:1)

provided that E is suf®ciently small. T (ai) is normally distributed with expectation E f T (ai)

and variance 2E2 hÿ1. Therefore, for any ã. 0, using the `tail' approximation of a normal

distribution and (3.1) we derive Lemma 2.3(i) with the following steps:
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P f fjT (ai)j. (ln Eÿ2)ÿág < P f fjT (ai)ÿ E f T (ai)j. (ln Eÿ2)ÿá ÿ jE f T (ai)jg

< P f fjT (ai)ÿ E f T (ai)j. 1
2
(ln Eÿ2)ÿág

< 4f(ðh)ÿ1E2g1=2(ln Eÿ2)á exp fÿ(4E)ÿ2(ln Eÿ2)ÿ2áhg

� 4ðÿ1=2(ln Eÿ2)áÿ(ä=2)ÿ(1=2) exp fÿ4ÿ2(ln Eÿ2)1�äÿ2ág
� o(Eã),

if á is chosen to be smaller than ä=2.

Let ai now be a grid point such that jai ÿ b jj, h=2. For any such ai we bound the bias

of T (ai) from below by L=3:

jE f T (ai)j � hÿ1

�����ai

aiÿh

f (t) dt ÿ
�ai�h

ai

f (t) dt

���� � j f (b j�)ÿ f (b jÿ)jf1� o(1)g.
L

3
: (3:2)

Using (3.2) and taking arbitrary ã. 0 we ®nally prove Lemma 2.3(ii) as follows:

P f fjT (ai)j, (ln Eÿ2)ÿág < P f jT (ai)ÿ E f T (ai)j. L

4

� �

< 8f(ðh)ÿ1E2g1=2 Lÿ1 exp ÿ L

8E

� �2

h

( )

� 8fð1=2 L(ln Eÿ2)(1�ä)gÿ1 exp ÿ L

8

� �2

(ln Eÿ2)1�ä

( )
� o(Eã): u

Proof of (2.22). De®ne for i, j, each varying from dhEÿ2e to b(1ÿ h)Eÿ2c, the (not

necessarily independent but) standard Gaussian distributed random variables

îk,i, l �
�a l

ai

jk(t; ai, al) dW (t), k � 0, . . . , mÿ 1, m, . . . ,

where ak , al are grid points taken from the set A de®ned in Section 2.3. Observe that for

every j � 0, . . . , S we have

R1, j( f , b̂ j, b̂ j�1) � 4E2
Xmÿ1

k�0

E f ln e î̂2
k, j=4:

Note that for every j there are indices i and l such that î̂k, j is equal to îk,i, l as the estimators

b̂ j and b̂ j�1 belong to the set of grid points A. Therefore we have

R1, j( f , b̂ j, b̂ j�1) < 4E2
Xmÿ1

k�0

E f ln
X

i, l

eî
2
k,i, l=4

 !
:
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By the Jensen inequality we ®nally obtain that the remainder term R1 is ofE2 ln3 (Eÿ2)g (for E
tending to 0 and because N < Eÿ2):

R1, j( f , b̂ j, b̂ j�1) < 4E2
Xmÿ1

k�0

ln
X

i, l

E f eî
2
k,i, l=4

 !

� 4E2 m ln (21=2 N2) � ofE2 ln3 (Eÿ2)g: u

Proof of (2.23). Using (2.10) and (2.11) we can associate tapering coef®cients hk,i, l with any

pair ai, al in the same way that it has been done for the pairs b j, b j�1. In particular,

ĥk, j � hk,i, l if b̂ j � ai and b̂ j�1 � al. Denote by ixi the l2 norm of a sequence (xk)k>m.

Recall the random variables îk,i, l for k � m, . . . , de®ned above.

Applying ®rst the Cauchy±Schwarz inequality and then the Jensen inequality to the

concave function ln2 (x� e) (for x positive) we bound R2, j as follows:

R2
2, j < (2E)4E f i ĥ2

:, j i
2E f f(4i ĥ2

:, j igÿ1
X1
k�m

ĥ2
k, j(î̂

2
k, j ÿ 1)

 !2

< (2E)4E f i ĥ:, j i2E f ln2
X

i, l

exp (4i h2
:,i, l i)ÿ1

X1
k�m

h2
k,i, l(î

2
k,i, l ÿ 1)

 !

< (2E)4E f i ĥ:, j i2 ln2
X

i, l

E f exp (4i h2
:,i, l i)ÿ1

X1
k�m

h2
k,i, l(î

2
k,i, l ÿ 1)

 !
� e

( )

< (2E)4E f i ĥ:, j i2 ln2 N2 max
i, l

E f exp (4i h2
:,i, l i)ÿ1

X1
k�m

h2
k,i, l(î

2
k,i, l ÿ 1)

 !
� e

( )
: (3:3)

According to the distribution of the random variables îk,i, l we see that the second expectation

E f exp f(4ih2
:,i, l i)ÿ1

P
k>m h2

k,i, l(î
2
k,i, l ÿ 1)g equalsY1

k�m

exp [ÿh2
k,i, l(4i h2

:,i, l i)
ÿ1 ÿ 1

2
ln f1ÿ h2

k,i, l(2ih2
:,i, l i)ÿ1g]

and using the elementary inequality ln (1ÿ x) > ÿxÿ x2 for jxj < 1
2

this is bounded byQ
k>m exp fh4

k,i, l(8i h2
:,i, l i

2)ÿ1g. Substituting the last expression into (3.3) we obtain

R2
2, j < (2E)4E f i ĥ:, j i2 ln2 N2 max

i, l
exp (8i h2

:,i, l i
2)ÿ1

X1
k�m

h4
k,i, l

 !
� e

( )

< (2E)4E f i ĥ:, j i2 ln2 fe(N 2 � 1)g:
Using the Cauchy inequality,

2ab < ãÿ1a2 � ãb2, ã. 0, a, b 2 R, (3:4)
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and choosing ã � ln fe(N2 � 1)g we ®nish the proof of (2.23) as follows:

R2, j < 4E2 ln fe(N 2 � 1)g(E f i ĥ:, j i2)1=2

< 2E2[ln fe(N2 � 1)g]ÿ1E f i ĥ:, j i2 ln3 fe(N2 � 1)g
� o(1)E f L̂E, j( f )� O(E2 ln3 Eÿ2): u

Proof of (2.24). Denote the sequence f(1ÿ ĥk, j) ĥk, jè̂k, jgk>m by (ì̂k, j)k>m. Furthermore

de®ne, for k � m, . . . ,

ìk,i, l � (1ÿ hk,i, l)hk,i, l

�al

ai

f (t)jk(t, ai, al) dt:

Using the Cauchy±Schwarz inequality and the Jensen inequality we obtain as above

R2
3, j < (2E)2E f i ì̂:, j i2E f i ì̂:, j iÿ1

X1
k�m

ì̂k, jî̂k, j

 !2

< (2E)2E f i ì̂:, j i2 ln2 N2 max
i, l

E f exp iì:,i, l iÿ1
X1
k�m

ìk,i, lîk,i, l

 !
� e

( )

< (2E)2 ln2 fe(N 2 � 1)gE f i ì̂:, j i2:

Hence, according to (3.4) with ã � ln fe(N 2 � 1)g we have

jR3, jj < 2E ln fe(N2 � 1)g(E f i ì̂:, j i2)1=2

< lnÿ1 fe(N 2 � 1)gE f i ì̂:, j i2 � E2 ln3 fe(N 2 � 1)g

� o(1)E f

X1
k�m

(1ÿ ĥk, j)
2è̂2

k, j � O(E2 ln3 Eÿ2)

� o(1)E f L̂E, j( f )� OfE2 ln3 (Eÿ2)g: u

Proof of (2.25). In this section j � 0, . . . , S is arbitrary but ®xed. Obviously the expectation

of L̂E, j( f ) is equal to

E f

X1
k�m

(1ÿ hk, j � hk, j ÿ ĥk, j)
2è̂2

k, j � E2(hk, j ÿ hk, j � ĥk, j)
2:

For arbitrary 0 , ã, 1 the simple inequality (a� b)2 < (1ÿ ã)ÿ1a2 � ãÿ1b2, a, b 2 R,

holds. Combining this inequality and the fact that the squared Fourier coef®cient è̂2
k, j is

bounded by i f i2 we bound E f L̂E, j( f ) byX1
k�m

[(1ÿ ã)ÿ1E f f(1ÿ hk, j)
2è̂2

k, j � E2 h2
k, jg � ãÿ1(i f i2 � E2)E f (ĥk, j ÿ hk, j)

2]:
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Rewrite this last expression as

(1ÿ ã)ÿ1fLE, j( f )� R1g � ãÿ1 R2, (3:5)

with

R1 �
X1
k�m

(1ÿ hk, j)
2(E f è̂

2
k, j ÿ è2

k, j), R2 � (i f i2 � E2)
X1
k�m

E f (ĥk, j ÿ hk, j)
2:

Observe that the desired term LE, j( f ) turns up in (3.5), besides two (remainder) terms R1 and

R2 that are bounded.

Because E f è̂
2
k, j ÿ è2

k, j � E f (è̂k, j ÿ èk, j)
2 � 2èk, j(E f è̂k, j ÿ èk, j) and h2

k, j ÿ 2hk, j < 0 for

all k the ®rst remaining term R1 obviously does not exceedX1
k�m

(E f è̂
2
k, j ÿ è2

k, j)� 2
X1
k�m

(h2
k, j ÿ 2hk, j)èk, j(E f è̂k, j ÿ èk, j),

which we rewrite asXmÿ1

k�0

(è2
k, j ÿ E f è̂

2
k, j)� 2

X1
k�m

(h2
k, j ÿ 2hk, j)èk, j(E f è̂k, j ÿ èk, j), (3:6)

as both
P

k>0è̂
2
k, jand

P
k>0è

2
k, j equal i f i2. In order to estimate further we establish some

approximations of the differences jè̂k, j ÿ èk, jj.
Recall that the jump points b j are at least a distance k from each other. Moreoever b̂ j

differs from b j by more than 2h only with a small probability (cf. (2.21) and (2.17)).

Therefore we can assume that the estimated jump points b̂ j are also separated from each

other at least by k=2.

In view of the de®nitions of the functions jk, j and ĵk, j on the subintervals [b j, b j�1] and

[b̂ j, b̂ j�1], respectively, and Theorem 2.2 we deduce that there exists a constant C1 such

that for j � 0, . . . , S and t 2 [max (b j, b̂ j), min (b j�1, b̂ j�1)] the following approximations

hold:

jĵk, j(t)ÿ jk, j(t)j < C1(jb̂ j�1 ÿ b j�1j � jb̂ j ÿ b jj), k � 0, . . . , mÿ 1,

and

jĵk, j(t)ÿ jk, j(t)j < C1 k(jb̂ j�1 ÿ b j�1j � jb̂ j ÿ b jj), k � m, . . . :

On the intervals [min (b̂ j, b j), max (b̂ j, b j)] and [min (b̂ j�1, b j�1), max (b̂ j�1, b j�1)] either

ĵk, j or jk, j is zero and the other is bounded. This implies that there exists a constant C2 such

that

jè̂k, j ÿ èk, jj < C2 sup
j�0,:::,S

jb̂ j ÿ b jj, k � 0, . . . , mÿ 1 (3:7)

and

jè̂k, j ÿ èk, jj < C2 k sup
j�0,:::,S

jb̂ j ÿ b jj, k � m, . . . : (3:8)
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Denote sup j�0,:::,S jb̂ j ÿ b jj by D. Given (3.7) and (3.8) we return to the estimation of R1.

The ®rst term of (3.6) equalsXmÿ1

k�0

E f (èk, j ÿ è̂k, j)
2 � 2èk, j(èk, j ÿ E f è̂k, j)

and is therefore bounded by C2 m(C2E f D2 � 2i f iE f D). As jh(hÿ 2)j < 2h the second term

of (3.6) is bounded by 4C2E f D
P

k>m hk, j kjèk, jj. According to condition (A2.3) and (2.6) the

sum
P

k>m k2è2
k, j is bounded. Furthermore Corollary 2.4 gives a bound for E f D2. Hence for

some constant C3 we have, by the Cauchy±Schwarz inequality and (3.4) with ã �
E2(ln Eÿ2)ÿ1 that

R1 < C2E f D 4
X1
k�m

hk, j kjèk, jj � 2mi f i

 !
� mC2

2E f D2

< C3 ih j i
X1
k�m

k2è2
k, j

 !1=2

(E f D2)1=2 � O(E f D)

< C3 (ln Eÿ2)ÿ1E2
X1
k�m

h2
k, j � Eÿ2 ln Eÿ2E f D2

 !
� O(E f D)

� o(1)LE, j( f )� OfE2 ln3�2ä (Eÿ2)g, E! 0: (3:9)

It remains to estimate R2. Below we shall see that there exists a constant C4 such that

the coef®cients hk, j vanish for k . C4Eÿ2=(2m�1) (cf. (3.11) and (3.13)). Furthermore from

(2.6) and (2.10) it is clear that the tapering coef®cients hk, j behave well in the sense that

we can assume that hk, j is Lipschitz with respect to b j�1 ÿ b j. Hence for E tending to zero

we have

R2 � (i f i � E2)
XC4Eÿ2=(2 m�1)

k�m

E f ( ĥk, j ÿ hk, j)
2

� O(Eÿ2=(2m�1)E f D2) � OfE2�4m=(2m�1) ln2�2ä(Eÿ2)g:
(3:10)

Substituting (3.9), (3.10) and ã � E in (3.5) we obtain (2.25). u

Proof of (2.15). According to (2.6), the number of non-zero summations in (2.11) is ®nite.

Denote these numbers by N j � N j(c j). Note that the solutions c j � c j(E) of (2.11) tend to

zero, as E does. Indeed if c j(E) stays away from zero, the same would happen to the left-hand

sides of (2.11) while their respective right-hand sides would tend to zero. Therefore, again

according to (2.6),

N j � b j�1 ÿ b j

ð
c
ÿ1=m
j f1� o(1)g, E! 0, (3:11)
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and using this, together with the asymptotic relation (for j � 0, . . . , S and á. 0),XN j

k�m

ëák, j �
ð

b j�1 ÿ b j

� �2má N2má�1
j

2má� 1
f1� o(1)g, N j !1, (3:12)

(2.11) become

c
(2m�1)=m
j Q � mE2

ð(m� 1)(2m� 1)
f1� o(1)g, E! 0:

Note that the c j asymptotically do not depend on j, i.e., c j � cf1� o(1)g where

c � c(E) � mE2

ðQ(m� 1)(2m� 1)

 !m=(2m�1)

(3:13)

and, as the calculations below show, we can just substitute this value of c into (2.15). Indeed

with such a choice of c, we have, according to (3.11)±(3.13), for E tending to zero,XS

j�0

E2
X1
k�m

h2
k, j � c2

j Qj

 !
�
XS

j�0

E2
XN j

k�m

(1ÿ cë1=2
k, j )2 � c2Qj

0@ 1A
� E2cÿ1=m 2m2

ð(m� 1)(2m� 1)

XS

j�0

(b j�1 ÿ b j)� c2Q

� ã(m, Q)E4m=(2m�1)f1� o(1)g: u
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